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ABSTRACT
Providing scalable database services is an essential require-
ment for extending many existing applications of the Cloud
platform. Due to the diversity of applications, database ser-
vices on the Cloud must support large-scale data analytical
jobs and high concurrent OLTP queries. Most existing work
focuses on some specific type of applications. To provide
an integrated framework, we are designing a new system,
epiC, as our solution to next-generation database systems.
In epiC, indexes play an important role in improving overall
performance. Different types of indexes are built to provide
efficient query processing for different applications.

In this paper, we propose RT-CAN, a multi-dimensional
indexing scheme in epiC. RT-CAN integrates CAN [23]-
based routing protocol and the R-tree based indexing scheme
to support efficient multi-dimensional query processing in
a Cloud system. RT-CAN organizes storage and compute
nodes into an overlay structure based on an extended CAN
protocol. In our proposal, we make a simple assumption
that each compute node uses an R-tree like indexing struc-
ture to index the data that are locally stored. We propose
a query-conscious cost model that selects beneficial local R-
tree nodes for publishing. By keeping the number of per-
sistently connected nodes small and maintaining a global
multi-dimensional search index, we can locate the compute
nodes that may contain the answer with a few hops, making
the scheme scalable in terms of data volume and number of
compute nodes. Experiments on Amazon’s EC2 show that
our proposed routing protocol and indexing scheme are ro-
bust, efficient and scalable.

Categories and Subject Descriptors
H.2.4 [Systems]: Distributed databases; C.2.4 [Distributed
System]: Distributed databases

General Terms
Algorithm, Design, Experimentation, Performance
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1. INTRODUCTION
Deploying database services on the Cloud poses new chal-

lenges to the community. Lacking scalability and reliability,
conventional database designs and principles cannot be di-
rectly applied to the new platform. Therefore, a new archi-
tecture that is specially tailored for the Cloud is essential.

Analytical jobs and online transactions are two basic data-
base workload types. Most recent work on the Cloud fo-
cuses on large-scale data analytical jobs [22, 5, 12] while
some work such as [10] attempts to support high concurrent
OLTP queries. epiC (elastic power-aware data-instensive
Cloud) [2], is a cloud-based data management system that
is being implemented jointly by the National University of
Singapore and Harbin Institute of Technology as an inte-
grated solution for both analytical jobs and OLTP transac-
tions. epiC is designed to provide primitive operators based
on the principle of filter and refine to serve as basic building
blocks for more complex operators so as to achieve the nec-
essary parallelism and fault tolerance. An SQL query will
then be translated into a DAG (Directed Acrylic Graph) of
primitive operators, and a master server schedules and mon-
itors the processing of such operators. As in conventional
DBMS, these operators may apply index-based processing
or scan-based processing. Indexes can indeed improve query
performance by orders of magnitude for both large-scale an-
alytical jobs [16] and OLTP queries [10]. In epiC, indexing
schemes adopt a two-layer approach, which is light weight
and query-pattern conscious, and ride on local indexes.

The first application that we are implementing is a com-
munity travelog system designed to help travelers plan their
travel itinerary and share their experiences and photos. In
such a system, we need to support photo search via key-
words/tags and geo-tags. Specifically, each photo object is
expressed as {g0, g1, ..., gm, k0, k1, ..., kn}, where gi repre-
sents its geographic information (e.g., latitude, longitude,
location name, etc.) and ki describes the features of the
photo (date, topic, photo type, color histogram, textures,
etc.). Typical queries include searching photos with spe-
cific tags in a given location and finding the geo informa-
tion about a specific photo. To efficiently support the above
queries, a multi-dimensional indexing strategy, called RT-
CAN, is designed for epiC.

In this paper, we present our implementation of RT-CAN.
We target internet-scale applications, where hundreds of
servers are used to support tera-byte data and millions of



users; the index must therefore be able to scale up when
more servers are added or more data are inserted. One pop-
ular solution is to apply a master server to maintain the
global index. All queries are sent to the master server to
search the global index and then forwarded to correspond-
ing servers. Due to the fact that the size of the global index
is proportional to the size of the data and the number of
concurrent requests is huge, the master server risks being
a bottleneck. Therefore, we propose distributing the global
index across servers. Each server only maintains a portion
of the global index. The distributed approach improves scal-
ability and fault tolerance.

To distribute the global index, servers are organized into
an overlay network. Specifically, CAN (Content Addressable
Network) is adopted as it is suitable for multi-dimensional
search. Our global index is built on top of the local indexes.
To search the local data efficiently, an R-tree like multi-
dimensional index should be built for the local database. In
the global index, instead of indexing every tuple, we publish
local R-tree nodes into the global index. Consequently, the
global index in our system plays the role of an “overview” in-
dex, composed of R-tree nodes from different servers. There-
fore, we name our global index RT-CAN (the R-Tree based
index in CAN). Indexing R-tree nodes reduces the size of
the global index and hence lowers maintenance cost. Once
we have located an R-tree node in the global index, we can
continue search in the local R-tree, starting from the node
registered in the global index.

The main challenge to the design of an efficient RT-CAN
scheme is the distribution of the global index onto compute
servers. In RT-CAN, the multi-dimensional search space is
partitioned into zones based on CAN’s protocols, which is
similar in concept to that of the grid-file and the kd-tree
[9]. Each server maintains a zone, and the partitions are
adjusted adaptively. A “hot” zone can balance its load with
its neighbors by shrinking its zone. For the fact that an
R-tree node represents a multi-dimensional hyper-cube, we
build a mapping function between R-tree nodes and CAN
servers. If an R-tree node is inserted into the global index, it
will be published to mapped servers. To process a query, we
search the global index and route the query to servers whose
zones overlap with the query. Upon receiving the query, the
servers will process the query in parallel. We apply CAN’s
routing protocols to forward R-tree nodes and queries from
their owners to the mapped servers. In d-dimensional CAN,

the average routing cost is d
4
N

1
d , where N is the number of

servers. To reduce routing cost, we apply a variant of CAN
[11] by maintaining Chord-like routing neighbors along each
dimension on the same grid interval, where the routing cost
is reduced to log N

4
. Moreover, a routing buffer is maintained

in each server to further reduce routing cost.
It is not practical to publish every R-tree node to the

global index as that incurs high maintenance overhead. There-
fore, it suffices to select a portion of R-tree nodes that are
useful for routing purposes and publish them in the global in-
dex. Since different selections incur different costs (routing
cost, maintenance cost and query cost), the challenge lies
in choosing an index strategy which incurs the least total
cost. We present a scheme to estimate the cost of a possi-
ble indexing strategy. Based on the statistics about query
distribution and updates, our scheme can dynamically tune
the indexing strategy to minimize cost.

This paper makes the following contributions:

1. A distributed global index, the RT-CAN index, is pro-
posed to support efficient multi-dimensional search.
The RT-CAN index is built on top of local R-trees
and published to cluster servers.

2. We present a method to map a selected R-tree node
to a CAN node. Query processing algorithms are de-
signed to support point, range and KNN queries for
the RT-CAN index.

3. A cost model is proposed to estimate the cost of dif-
ferent indexing strategies, based on which a dynamic
tuning algorithm is proposed to selectively publish lo-
cal R-tree nodes onto the global index. The tuning
algorithm optimizes maintenance cost and query cost.

4. Experiments on Amazon’s EC2 verify the effectiveness
and efficiency of the RT-CAN index.

The rest of this paper is organized as follows: Section 2
presents related works while Section 3 gives an overview of
our indexing scheme. Section 4 presents our query process-
ing algorithms, including the point, range and KNN queries.
Section 5 presents index selection and tuning methods, and
describes the selection of R-tree nodes and the method to
tune them according to the current workload. Section 6
presents the performance evaluation, and we conclude in
Section 7.

2. RELATED WORK

2.1 Distributed Data Processing System
Much effort has been invested in designing distributed

storage systems to manage large amounts of data, such as
Google File System[18] (GFS), which serves Google’s appli-
cations with large data volume. BigTable[13] is a distributed
storage system for managing structured data of very large
scales. There are some open source implementations of GFS
and BigTable such as HDFS[1], HBase and HyperTable,
which have indeed provided a good platform for research
and development. Yahoo proposed PNUTS [10], a hosted,
centrally controlled parallel and distributed database sys-
tem for Yahoo’s applications. These systems organize data
into chunks, and then randomly disseminate chunks into
clusters to improve data access parallelism. Some central
servers working as routers are responsible for guiding queries
to nodes which hold query results. In [25], bulk insertion
were proposed to insert data efficiently in these systems.
Unlike these work, we build a scalable second-level index
which provides data location functionality based on the dis-
tributed storage system. Our indexing scheme is designed
to route a large amount of queries among a large cluster
of storage nodes. Amazon’s Dynamo[17] is a readily avail-
able key-value store based on geographical replication, and
it can provide eventual consistency. Each cluster in Dynamo
organizes nodes into a ring structure, which uses consistent
hashing to retrieve data items. Consistent hashing is de-
signed to support key-based data retrieval and is not a good
candidate to support range and multi-dimensional queries.
To support query processing over multi-dimensional data,
we use CAN (Content Addressable Network) to build our
database storage system. Commercial distributed storage
systems such as Amazon’s S3 (Simple Storage System) and



Microsoft’s CloudDB tend to have little implementation de-
tails published. Some other systems such as Ceph[7], Sinfo-
nia[6], etc., are designed to store objects, and they aim to
provide high performance in object based retrievals instead
of set based database retrieval. MapReduce[22] was pro-
posed to process large datasets disseminated among clusters.
MapReduce assigns mappers and reducers to process tasks,
where mappers produce intermediate results in parallel and
reducers pull the intermediate results from mappers to do
aggregations. Recent work, such as [30] and [5], attempt to
integrate MapReduce into database systems.

These works form a parallel framework for processing large
datasets. Our work is to build a second level overview in-
dex, which can also be employed in systems such as GFS
and MapReduce, among cluster nodes. Our work follows
the framework proposed in [29]. However, to support multi-
dimensional data, new routing algorithms and query pro-
cessing algorithms are proposed. Furthermore, both range
queries and KNN queries are studied in this paper.

2.2 Overlay Networks
Besides CAN, other overlay structures, such as tree topol-

ogy overlays (e.g., BATON[21][20], Pastry[24], P-grid[4] and
P-tree[14]) and ring topology overlays (e.g., Chord[26] and
P-ring[15]), have also been proposed. Chord and Pastry are
very effective for exact match queries. Others can process
one-dimensional range queries. However, except CAN, none
of the above overlays can support multi-dimensional queries
naturally. Much work has been done to enhance the overlay
network with the capability of handling multi-dimensional
queries [28]. Most of them consider a datum as a point in
multi-dimensional search space and index it accordingly. In
contrast, we group data into hypercubes and index the hy-
percubes in CAN. An original overlay structure is defined
for dynamic networks such as a peer-to-peer network. In
our case, the overlay is only used to build a logical network
for partitioning data and routing queries. The overlay can
be considered a static network as nodes in the Cloud system
will stay online till the hardware fails.

2.3 Content Addressable Network
CAN (Content Addressable Network) is a scalable, self-

organized structured peer-to-peer overlay network. A d-
dimensional CAN partitions a virtual d-dimensional Carte-
sian coordinate space among nodes in CAN, and assigns each
node a d-dimensional zone. A node in CAN maintains data
mapped to its zone.

CAN applies a hash function hashCAN to map a data
item via its key to a point in the coordinate space. Data
item (key, value) is stored in the CAN node whose zone con-
tains the point P = hashCAN (key). CAN Node Ni main-
tains a routing table storing the ip addresses of other CAN
nodes whose zones are adjacent to Ni’s zone. Once Ni gets
a query for a certain key, it routes the query to a neighbor
whose zone is nearest the point P = hashCAN (key). In a
d-dimensional CAN with N nodes, the average number of

routing hops for a query is d
4
N

1
d , and each node maintains

2d neighbors in its routing table.
A node can freely join or leave a CAN network because

CAN is totally self-organized, and the join or departure of
a node incurs 2d messages to update its neighbors’ routing
table. In this paper, we use CAN to organize cluster nodes.
These cluster nodes are much more stable than peers in P2P
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Figure 1: An Example of 2-d C2 Overlay.

networks, and thus, we will not consider the update cost of
node join or departure in our cost model.

CAN’s routing cost is slightly higher than other overlay
networks. Therefore, instead of applying CAN, we adopt a
CAN’s variant, C2 [11]. C2 is a hybrid overlay of Chord and
CAN. It extends CAN by adding Chord-like neighbor links
on each dimension. Specifically, neighbor links are added
between nodes with distance of 20, 21, ... on each dimension.
Figure1 shows an example of a 2-d C2, made up of 64 nodes.
Node A keeps a neighbor link to node B, C, D since they are
at a distance of 20, 21 and 22 on the horizontal dimension,
respectively. Similarly, node A also keeps neighbor links to
node E, F , G, H , I , J and K. On average, an C2 node
maintains O(log d

√
N) neighbors on each dimension. Thus,

the total number of neighbors is O(logN). Therefore, C2

actually maintains the same number of routing neighbors as
the other overlay networks. C2 reduces the average routing
hop number to log N

4
.

In the following part, we also use CAN node to refer to a
C2 node, since CAN is the original overlay structure.

3. RT-CAN INDEX
The RT-CAN index is built on top of the local indexes.

The key problem of the RT-CAN index lies in mapping a lo-
cal R-tree node to a CAN server. In this section, we present
an overview of the RT-CAN index scheme in our Cloud data
management system. Specifically, we focus on the mapping
function of the RT-CAN index. We also present a general
index publication algorithm for building the RT-CAN index.

3.1 Work Flow and Node Structure
The RT-CAN index is built on a shared-nothing cluster,

where application data are partitioned and distributed over
different servers. As shown in Figure 2, a cluster server
Ni assumes two roles, namely, storage node Nsi and over-
lay node Noi. Nsi joins a distributed storage system and
maintains a portion of application data. To facilitate multi-
dimensional search, Nsi builds an R-tree for its local data.
Nsi publishes its index by interacting with Noi. Noi is a node
in the structured overlay, CAN. It responds for a partition
of CAN. Nsi adaptively selects a set of R-tree nodes from
its local R-tree and publishes them into the overlay network
via the interface of Noi. The format of the published R-tree
node is (ip, mbr), where ip is Ni’s IP address and mbr is the
minimal bounding range of the R-tree node. On receiving a
publication request from Nsi, Noi maps the corresponding
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R-tree node to a CAN node and forwards the request based
on CAN’s routing protocol. Noi is responsible for maintain-
ing the global index. After it receives a publication request,
it checks whether it is the receiver of the request based on
the mapping function. If it is, it keeps a copy of the pub-
lished R-tree node and buffers the index in memory. In this
way, the global index composes of some R-tree nodes from
the local indexes and is distributed over the cluster.

The global index can be considered as a secondary index
on top of the local R-trees. This design splits the processing
of a query into two phases. In the first phase, the processor
looks up the global index by mapping the query to some
CAN nodes. These CAN nodes search their buffered R-tree
nodes and return the entries that satisfy the query. In the
second phase, based on the received index entries, the query
is forwarded to the corresponding storage nodes, which re-
trieve the results via the local R-tree. The detailed query
processing algorithm can be found in Section 4.

Data insertion or deletion may trigger an update to the
local R-tree, which violates the global index. To handle
this problem, we need to synchronize the global index with
the local R-trees. If a local R-tree node has been split or
merged and it is marked as being published, we publish it
again to replace the outdated global index. The RT-CAN
index reduces update cost by publishing only a portion of
R-tree nodes. If we index every tuple in the global index
(traditional P2P systems adopt this idea), any update to
the local database will trigger an update to the global in-
dex. However, the RT-CAN index introduces false positive
cost. As higher level R-tree nodes cover a large range, a
query overlapping the R-tree nodes does not guarantee that
valid results will be retrieved. To balance update cost and
false positive cost, we propose a tuning approach. The clus-
ter server occasionally re-selects R-tree nodes for publishing
based on recent query and update patterns.

3.2 Mapping Scheme in CAN
We use d-dimensional C2 [11] to maintain index items

for d-dimensional data. C2 is a variant of CAN with en-
hanced search capability. It reduces routing hops by increas-
ing neighboring links in each dimension, and search cost is
bounded by O(log N). To facilitate index publishing, a map-
ping function is created to map an R-tree node to a CAN
node. Specifically, the center and radius of the R-tree node’s
bounding box are used as the criteria for mapping. If the ra-
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Figure 3: Different Search Space of An Exact Query
With Different Rmax Values (R1 and R2)

dius is smaller than a threshold, say Rmax, the R-tree node
is mapped to one CAN node. Otherwise, it is mapped to
multiple CAN nodes. The mapping function works as fol-
lows: For an R-tree node n, we first map it to the overlay
node Nc whose zone contains n’s center. Then Nc compares
n’s radius and Rmax. If n’s radius is larger than Rmax, Nc

will send n to all the overlay nodes whose range overlaps
with n’s range. The center is used in the mapping function,
as R-tree nodes with close centers may contain similar data
with high probability.

The above mapping scheme creates multiple replicas of
R-tree nodes with larger ranges (radius larger than Rmax).
This strategy works on the basis of update cost and search
cost. An R-tree node with a small range refers to a low-
level node in the tree with high probability. Low-level node
always incurs more updates than the up-level ones. There-
fore, keeping multiple replicas introduces high overhead. In
contrast, for an R-tree node with a larger range, multiple
CAN nodes are covered. If we only maintain one copy of
the index for it, all queries need to search that CAN node,
which reduces query efficiency.

Rmax has a significant impact on the search space of a
query. A query may need to access more CAN nodes for a
larger Rmax. Figure 3 shows an example of the search space
of a query Q(key) with different Rmax values in a 2-d CAN
overlay. The circles with radius R1 and R2 are the search
spaces of point query when Rmax is set to R1 or R2. The
query has to access more compute nodes to obtain all index
items which contain the search key if we increase Rmax from
R1 to R2. Rmax is a tunable parameter. In an RT-CAN
indexing system, a larger Rmax degrades query performance
as more space must be searched to retrieve complete results.
On the other hand, a smaller Rmax increases maintenance
cost by creating too many replicas. In our system, we set
Rmax to a value larger than the radiuses of most leaf nodes
of local R-trees.

3.3 Publishing In The RT-CAN Index
Initially, due to lack of information about the query pat-

tern and the update pattern, we cannot select R-tree nodes
based on our cost model. Therefore, in an L-level R-tree,
we select R-tree nodes in the L-1 level (nodes above the
leaf nodes) to publish since these nodes are usually not fre-
quently updated and they do not introduce too many false
positives either. After a cluster server Ni selects a set of
R-tree nodes, Si, for indexing, it publishes the index for
every R-tree node in Si. ∀n ∈ Si, Ni computes its center



cn and radius rn, and publishes n based on our mapping
function. For example, in a two-dimensional space, suppose
node Ni wants to publish an R-tree node n whose range
is [l1, u1], [l2, u2]. Ni first computes n’s center and radius

as cn = ( l1+u1
2

, l2+u2
2

) and rn = 1
2

√
(u1 − l1)2 + (u2 − l2)2.

We use the center as the key to publish the node, namely
keyn = cn. If the dimensionality of CAN (d) is larger than
the search space d′, Ni will generate a (d − d′)-vector vn

and append it to keyn. Then, n has a d-length combination
key key′

n = (vn, keyn). The index of the R-tree node n is
sent to the cluster node Nj whose zone contains n’s center,
cn. The CAN dimension d should be chosen properly to en-
sure that it is not smaller than the largest dimensionality of
data. We can choose a large enough d to keep this condition
since the dimensionality of a table is usually not very large.
Algorithm 1 describes how Ni publishes an index item for
an R-tree node n. If n.radius > Rmax, all CAN nodes over-
lapping with n need to maintain n in its global index. In
line 1, a subset of R-tree nodes are selected for publishing.
In line 4 and 7, we apply the routing protocol of CAN (C2)
to retrieve the overlapping cluster servers.

Algorithm 1 IndexPublication(cluster node Ni)

1: Si = getSelectedRTreeNode(Ni)
2: for each n ∈ Si do
3: cn = n′s center; rn = n′s radius
4: keyn = compositeKey(cn, rn)
5: Nj = CAN.lookup(keyn)
6: Nj inserts n into its global index set
7: if rn > Rmax then
8: Sn = getOverlappedNode(n)
9: for ∀Nk ∈ Sn do

10: Nk inserts n into its global index set
11: end for
12: end if
13: end for

Given a key k, routing to the RT-CAN node whose zone
contains k will cost log N

4
messages averagely, where N is

the number of servers in the cluster. So, it will cost log N
4

messages to publish an R-tree node whose radius is less than
Rmax. If the node’s radius is larger than Rmax, it will cost
log N

4
+ m messages, where m is the number of CAN nodes

whose zones overlap with the published R-tree node. The
total cost of indexing the set Si is bounded by O(|Si| log N).

4. QUERY PROCESSING
In this section, we show how the RT-CAN index can be ap-

plied to process various types of queries. We use point, rang
and KNN queries as examples. As discussed before, query
processing can be split into two phases. In the first phase,
we look up the RT-CAN index to retrieve the cluster servers
that may provide possible results. In the second phase, the
query is routed to the servers and processed locally. We
focus on the first phase, as the second phase is similar to
any centralized system. Given a query Q, to guarantee the
completeness of the result, we need to retrieve all possible
cluster servers that overlap with Q. To achieve this goal,
efficient algorithms are proposed to prune the search space,
using center and radius of both indexed R-tree nodes and
queries. In the rest of this paper, we assume the dimen-
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sionality of RT-CAN to be d, and we discuss the processing
algorithms for different queries.

4.1 Point Query Processing
The point query is denoted as Q(key), where key = (v1, ...,

vd), indicating a d-dimensional point. Given an indexed
R-tree node n and its bounding box [l1, u1], ..., [ld, ud], if
li ≤ vi ≤ ui for 1 ≤ i ≤ d, n should be searched to retrieve
possible results. Suppose key is mapped to a CAN node N ,
based on our publishing strategy, if n’s radius is larger than
Rmax, n may be maintained by a CAN node other than N .
Thus, to retrieve all possible results, the search space for
a point query Q(key) is a circle C centered at point key
with radius Rmax. All the CAN nodes whose zones overlap
with C should be accessed to retrieve the corresponding R-
tree nodes. Theorem 1 guarantees the completeness of the
results. Figure 4(a) illustrates the search space when d=2.

Theorem 1. For a point query Q(key), if we search the
circle centered at key with radius Rmax, we can guarantee
the completeness of the results.

Proof. Suppose an indexed R-tree node n has center c
and radius r, and it contains the search key, e.g., distance(key,
c) ≤ r. Based on our mapping function, if r ≤ Rmax, n must
overlap with the search circle, as distance(c, key) < Rmax.
Otherwise, if r > Rmax, we have created the replicas for n
in every overlapped CAN node. Therefore, the search circle
must contain a replica of the R-tree node.

To process a point query Q(key), we first forward the
query to the CAN node Ninit, whose zone contains the
key. Ninit searches its buffered global index and returns
matched results to the user. Then, it generates a search cir-
cle C for the query and forwards the query to other CAN
nodes that overlap with the circle. The query message is for-
warded via CAN’s routing protocol. To reduce overhead, we
slightly modify the routing algorithm. Suppose Ninit’s zone
is [l1, u1], ..., [ld, ud]. We partition the search range (e.g., C)
based on Ninit’s range iteratively. Specifically, C is first
partitioned by the first dimension. Three sub-ranges are
generated, R0, R1 and R2. R0 is the sub-range between l1
and u1. R1 is the sub-range below l1 and R2 is the sub-
range above u1. R1 and R2 are routed to the neighbors of
Ninit in the first dimension. R0 is continuously partitioned
by the second dimension. This process completes when the
search range has been partitioned by all dimensions. Be-
sides the sub-range handled by Ninit itself, the remaining



sub-ranges are forwarded to the neighbors. The head of the
routing message follows the format of {R, Ni}, where R is
the sub-range and Ni is the destination. Ni is responsible
for forwarding the query to all the other CAN nodes that
overlap with R.

Algorithm 2 shows the idea of point query processing. We
first route the query to the CAN node responsible for the
key (line 2). Then, the search circle is generated based on
the key and the maximal radius Rmax. From line 4 to 10,
we continuously partition the search circle into sub-ranges
and forward the query to the neighbor nodes. Finally, the
node searches its buffered global index and returns the cor-
responding indexed R-tree nodes to the user(line 11-15). In
line 9 and 10, when the neighbor nodes receive the query
message, they invoke a similar algorithm to partition and
process the query. The only difference is that they do not
need to find the initial node and generate the search circle.

Algorithm 2 Point Query Processing

Input: Q(key)
Output: Si (the result of indexed R-tree nodes)

1: Si = φ
2: Ninit = CAN.lookup(key)
3: C = generateSearchCircle(key,Rmax)
4: for i=1 to d do
5: partition C into R0, R1 and R2 based on li and ui

6: C = R0

7: N1 = getNeighbor(Ninit, R1)
8: N2 = getNeighbor(Ninit, R2)
9: Forward query message (N1, R1) to N1

10: Forward query message (N2, R2) to N2

11: end for
12: Si = Ninit.globalIndex
13: for ∀I ∈ Si do
14: if I ’s bounding box does not contain key then
15: Si = Si − {I}
16: end if
17: end for
18: return Si

The cost of processing a point query Q(key) is bounded by
RT-CAN’s routing cost. Averagely, it costs log N

4
messages

to forward a message to the initial node Ninit. Note that
by applying the variant of CAN, we reduce the routing cost
from O( d

√
N) to O(log N). At the initial node, the message

is continuously forwarded to another M nodes that overlap
with the search circle. Thus the total cost is about log N

4
+M .

4.2 Range Query Processing
A range query is denoted as Q(range), where range =

[l1, u1], ..., [ld, ud] is a multi-dimensional hypercube. The

range’s center is defined as ( l1+u1
2

, ..., ld+ud
2

) and its radius

is computed as 1
2

√
(u1 − l1)2 + ... + (ud − ld)2. If an R-tree

node n’s bounding box [l′1, u
′
1], ...[l

′
d, u′

d] overlaps with range,
n should be searched to retrieve possible query results. Fig-
ure 4(b) shows the search space of two range queries Q1 and
Q2. An R-tree node n, contains query results for Q(range)
only if distance(n.center, range.center) ≤ Rmax+range.ra−
dius. Thus, the search space of a range query Q(range)
is a circle C centered at range.center, and its radius is
Rmax + range.radius. Any server whose zone overlaps with
C should be accessed to retrieve possible query results.

Theorem 2. For a range query Q(range), if we search
the circle centered at key with radius Rmax + range.radius,
we can guarantee the completeness of the results.

Proof. Suppose an indexed R-tree node n has center c
and radius r and it overlaps with range. We have distance(c,
range.center) < range.radius + r. If r ≤ Rmax, c must be
contained by the search circle. If r > Rmax, we have created
replicas of n in every overlapped CAN node. Therefore, the
search circle must contain a replica of the R-tree node.

Given a d-dimensional range query Q(range), our algo-
rithm will return all indexed R-tree nodes whose bounding
boxes overlap with range. The processing progresses in a
manner similar to point query processing. First, the query is
routed to the CAN node Ninit whose zone contains the cen-
ter of Q(range). Then, the query is recursively forwarded to
all neighbors that overlap with the search circle. The query
is broadcast in a way similar to point query processing. The
search space is partitioned for each dimension and sent to
the corresponding neighbors. On receiving the query, the
CAN node searches its global index and returns candidate
R-tree nodes. The detail of the range query algorithm is
omitted here as it is similar to Algorithm 2.

4.3 KNN Query Processing
Given a KNN query Query(key, k), our algorithm returns

top-k data items which are closest to key. The intuition of
the KNN algorithm is to start with a small range and en-
large the search range accordingly. Although our scenario
is similar to the KNN problem in the R-tree index, conven-
tional algorithms, such as MINDIST-based pruning, cannot
be applied directly. The RT-CAN index is disseminated to
different cluster servers. Given a point key, which is mapped
to the CAN node Ninit, it is challenging to find the closest in-
dexed R-tree node of key. Ninit needs to communicate with
its neighbors in all dimensions to find all candidates. This
may incur significant network overhead. To retrieve top-k
results, we need several iterations. Each iteration involves
communication among a set of CAN nodes. Exploiting the
parallelism in Cloud systems, we adopt a simple but effective
algorithm.

Algorithm 3 illustrates our KNN algorithm. In lines 3 and
4, we set an initial search radius based on the data distribu-
tion. δ = Dk

k
, where Dk is the estimated distance between

key and its k-nearest neighbor. Dk can be estimated by the
following equations [27]:

Dk ≈
2 d

√
Γ( d

2
+ 1)

√
π

(1 −
√

1 − d

√
k

N
) (1)

where d is the dimensionality of RT-CAN, N is the esti-
mated number of data in the whole space, Γ(x+1) = xΓ(x),
Γ(1) = 1 and Γ( 1

2
) = π

2
. The KNN computation comprises

a series of range queries (line 6). Search(key, r) returns the
data, whose distances to key are no larger than r. Suppose
key = (x1, ..., xd), Search(key, r) is similar to range query
processing, and the only difference is that Search(key, r)
uses r as the radius of the query and uses key as the center
of the query. On receiving the search message, the CAN
node will check its global index and forward the request to
the corresponding cluster server, where a local search algo-
rithm is invoked to return its local data in the search range
(key, r). After each iteration, if we have not obtained enough
results yet, we increase the search radius by δ (line 10).



Algorithm 3 KNN Query Processing

Input: Q(key, k)
Output: Si (the result of indexed R-tree nodes)

1: Si = φ
2: Ninit = CAN.lookup(key)
3: δ = estimateRadius(k)
4: r = δ
5: while true do
6: Si = Search(key, r)
7: if |Si| ≥ k then
8: return top k results of Si

9: else
10: r = r + δ
11: end if
12: end while

The cost of KNN algorithm depends on the value of K.
For a large K, Algorithm 3 has to search a larger range to
retrieve enough data, which means more CAN nodes will
be contacted and more local search will be invoked. If the
data follows uniform distribution, the search space of a KNN
query Q(key, k) is in proportion to k. If the data is skewed,
and the estimated radius is not large enough to retrieve
enough data, a KNN query will cost more iterations, re-
ducing its efficiency.

5. INDEX MAINTENANCE
We adopt an adaptive indexing strategy in this paper to

minimize the maintenance cost of the RT-CAN index. Based
on the current query and update patterns, the cluster server
adaptively selects a portion of local R-tree nodes for pub-
lishing. A low-level R-tree node (node close to the leaf)
generates fewer false positives in query processing. How-
ever, it may incur more update costs. It is necessary to
balance the cost of false positive and updates. When select-
ing R-tree nodes for indexing, we must guarantee that the
index is complete and unique.

Definition 1. Index Completeness
Suppose cluster server Ni selects a set of local R-tree nodes
Sr to build its global index. The index is said to be complete,
if and only if for any tuple t in Ni’s local database, t is
contained by one R-tree node in Sr.

Definition 2. Unique Index
Suppose cluster server Ni selects a set of local R-tree nodes
Sr to build its global index. The index is said to be unique,
if for an R-tree node ni and its ancestor node nj , ni ∈ Sr →
nj 	∈ Sr ∧ nj ∈ Sr → ni 	∈ Sr.

Index completeness guarantees the correctness of query
processing while the unique index strategy reduces mainte-
nance overhead by removing redundancy. Our index selec-
tion algorithm satisfies the above two requirements and is a
variant of dynamic programming. Its cost is O(V ), where
V is the number of local R-tree nodes. Our index selection
algorithm aims to reduce index maintenance cost and false
positive cost at the same time. It is invoked occasionally
to adapt to the change of query or update patterns. Be-
fore delving into the details of the selection algorithm, we
first propose a cost model to estimate the cost of a specific
indexing strategy.

5.1 Cost Model
We only consider network cost in our cost model, as: 1)

disk I/O is much faster than network I/O, and 2) we have
built an R-tree index for the local data, which facilitates
data retrieval. In the RT-CAN indexing system, two types
of cost dominate the system’s performance: index mainte-
nance cost and query processing cost. To estimate the cost,
we record queries and updates in a time window T . The
cost C(n), incurred by an indexed R-tree node n, consists
of query processing cost CP (n) and index maintaining cost
CM (n).

C(n) = CP (n) + CM (n)

As we have discussed, applying the RT-CAN index to
query processing generates false positives. Some cluster
servers that cannot provide any result are searched as well.
This is because we index some high-level R-tree nodes, which
cover a wide range. Therefore, the routing cost of query pro-
cessing can be classified into essential cost CE(n) and false
positive cost CF P (n). As CE(n) cannot be further reduced,
we focus on CF P (n) in this paper. For an indexed R-tree
node n, we record the query incurring false positives in a set
QF P (n). QF P (n) is defined as:

QF P (n) = {q|q.range ∩ n.range 	= φ ∧ |f(n, q)| = 0}
where f(n, q) returns the result set for q. Suppose there are
N cluster servers, CF P (n) can be computed as follows:

CF P (n) = log
N

4
|QF P (n)|

The index maintenance operation is triggered by the lo-
cal R-tree’s update. A cluster server Ni is responsible for
updating its published index in the overlay. Once an R-tree
node nj in Ni’s published set is split or merged, Ni needs
to notify the cluster server that maintains the index for nj .
If nj is split into two R-tree nodes, Ni removes the existing
index for nj and publish the index of the new nodes. Al-
gorithm 4 summarizes the processing of index update. The
splitting of an indexed R-tree node incurs log N

4
messages

to delete the published index item. It also takes another
2log N

4
messages to publish newly generated R-tree nodes.

Thus, the total cost is about 3log N
4

. If nj is merged with
another R-tree node nk, we need to replace nj ’s old index
with the new one. Based on our index selection algorithm,
which we will discuss later, nk is indexed as well. Therefore,
the total cost of merging is 3log N

4
.

Algorithm 4 UpdateIndex

Input: n
1: if n is split into n1 and n2 then
2: delete(n)
3: publish(n1), publish(n2)
4: end if
5: if n is merged with n′ into nnew then
6: delete(n), delete(n′)
7: publish(nnew)
8: end if

To capture the update pattern, a histogram is built in
each cluster server. The histogram partitions the space into
equal-size grids. In each grid, we maintain the number of
insertions and deletions in the last T time. Given an R-tree



node n, we can use the histogram to estimate the number of
insertions and deletions for n. Applying a two-state markov
chain model [19], we can estimate the probabilities of split-
ting and merging in the next time T . Let psplit(n) and
pmerge(n) denote the probabilities of splitting and merging
R-tree node n, respectively. We estimate the index mainte-
nance cost as:

CM (n) = 3 log
N

4
(psplit(n) + pmerge(n))

Suppose n has selected a set of R-tree nodes S for index-
ing. The total cost of the current index is estimated as:

C(S) =
∑
n∈S

C(n)

=
∑
n∈S

(CF P (n, Q) + CM (n, L)) (2)

=
∑
n∈S

log
N

4
(|QF P (n)| + 3(psplit(n) + pmerge(n)))

The aim of the index selection algorithm is to minimize this
cost.

5.2 Index Selection
The index selection algorithm must guarantee the com-

pleteness and uniqueness of the index. Figure 5 shows an
example of R-tree nodes selection, where dark colored nodes
are selected. Based on the recent query and update pat-
terns, the index selection algorithm should select a set of
nodes satisfying the two properties and minimizing the to-
tal cost of the published index. The formal definition of
index selection is:

Definition 3. Given an R-tree TR and its node set V ,
the weight of a node n ∈ V is defined as C(n), namely, its
indexing cost. The index selection problem is to select a set
of R-tree nodes S, where

1. S ⊆ V

2. ∀ni, nj ∈ S, ni is not the ancestor of nj and vice versa

3. For a leaf node ni of TR, ni ∈ S or there is an ancestor
of ni in S

4. The weight of S, defined as Equation 2, is minimized.

In Equation 2, log N
4

is a constant for a specific overlay
network. Therefore, we discard it and simplify the cost as:

C(S) =
∑
n∈S

(|QF P (n)| + 3(psplit(n) + pmerge(n)))

and the cost of n becomes

C(n) = |QF P (n)| + 3(psplit(n) + pmerge(n)).

Algorithm 5 R-Tree Node Selection Algorithm

Input: local R-Tree TR

Output: A set of R-Tree nodes S
1: for each R-tree node ni in TR do
2: update cost of ni using query and update histograms
3: end for
4: {S, C}=IndexSelect(TR.root) /* invoke Algorithm 6 */
5: return S

z

Local R-Tree Before Tuning

Local R-Tree After Tuning

Sub-tree m

Sub-tree m

Sub-tree n

Sub-tree n
Index tuning while Sub-tree n is frequently updated, rarely queried and

Sub-tree m is frequently queried, rarely updated

Figure 5: Selective Indexing

Algorithm 6 IndexSelect

Input: R-Tree node n
Output: A set of R-Tree nodes S, Total Cost C

1: S = {n}
2: C = C(n)
3: if n is a leaf then
4: return S and C
5: else
6: Stemp = ∅, Ctemp = 0
7: for ∀ni ∈ n.child do
8: {S′, C′}=IndexSelect(ni)
9: Stemp = Stemp ∪ S′

10: Ctemp = Ctemp + C′

11: end for
12: if Ctemp < C(n) then
13: return Stemp and Ctemp

14: else
15: return S and C
16: end if
17: end if

We use dynamic programming to achieve the minimal to-
tal cost by selecting an optimal node set S. For each n ∈ V ,
our algorithm computes the minimal total cost of the sub-
tree rooted at n, denoted as C(TR, n). For each internal
node n,

C(TR, n) = min{Σni∈n.childC(TR, ni), C(n)}
C(TR, n) equals to C(n), if n is a leaf node. Algorithm 5
describes the selection of R-tree nodes to minimize the cost.
We first update the cost of all R-tree nodes, based on the
most recent query and update patterns. Then, we invoke
Algorithm 6 to recursively compute the optimal cost and se-
lection. In Algorithm 6, if the node is a leaf node, it simply
returns its cost and selects itself (lines 3 and 4). Otherwise,
we compare the costs of two strategies, combining the op-
timal solutions of the child nodes and use the current node
as the solution (lines 6-14). We select the solution with the
least cost. The cost of Algorithm 6 is bounded by O(|V |),
where |V | denotes the number of local R-tree nodes.

Theorem 3. Algorithm 5 returns the optimal indexing
set with regard to the query pattern and the update pattern.

Proof. Because we apply the dynamic programming tech-
nique, for an R-tree node n, we only need to prove that the
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optimal solution of n is either to index n or combine the
sub-solutions of n’s children. If indexing n is the best so-
lution, the problem is solved. Otherwise, as the solution of
one child does not affect the solution of another, the sub-
solution is actually independent. Moreover, the total cost
is the sum of all costs of the sub-solutions. Therefore, by
combining all sub-optimal solutions, we can get the optimal
solution.

6. PERFORMANCE EVALUATION
We evaluate RT-CAN indexing scheme on Amazon’s EC2

platform. We implement our system in Java 1.6.0.13 and
run it on a set of EC2 computing units. Each computing
unit is a small instance of EC2 with 1.7GHz Xeon processor,
1.7GB memory and 160GB hard disk. The computing units
are connected via 250Mbps network links. The number of
computing units in our system varies from 32 to 128. We use
two different datasets to evaluate our indexing scheme. In
the uniform dataset, we generate 500,000N objects, where
N is the number of computing nodes. The object has 2 to
5 attributes and values of the attributes are uniformly dis-
tributed in the range [0, 109]. We partition the data into Ng

equal-size grids, where Ng is several times of N . The grids
and their corresponding data are randomly disseminated to
the computing nodes. In this way, one computing node han-
dles multiple grids and all computing nodes roughly main-
tain the same number of objects. In the traffic dataset, we
apply [3] to generate 100,000N 2-d moving objects based on
the city’s map, which represents the real-time traffic. Ob-
jects in the traffic dataset follow skewed distribution. And
we apply the same approach as in the uniform dataset to
partition the data among computing nodes.

In each computing node, we build an R-tree index for its
local data. The page size of the R-tree node is 4K and
each internal node contains at most 127 entries. We test the
performance by generating queries that follow both uniform
and skewed distribution. We use zipfian distributions to
generate skewed queries that focus on some hotspots. Table
1 lists the experiment parameters and their default values.

Query throughput (processed queries per-second) is used
as the metric in the experiments. We use a master node
to control the behaviors of all the other compute nodes.
The master node partitions the data among the computing
nodes and generates queries continuously. The computing
node fetches queries from the master node. After finishing
its current query, the computing node will pull a new query
from the master. All experiments are running for 200 sec-

Table 1: Default Experiment Setting
Parameters Default Values
Dimension 3

Query Type Range Query
Query Selectivity 0.01%

Skew Factor 0
Index Tuning Yes

Usage of Routing Cache No
Number of Computing Nodes 128

onds and we collect statistics (number of processed queries)
every 10 seconds. And the average results are used.

6.1 Performance of Range Queries
Range queries are most popular queries in web 2.0 appli-

cations. Point query can be considered as a special type
of range queries by setting the search range to zero. KNN
queries are processed via a set of range queries. In this ex-
periment, we evaluate the performance of range queries. We
define the selectivity as the percent of searched space. For
example, if we set selectivity = 0.05% in a 3-d space, the
query will search approximately 8% range in each dimen-
sion. Figure 6 and Figure 7 show the performances of range
queries with different selectivities and network sizes for traf-
fic dataset and uniform dataset, respectively. When we in-
crease the number of computing nodes, the query through-
put increases almost linearly, which verifies the scalability of
the RT-CAN index. A larger selectivity value causes more
objects to be retrieved and more cluster servers to be in-
volved in the query processing. Therefore, the performance
degrades significantly. The results of traffic dataset are much
better than those of the uniform dataset. This is because
the traffic dataset has 2 dimensions, and the uniform dataset
has 3 dimensions. Processing a query on the uniform dataset
costs more routing hops and local disk searches than process-
ing on the traffic dataset.

In real systems, queries follow skewed distributions (e.g.
users could be more interested in photos about Liberty Statue,
Eiffel Tower and Great Wall). In Figure 8 and Figure 9, we
generate queries following zipfian distribution and test the
performance of the RT-CAN index. When skewed factor is
set to 0, the query follows a uniform distribution. When
skewed factor is set to 1, about 80% queries focus on 20%
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objects. The experiments show that the RT-CAN index
performs best for queries of uniform distribution, because
the query skewness causes unbalanced workload among the
servers. However, it can still provide a reasonable perfor-
mance when both queries and objects follow skewed distri-
butions (skewed factor=1 in the traffic dataset).

6.2 Performance of KNN Queries
The KNN query is more complex than the range query.

There have been many proposals on pruning the search bran-
ches of an R-tree progressively. They are, however, not di-
rectly applicable to the RT-CAN structure; therefore, in this
paper, a simple but efficient strategy is adopted. We first
estimate the distance between the query point and its K-
nearest neighbor based on the data distribution. The dis-
tance is used as the initial search radius. Then, we iter-
atively enlarge the search range until satisfied results are
retrieved. In Figure 10 and Figure 11, we vary the value
of K from 1 to 32 and show the performances of traffic
dataset and uniform dataset, respectively. Figure 10 shows
performance on traffic dataset (we also show the diagram
of uniform dataset for comparison), where each node holds
100K 2-d data. Figure 11 shows the performance on uniform
dataset, where each node holds 500K 3-d data. The through-
put decreases when the parameter k increases, because the
search space increases with k. More index entries will be
involved and more local disk search will be incurred when k
increases. The performance of traffic dataset is worse than
the uniform dataset and it is also less effected by k, because
of the skewness of data distribution.

Figure 12 and Figure 13 show the performance of KNN
query processing at different system sizes, ranging from 32

nodes to 128 nodes. The KNN parameter is set to 16 in
the test. As we increase the number of computing nodes,
the performance improves dramatically. Comparing the re-
sults of KNN queries with the results of range queries, we
find that range query performs better than KNN queries
on traffic dataset, and KNN queries performs better than
range queries on uniform dataset. This is because in the
traffic dataset, KNN query needs to incur several iterations
of range query to retrieve enough data. But for the uniform
dataset, as the initial estimation of the search range is quite
accurate, in most cases, only one range query is required to
retrieve the top-k results. And for KNN query, the search
range is much smaller than that of the range query.

6.3 Performance of Updates
As in real systems, queries and updates are processed con-

currently, we generate a mixed workload by combining the
queries and updates. In this experiment, we generate uni-
form insertions for the local R-trees. We vary the percentage
of updates from 20% to 100%. Figure 14 and Figure 15 show
the update performance of RT-CAN index for traffic dataset
and uniform dataset, respectively. As a matter of fact, up-
dates incur less overheads than queries. First, as we select
a portion of R-tree nodes for indexing, we need to update
the global index only when the indexed R-tree nodes have
been modified. Second, to update an indexed R-tree nodes,
we only need 3 log N

4
routing messages, whereas to process

a range query, besides log N
4

routing messages, we need to
search the local R-trees and return the corresponding re-
sults. Increasing the number of compute nodes leads to a
better throughput. RT-CAN index can handle both queries
and updates efficiently.
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6.4 Effect of Index Tuning
To balance the query processing cost (false positive cost)

and index maintenance cost, a tuning approach is adopted
in the RT-CAN index to dynamically change the indexing
strategy. In our experiment, local R-trees have three lev-
els. And initially, we publish the second-level nodes (root
node’s children) into the global index. After running for a
while, RT-CAN index collects the query pattern and update
pattern and apply the cost model to compute a new index-
ing strategy. Figure 16 and Figure 17 illustrate the tuning
effect. When applying the tuning algorithm, we record the
throughput, after the index becomes stable. We deliberately
generate some skewed update operations to trigger the index
tuning. The results show that index tuning can effectively
reduce the cost by catching the query and update patterns.

6.5 Effect of Routing Cache
Message routing cost is bounded by O(log N) in the RT-

CAN index. This is not a big issue in Peer-to-Peer net-
work, but in the Cloud systems, due to its high concurrency
and high throughput requirements, the routing cost must
be reduced to O(1). In Cloud systems, the overlay is stable.
Nodes always stay online until hardware fails. Therefore, we
apply routing cache to buffer the addresses of cluster servers
and their key spaces in CAN. When routing a message, we
first look up the routing cache. By checking the key spaces
of each buffered server, we know whether it is the receiver of
the message. If a server in the cache is exactly the message’s
destination, the message is sent out via the buffered informa-
tion. Otherwise, the original RT-CAN’s routing algorithm is
applied. The cache is maintained in a lazy-update way. If a
cache entry is stale and provides wrong routing information,

we will invoke RT-CAN’s routing algorithm to forward the
message and update the entry based on the correct routing
information.

Figure 18 and Figure 19 show the effect of routing cache.
A significant improvement is observed for the cache-based
schemes. As a matter of fact, some other Cloud systems,
such as Dynamo [8], also adopt routing cache to improve
the performance.

6.6 Effect of Dimensionality
The RT-CAN index is designed to support multi-dimen-

sional relational data. In this experiment, we show its per-
formance by varying the number of dimensions. As the traf-
fic dataset is limited to 2 dimensions, we only present the
results of the uniform dataset. Figure 20 shows the perfor-
mances of the RT-CAN index in different dimensions. The
best throughput is achieved for 2 dimensional dataset. The
throughput decreases as the number of dimensionality in-
creases. This is because for d-dimensional space, the range
query will overlap with a large number of index items and
hence incurs high communication costs. For example, in a
5-dimensional space, if query Q searches 0.01% of the whole
space, we need to search about 16% of range in each di-
mension. A large search circle will be generated based on
Algorithm 2.

7. CONCLUSION
This paper presents RT-CAN, a multi-dimensional index-

ing scheme, for our epiC[2] cloud system. RT-CAN is built
on top of local R-tree indexes and provides efficient data
retrieval service for large-scale shared-nothing clusters. In-
stead of indexing objects directly, RT-CAN dynamically se-



lects a portion of local R-tree nodes to publish onto the
global index. The global index is disseminated to differ-
ent cluster servers, which are organized as a logical CAN-
based overlay network. We propose algorithms for process-
ing point, range and KNN queries. To reduce query cost
and index maintenance cost, a dynamic tuning algorithm
is proposed to adaptively select R-tree nodes for indexing.
A cost model is used to collect the statistics about query
and update patterns and estimate the cost of the current
indexing strategy. Extensive experiments were conducted
on Amazon’s EC2. The results verify the effectiveness and
efficiency of RT-CAN.
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