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ABSTRACT
Real-time search dictates that new contents be made avail-
able for search immediately following their creation. From
the database perspective, this requirement may be quite eas-
ily met by creating an up-to-date index for the contents and
measuring search quality by the time gap between insertion
time and availability of the index. This approach, however,
poses new challenges for micro-blogging systems where thou-
sands of concurrent users may upload their micro-blogs or
tweets simultaneously. Due to the high update and query
loads, conventional approaches would either fail to index the
huge amount of newly created contents in real time or fall
short of providing a scalable indexing service.

In this paper, we propose a tweet index called the TI
(Tweet Index), an adaptive indexing scheme for microblog-
ging systems such as Twitter. The intuition of the TI is
to index the tweets that may appear as a search result with
high probability and delay indexing some other tweets. This
strategy significantly reduces the indexing cost without com-
promising the quality of the search results. In the TI, we also
devise a new ranking scheme by combining the relationship
between the users and tweets. We group tweets into topics
and update the ranking of a topic dynamically. The experi-
ments on a real Twitter dataset confirm the efficiency of the
TI.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Algorithms, Design

∗In Twitter, tweet refers to the microblog published by
users. In this paper, we use it as a common phrase for
microblogs.
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Figure 1: Example of Twitter Search on 3/11/2011
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1. INTRODUCTION
The increasing popularity of social networking systems

changes the form of information sharing. Instead of issu-
ing a query to a search engine, the users log into their so-
cial networking accounts and retrieve news, URLs and com-
ments shared by their friends. This is in part caused by
the failure of conventional search engines in providing real-
time search service for social networking systems. For ex-
ample, it is difficult to search a new blog or tweet uploaded
a few minutes ago using a conventional search engine. The
problem is further amplified in the microblogging systems
such as Twitter due to unprecedented amount of tweets or
microblogs being posted each day. For example, Tumblr
(http://www.tumblr.com) estimated that there were more
than 2 million posts and fifteen thousands new users every
day1; and based on a latest report from Twitter2, it handled
more than 50 million tweets per day.

Providing real-time search service is indeed very challeng-
ing in large-scale microblogging systems. In such a system,

1http://staff.tumblr.com/post/434982975/a-billion-hits
2http://thenextweb.com/socialmedia/2010/02/22/twitter-
statistics-full-picture/



thousands of new updates need to be processed per second.
To make every update searchable, we need to index its effect
in real time and provide effective and efficient keyword-based
retrieval at the same time. The objectives are therefore con-
tradictory since maintenance of up-to-date index will cause
severe contention for locks on the index pages.

Another problem of real-time search is the lack of effec-
tive ranking functions. Figure 1 illustrates an example on
the search results of Twitter for the keyword “IPad2”. The
query was submitted a few minutes later after IPad2’s sale
starts. The user is perhaps looking for the reviews and com-
ments about the IPad2, or he is trying to find out the length
of queue at the apple stores around his neighborhood. How-
ever, most search results are advertisements and most of the
returned tweets do not even provide any useful information.
This is because the current Twitter search engine sorts the
results based on time, and therefore, the latest tweets have
the higher rankings. Recall that one key factor of Google’s
early success is its PageRank [14] algorithm. Without proper
ranking functions, the search results are meaningless. How-
ever, defining a ranking function for real-time search is not
trivial, and the function must have the following two desider-
ata:

1. The ranking function must consider both the times-
tamp of the data and the similarity between the data
and the query. As an example, for a given query sub-
mitted to Twitter, we do not want to get tweets posted
many weeks ago, even though they may contain the
keywords of the query. On the other hand, newer
tweets with less information are not preferred either.
Hence, the ranking function is composed of two inde-
pendent factors, time and similarity.

2. The ranking function should be cost-efficient. As we
want to support real-time search using a ranking func-
tion partially based on time, we have to compute the
rankings during query time. Thus, the computation of
the ranking function should not incur high overhead.

In this paper, we propose the Tweet Index (TI ), a novel
indexing and ranking mechanism for enabling real-time search
in microblogging systems such as Twitter. The TI is de-
signed based on the observation that most tweets will not
appear in the search results. Therefore, we can significantly
reduce the indexing cost by delaying indexing less useful
tweets. In essence, the TI classifies the tweets into two
types, distinguished tweets and noisy tweets. The TI con-
sists of two indexing schemes: a real-time indexing scheme
for distinguished tweets and a background batch indexing
scheme for noisy tweets. Given a new tweet, TI analyzes
its contents and determines its type. If it is a distinguished
tweet, we will index it immediately. Otherwise, it is grouped
with other noisy tweets and periodically, the batch indexing
scheme is invoked to index all the noisy tweets in one go.
The design principle of the TI is similar in spirit to the par-
tial indexing scheme [20, 18], and is also related to the view
selection problem [1]. To the best of our knowledge, this
is the first proposal that addresses the index issues for the
real-time search.

In the TI, the ranking function plays the major role in de-
ciding whether the tweets are distinguished tweets or noisy
tweets and in retrieving meaningful answers. We therefore
propose a new ranking function by combining the user graph
and tweet graph. In social networks, each user can be con-

sidered as a node and different nodes are connected together
via the friend links. The user graph denotes the relationship
among the users. Naturally, a popular user will have more
friends and his/her blogs/tweets also attract wider reader-
ship. Therefore, we run a PageRank algorithm for the user
graph to compute the ranking for each user. Besides the user
graph, the tweets also form a graph, as some tweets are ex-
changed between people and some tweets reply to the other
tweets. We group tweets into topics based on their relation-
ship, and we measure the popularity of the topics based on
their statistics. Finally, our proposed ranking function is
composed of the user’s PageRank, the popularity of topics,
the TF (Term Frequency) and the timestamp. The IDF (In-
verse Document Frequency) is not used in the TI, since the
length of a microblog is fairly small and often capped at cer-
tain length (e.g. in Twitter, it is capped at 140 characters).

We evaluate the TI by using a real Twitter dataset col-
lected for a user group within the last three years. The ex-
periments examine the performance of our indexing scheme
and the effect on the quality of query results. We also com-
pare our ranking function with the other relevant ranking
functions.

The rest of the paper is organized as follows. In Section
2, we review the previous work in social network search and
the corresponding database techniques. In Section 3, we
introduce the overview architecture of TI. And the details of
the TI ’s indexing scheme and ranking function are discussed
in Section 4 and Section 5, respectively. We evaluate the
performance of the proposed schemes in Section 6. And the
paper is concluded in Section 7.

2. RELATED WORK

2.1 Partial Indexing and View Materialization
In database systems, indexes are created to facilitate effi-

cient query processing. However, existing indexes designed
for similarity and KNN search such as iDistance [28] could
not be directly applied to tweet indexing, since they have
not been designed for very high insertion load. Instead of
indexing the whole dataset, a partial index was proposed for
indexing the records that may be queried with high prob-
ability. The idea of partial indexing was first proposed in
[20], where the advantages of a partial index are analyzed.
In [18], a statistical model is built to monitor the query dis-
tribution and the partial index is created adaptively. Partial
indexing technique is also adopted in the distributed envi-
ronment. In PIER [13], only rare items are indexed in the
DHT (Distributed Hash Table), while the popular items are
searched via flooding. In PISCES [25], a just-in-time index-
ing scheme that can be dynamically tuned to follow query
patterns was proposed to facilitate query processing in a
peer-to-peer based data management system on BATON [9].

View materialization shares some similar principles with
the partial indexing technique. [3] and [27] discuss how to
adaptively materialize the views in multi-dimensional databases
and data warehouse systems. Cost models were proposed in
[1] and [5] to automatically select views for materialization.
In [19], the adaptive view materialization strategy is applied
to reduce the overhead of stream feeding systems. The pro-
posed TI adopts a similar design philosophy with the above
work. In the TI, only data that are deemed essential for the
queries are indexed in real-time, while the remaining data
are processed in bulk and batch mode.
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Figure 2: Tree Structure of Tweets

2.2 Microblog Search
Google and Twitter have released their real-time search

engines recently. Google designs its web crawler to adap-
tively crawl the microblogs, while Twitter relies on an exist-
ing technique, such as Lucene3, to provide the search service.
Both of them treat a query as a continuous query and up-
date the results in real time. However, the ranking function
only considers the time dimension, and as a result, the re-
sults are sorted by time. By studying the users’ behavior
in the microblogging systems [11], more sophisticated rank-
ing schemes, such as [23] and [15], were proposed. However,
most ranking schemes are too complex and therefore too
expensive and time consuming. They are precomputed in
an offline manner. To address this problem, in [16], noisy
tweets are pruned and similar tweets are clustered together.
Ranking is computed for the tweets of the same cluster so
that the computation cost can be significantly reduced.

In the TI, we also group tweets into some topics by ex-
amining their relationships captured in a tree structure. In
particular, tweets replying to the same tweet or belonging
to the same thread are organized as a tree. Similar schemes
were adopted for forum search [17, 26]. To reduce the rank-
ing cost, TI maintains the popular topics in memory and
modifies the structure of an inverted index. Compared to
the previous work, TI ’s ranking function is more efficient
and incurs less overhead.

3. SYSTEM OVERVIEW

3.1 Social Graphs
As the TI is proposed to support efficient search in mi-

croblogging systems, we first review the features of social
networks that influence the design of the index.

In social networks, users are connected together by friend
links (in Twitter, it’s following/follower link). Typically,
a popular and famous user will have more friends than an
ordinary or low-profile user. Here, we define a user graph
Gu = (U, E), where U is set of users in the system and E is
the friend links between them.

Apart from the user graph, we have another graph that is
induced by the relationship of microblogs or tweets. Figure
2 shows a tree structure of tweets, where each node denotes
a tweet and the directed edge indicates that one tweet replies
to or retweets another tweet. For example, tweet B replies
to tweet A and thus A is the parent node of B in the tree.
The tweet that does not reply to others becomes the root of
the tree. In this paper, we use a tweet tree to represent a
discussion topic. When searching, tweets in the same topic
can be grouped together and returned. We do not explicitly
maintain the tweet tree, as it may incur too much overhead.

3http://lucene.apache.org
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TID U-PageRank TF timetree
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213950 0.0035 2 201465 2009/12/8 11:25:01
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Figure 4: Structure of Inverted Index

Instead, we assign each tweet a tree encoding ID, which is
similar to the Dewey Order ID [22] in XML search. Given
tweet ti, we sort its child nodes by their timestamps (the
time that the tweet is inserted into the system). Suppose
the encoding of ti is “x” and tweet tj is ti’s kth child, tj ’s
encoding is “x”+“-”+“k”, where + indicates the string con-
catenation. With the help of tree encoding, we can easily
reconstruct the tree structure.

3.2 Design of the TI
The TI provides its search via an inverted index. When

a new tweet is inserted into the microblogging system, the
indexing process determines whether it should be indexed
or not. To facilitate the fast index maintenance and search
process, some statistics are maintained in memory. Figure
3 shows the architecture of the TI.

In the TI ’s database, we keep an inverted index for the
tweet data. Given a keyword, the inverted index returns a
tweet list, T . T consists of a set of tweet IDs and tweets in
T are sorted by their timestamps (the time when a tweet is
inserted into the system). Figure 4 shows the index structure
of the inverted index. For each record in the index, we keep
its tweet ID, TID (inherited from the status ID provided by
Twitter), to identify different tweets. Then, for the ranking
purpose, we keep the U-PageRank of a tweet (to be defined
in Section 5), the TF (Term Frequency) value, the tree ID
and the timestamp of the tweet. Tree ID is the TID of the
root node in a tweet tree. Records of the same keyword are
maintained as a list and the latest record is inserted into the
head of the list. As a result, the records are sorted by their
timestamps in the list.

To facilitate our ranking scheme, we also keep the meta-
data of a tweet. We define a tweet table as follows.

Table 1 Example of Tweet Table
TID RID tree time count coding UID pointer

26476 76732 25742 ... 0 0-0-0 ... null
57380 76732 25742 ... 0 0-0-1 ... null
26980 null 26980 ... 1 0 ... 1022

Based on a tweet’s content, we know whether the tweet
replies/re-tweets another tweet. We maintain the ID of the



replied tweet as RID, and it can be used to retrieve the par-
ent tweet. If a tweet belongs to an existing tree, we keep the
root ID of the tree, which can be obtained from its parent
tweet. Otherwise, we create a single node tree by using the
tweet itself as the root. We also keep the timestamp of each
tweet and the count attribute denotes the number of tweets
that reply to this tweet. To enable efficient reconstruction of
the tree, the encoding is stored with each tweet. The author
ID UID of a tweet is defined as the foreign key in the tweet
table. Finally, if a tweet is not indexed and written back to
the log file, we keep a pointer to its offset in the log file. To
support efficient retrieval via tweet ID and user ID, we build
a B+-tree index for TID and UID in the database.

Besides the tweet table, the TI keeps a log file for record-
ing the unindexed tweets. The TI selectively indexes the
inserted tweets, the distinguished tweets. The noisy tweets
are appended to the log file and periodically, a background
batch indexing process will scan the log file to index the
noisy tweets.

To support the TI ’s indexing and ranking algorithm, we
keep some useful information in the memory, such as key-
word threshold, candidate topic list and popular topic list.
Keyword threshold records the statistics of recent popular
queries. The candidate topic list maintains the information
about recent topics, while popular topic list represents the
hotly discussed topics. Based on above information, we can
quickly classify a tweet as a distinguished or noisy tweet
and adopt different indexing scheme accordingly. Moreover,
based on our in-memory structures, we rank the tweets in
the querying time by combining the time, popularity and
similarity.

4. CONTENT-BASED INDEXING SCHEME
The basic idea of the TI ’s indexing scheme is to index

the tweets based on their contents and their rankings with
respect to existing queries. Intuitively, it streams a new
tweet into an existing set of popular queries, and based on
its ranking, determines if it should be indexed in real-time
or in batch periodically. To improve the quality of search
results, our ranking function considers the user’s pagerank,
the popularity of a topic and the similarity between queries
and tweets. Figure 5 shows the data flow in TI ’s index pro-
cessor. In this section, we present how we classify the tweets
and apply the adaptive tweet indexing strategy. The details
of ranking function F will be discussed in next section.

4.1 Tweet Classification
The first challenge in the design of TI’s indexing strategy

on the measurement of the importance of a tweet. Limited
by its size, a tweet itself does not provide too much infor-
mation. Therefore, we apply a query-based classification
approach. We assume that users are only interested in the
top-K results. This assumption can easily be verified by the
statistics of search engines [8] where 62% of the users click a
result in the first page and more than 90% of the users stop
their browsing after three pages of results.

In particular, the problem can be formalized as follows.

Definition 1. Tweet Classification
Given a tweet t and a user’s query set Q, t is said to be a
distinguished tweet, if ∃qi ∈ Q and t is a top-K result for
qi based on the ranking function F . Otherwise, t is a noisy
tweet.

TopK Result 
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Tweet Stream

Build Index
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Timer
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Figure 5: Data Flow of Index Processor

To answer top-K queries in query set Q, we just need to
index the distinguished tweets, while the noisy tweets can
be indexed periodically. In this way, we avoid high real-time
update costs.

Obviously, for a different query set Q, the classification
result will be different. Ideally, when all possible queries
are considered, the classification will provide an accurate
result for every query. However, the maintenance cost may
neutralize the benefit of partial indexing. Fortunately, it
has been confirmed that, like any social phenomenon, the
search engine queries [2] and social networking queries [21]
do in fact follow the well known Zipf’s distribution. In other
words, the top 20% queries represent 80% of the user re-
quests. Therefore, only popular queries are maintained in Q
to reduce maintenance cost. In particular, suppose the nth
query appears with a probability of

p(n) =
β

nα
(1)

where α and β are parameters that describe the Zipf’s dis-
tribution. Let s be the number of submitted queries per
second. The expected time interval of the nth query is

t(n) =
1

p(n)s
(2)

That is, after t(n) seconds, the nth query will be submitted
to the system with high probability. Suppose we perform
our batch indexing every t′ seconds. We will keep the nth
query in Q, only if t(n) < t′. The intuition of this strategy
is that for infrequent queries, we do not need to update the
index frequently.

To estimate the query distribution, we keep a query log
in disks. When a new unseen query arrives at the system,
we assume it is an infrequent query and do not insert it
into Q. Q is updated during at the next batch indexing
process. We search the query log to build a query histogram
and simulate the distribution using Zipf’s law. Based on
Equation 2, popular queries are inserted into Q.

After having defined the classification problem, a naive
method can be designed directly from the definition. Sup-
pose the tweet set is T . Given a query qi ∈ Q, we use
F(qi, tj) to denote the rank of a tweet tj ∈ T . To simplify
the discussion, we define dominant set as:

Definition 2. Dominant Set
Given a tweet t, a query q and a tweet set T , t’s dominant
set in relation to q is defined as the tweets that have higher
ranks than t, namely

ds(q, t) = {ti|ti ∈ T ∧ F(q, ti) > F(q, t)}

A straightforward approach would compute t’s dominant
set for all queries in Q. Algorithm 1 illustrates the idea. If
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Figure 6: Statistics of Keyword Ranking

there exists a query qi satisfying |ds(qi, t)| < K, we clas-
sify t as a distinguished tweet (line 3-4). Otherwise, it is
a noisy tweet. Algorithm 1 suffers from two performance
problems. First, to compute the dominant set, we need a
full scan of the tweet set. Second, given a tweet t, we test it
against every query in Q. To address the above problems,
two optimization approaches adopted.

Algorithm 1 NaiveClassifier(Tweet t, QuerySet Q)

1: for ∀qi ∈ Q do
2: ds(qi, t)=getDominantSet(Q, t)
3: if ds(qi, t).size< K then
4: return distinguished tweet
5: return noisy tweet

4.1.1 Optimization 1: Top-K Threshold
The first optimization is to employ the query statistics to

speed up the dominant set computation. Figure 6 shows
the statistics of top-K query results in our Twitter dataset.
The x-axis denotes the date of the ranking and the y-axis
is the ranking score computed by our ranking function F .
The naive approach is invoked to compute the scores of pair
(ti, qj), where ti denotes an existing tweet by that specific
day and qj is a query in Q. In Figure 6(a) and 6(b), we
present the results for the query “coupon” and “database”
respectively. Other queries share the same property. In par-
ticular, in the figures, we compare the scores of top 1 tweet,
the top 10th tweet and the 100th tweet (our threshold). We
find that although the score of top 1 tweet varies a lot with
time, the scores of the top 10th and 100th tweet are quite
stable. This is because in natural language, the words follow
Zipf’s distribution [12], where each word tends to appear in
the text with certain frequency. Given a query, the expected
number of hot tweets remains stable over time. We have the
following theorem.

Theorem 1. Suppose each keyword appears in the tweets
with a fixed probability and the tweets are inserted into the
system with a stable rate. If query qi has m results (m >>

K), the variance of top-K score for qi decreases for a larger
K.

Proof. Suppose we have n tweets and there are m tweets
(m > K) containing the search keyword. We try to estimate
the Kth score of m resultant tweets, assuming they are ran-
domly distributed in the tweet dataset. We sort the tweets
by their ranks and have a list {t1, t2, ..., tn}. The Kth tweet
appears in the position x with probability of

p(x) =
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Figure 7: Matrix Index

And the expectation of top-K score is

E(K) =
n

X

i=k

p(i)score(i)

where score(i) denotes the score of the ith tweet. The
problem can be transformed into an order statistic problem.
Based on the estimated bounds in [4], when m is sufficiently
large, we get a more closer bound for E(K) for a larger
K.

The above observation motivates our classification scheme.
We keep a top-K threshold for each query q ∈ Q, which is
called threshold table Tθ. Given a query q, Tθ(q) returns the
threshold for the top K tweets.

Lemma 1. For a tweet t, if F(qi, t) < Tθ(qi), the size of
t’s dominant set is larger than K at the moment.

Proof. If F(qi, t) < Tθ(qi), t’s score is smaller than cur-
rent Kth result. Therefore, more than K tweets have higher
ranks than t.

Theorem 2. For a tweet t, if F(qi, t) < Tθ(qi) for all
qi ∈ Q and F(qi, t) decreases with time, t is a noisy tweet.

Proof. If F(qi, t) decreases with time, the tweet will
never be a top-K result for a query. Thus, it is a noisy
tweet.

In Theorem 2, we require F(qi, t) to be monotonically de-
creasing with time. In fact, in our ranking function, to catch
the hotly discussed topics and discussion trend, F(qi, t) may
increase for a small number of hot tweets. We shall discuss
how to handle such case in Section 5.2.

Tθ can be constructed and updated by Algorithm 2. Ini-
tially, Tθ’s values are set to 0 for all queries. After a query
is processed, we update its threshold based on the query
result.

Algorithm 2 UpdateThreshold(Tθ, Query q)

1: Result R= getTopResult(K, q)
2: if R.size= K then
3: Score s = R[K].score
4: Tθ(q) = s
5: else
6: Tθ(q) = 0

4.1.2 Optimization 2: Matrix Index for Queries
In Algorithm 1, computing the dominant set for every

query in Q is time consuming. Therefore, our second opti-
mization is to avoid unnecessary dominant set computation.
We consider both queries and tweets as a bag of words. To
simplify our discussion, we define the candidate query set
as:



Definition 3. Candidate Query
For a tweet t = {k1, k2, ..., kn} and a query q = {k′

1, k
′
2, ..., k

′
m},

q is a candidate query for t, i.f.f.

∀ki ∈ t → ∃k
′
j ∈ q ∧ k

′
j = ki

Instead of checking every query for an incoming tweet t,
we just need to compute the dominant set for t’s candidate
queries. To facilitate the discovery of candidate queries, we
propose a matrix index.

Figure 7 illustrates the index structure. Bk is a m×n ma-
trix index (m is the size of Q and n is the number of unique
keywords in Q) and Cq is the counter vector for queries.
Each row in Bk refers to a query and each column in Bk

denotes a keyword. If the jth keyword appears in the ith
query, we set Bk[i][j] to 1. Otherwise, it is set to 0. Cq

keeps the number of keywords in a query. The ith query
has Cq[i] keywords. Given a tweet t, we define its vector
as Vt = (v1, v2, ..., vn), where vi = 1 if t contains the ith
keyword. Otherwise, vi = 0. To find all candidate queries,
we compute an evaluation vector as

Ve = Vt × B
T
k (3)

where BT
k is the transpose of Bk. If Ve[i] = Cq[i], then

the ith query is a candidate query for tweet t. By apply-
ing the matrix index, we transform the discovery process
of candidate queries into matrix computation. Because Bk

is a sparse matrix, Equation 3 can be computed efficiently,
which is shown in our optimized classification algorithm.

4.1.3 Optimized Classifier

Algorithm 3 Classifier(Tweet t, QuerySet Q)

1: Array count=0
2: Vt=getTweetVector(t)
3: for j = 0 to n do
4: if Vt[j] == 1 then
5: for i=0 to m do
6: if B[i][j] == 1 then

7: count(j)++
8: if count[j] == Cq(j) then
9: if t’s ranking is larger than Tθ(j) then

10: return distinguished tweet
11: return noisy tweet

Algorithm 3 shows our tweet classification algorithm. It is
an evolution from Algorithm 1 by combining two optimiza-
tion approaches. Given a tweet t, we first create a temporary
counter for recording the queries that have been processed
(line 1). Then we scan each column of matrix index (line
3-10). Once we detect the keyword is contained by a query
(line 6), we will increase the count of the query in the tem-
porary counter. If the counter indicates that all keywords of
the queries have been seen (line 8), we will test the tweet’s
score against the query’s threshold (line 8). If larger than
the threshold, t is classified as the distinguished tweet.

In Algorithm 3, we use a temporary counter to simplify the
matrix computation. As an example, in Figure 7, suppose a
tweet t contains k1, k2 and k3 as the keywords. We will start
scanning the columns of the three keywords. By scanning
the first column, we know that query q1 and q2 contain k1.
And after comparing with the value in counter Cq, we know
q1 is a candidate query, as it only has 1 keyword. Hence, we
can compare its threshold with the score of the tweet.

We now discuss the complexity analysis of the above al-
gorithm. Suppose we have m queries and n keywords. We
need m bytes for the counter vector Cq and nm

8
bytes for the

matrix index Bk. The top-K threshold is an array of floats.
Therefore, its takes 4m bytes. Algorithm 3 incurs a storage
overhead of

S = 5m +
nm

8
(4)

As an example, when m = 100000 and n = 5000, we need
approximately 60 MB memory. Suppose the average number
of tweet’s keywords is x, Algorithm 3 scans x columns of Bk.
During scanning, instead of testing each bit one by one, we
test the whole word. In a W-bit system, the time complexity
is xm

W
.

To further optimize the classification algorithm, we adopt
compression technique. For each column in Bk, most bits
are 0, as only a few queries contain the keyword. There-
fore, we apply WAH (Word Aligned Hybrid) encoding [24]
to compress the index.

4.2 Implementation of Indexes
For each incoming tweet, we will classify it as a distin-

guished or noisy tweet, and insert it into the index or log file
for batch update. We shall present both indexing schemes
in this subsection.

4.2.1 Real-Time Indexing
A new tweet that is identified as a distinguished tweet

is indexed immediately. The indexing process entails the
following steps,

1. If the tweet belongs to an existing tweet tree, we re-
trieve its parent tweet (2-3 I/Os via the index on TID)
to get the root ID and generate the corresponding en-
coding. Then, we update the count number in the par-
ent tweet. This incurs one I/O since the parent tweet
has already been retrieved and cached in memory.

2. The tweet is subsequently inserted into the tweet data
table, which incurs 1 I/O for the insertion and 2-3 I/Os
for the index update.

3. Lastly, the tweet is inserted into the inverted index,
which incurs a few I/Os depending on the number of
keywords in the tweet. This is the dominant compo-
nent of the indexing cost.

The first step is used to maintain the tree structure of tweets,
which may incur one or two database operations. This cost
can be saved, if the ranking function does not consider the
effect of the tree structure. However, even in our case where
the tree structure is used, this is not a major cost. Based on
the statistics of [7], less than 23% of the tweets get replies, for
which we need to maintain the tree structures. Furthermore,
most of the tweets get replies in a relatively short period,
and thus, caching the recent tweet records can significantly
reduce the cost.

The main overhead of the indexing process is the cost
of updating the inverted index. For a given tweet which
has n keywords, we need to update the inverted list of each
keyword.

4.2.2 Batch Indexing
When a noisy tweet is submitted to the microblogging sys-

tem, instead of indexing it in the inverted index, we append



it to the log file. The operation is straightforward, and it
incurs one I/O. The only update is to insert a new tweet tu-
ple in the tweet data table with the cost of 2-3 I/Os. Hence,
batch indexing is very efficient compared to the real-time
indexing.

Periodically, the batch indexing process scans the log file
and indexes the tweets in an offline manner. To reduce the
cost of building the inverted index, we build an in-memory
inverted index. We maintain a list for each encountered
keyword in memory, and the list denotes the tweets that
contain the keyword. If the memory is full, we combine the
in-memory inverted index with the disk based index. In this
manner, we can significantly reduce the I/Os, as the updates
to an inverted list of a keyword can be performed in groups.

5. RANKING FUNCTION
In the TI, the indexing scheme is independent of the rank-

ing function. The user can therefore define different ranking
functions. In this section, we propose a computational ef-
ficient and effective ranking function tailored for the social
networking systems by exploiting the features of user behav-
iors. Our proposed ranking function used is composed of the
user’s PageRank, popularity of the topic, the timestamp and
the similarity between the query and the tweet.

5.1 User’s PageRank
To capture the relationships between social networking

users, we have a user graph Gu = (U, E) where U denotes all
the available users and E describe the links between them.
In a system such as Twitter, there are two links defined
for a user, the followers and following. Given a user u, its
followers is a set of users, who follow u’s tweets, while its
following is another set of users that u currently follows. We
use f(u) and f−1(u) to denote the followers and following
set of user u, respectively.

For ease of discussion, we consider Gu as a complete graph,
where a user’s follower or following must be another user in
Gu. In a complete graph, the following link is analogical to
the follower link. Therefore, in the remaining discussion, we
only consider the following link. We build a matrix Mf to
record the following links between users. As shown in Figure
8, if ui follows uj , we set Mf [i][j] to 1. To compute PageR-
ank, we also define a weight vector V = (w1, w2, ..., wn),
where wi is the weight of user ui. Currently, wi is set to
1 for all users, by assuming that every user is equally im-
portant initially. We then compute the user’s PageRank as
follows:

Pu = V M
x
f (5)

x keeps increasing, until Mx
f converges. Pu[i] denotes the

PageRank value of user ui. We normalize it as Pu[i] =
Pu[i]

P

1≤i≤n
Pu[i]

.

The PageRank values are stored in a user table, which
is defined as (UID, Name, PageRank), where UID is the
ID of the user. We also have a follower and following table
for capturing the friend links. In the ranking function, the
tweet inherits the PageRank from its author. In particular,
we define the tweet’s U-PageRank as

Definition 4. U-PageRank
Suppose the tweet t’s author is u, t’s U-PageRank is defined
as u’s PageRank value.

u1 u2 u3 ... un 

u1

u2

u3

...

un 

0 1 0 ... 1

1 0 0 ... 1

0 0 0 ... 0

0 1 0 ... 0

... ... ... ... ...

f

1

1

1

1

...

Figure 8: Following Matrix

A higher PageRank value indicates that the user has more
friends and his tweets are probably more attractive than oth-
ers. Therefore, we can use U-PageRank to decide whether
a tweet is important for the users. In [23], an extended
PageRank algorithm is also applied to rank Twitter data.

Computing the user’s PageRank is costly. However, the
active users in a system tend to be stable over time. Hence,
the PageRank is computed in an offline manner. We can
periodically, say every ten days, recompute the PageRank
values. When a new user joins the system before the next
computation, we set its PageRank value to 0.

5.2 Popularity of Topics
In Twitter, users retweet tweets of other people to broad-

cast the tweets to their friends. They also express their own
ideas when replying to other’s tweets. In the TI, tweets are
grouped into a tree by the retweet/reply links. We define a
tweet tree as a discussion topic or thread. To help users re-
trieve the popular topics, our ranking function is designed to
favor the tweet trees with many discussions. This strategy is
also adopted by the news group search [26] and community
search [17]. In particular, given a tweet tree T , we define its
popularity as:

Pop(T ) =
X

∀ti∈T

ti.UPageRank (6)

As a result, the popularity of a tree is equal to the sum of
U-PageRank values of all tweets in the tree. For a single
node tree, the popularity of the tree is equal to the root’s
U-PageRank.

The tree’s popularity can be computed fairly easily by
joining the tweet table and user table. For example, the
following query can be used for its computation.

SELECT SUM(U.PageRank) as Popularity, tree
FROM tweet T, user U
WHERE T.UID = U.UID
GROUP BY T.tree

However, processing such queries is costly, especially for a
large-scale Twitter dataset. If we can reduce the number of
records that need to be processed, we can effectively speed
up the above query.

It is observed that more than 70% of tweets do not get
any response (be replied or retweeted) [7]. For a majority
of tweets, we do not need to compute the tree popularity,
as the single node tree’s popularity is equal to the root’s
U-PageRank, which can be directly obtained from the in-
verted index. Figure 9 verifies our assumption. It shows the
changes of popularity values (without normalization). Most
tweet trees exhibit the same behavior. When a tweet is pub-
lished, it probably does not attract the interest of other users
right away. As a result, in the first few hours, it has a low
popularity. However, if the tweet discusses a popular topic,
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it will gain continuous concern afterwards. The popularity
of the corresponding tweet tree increases significantly, until
the topic becomes stale some days later. Then, there will be
no new tweets in this tree and the popularity remains stable
after that.

We call a tweet topic that is being hotly discussed an
Active Tweet Tree, which is defined as following:

Definition 5. Active Tweet Tree
A tweet tree T is an active tweet tree, if the number of tree
nodes keeps on increasing continuously.

For example, in Figure 9, tree 1 is an active tweet tree for
tweets posted from October 1st to October 3rd. Instead of
computing the popularities of all tweet trees, we just com-
pute the popularities of active trees and maintain them in
memory. By doing so, we can update the popularities of
active trees efficiently when new tweets are submitted. To
process the queries, we can look up the popularities kept in
memory to rank the tweets.

Algorithm 4 isActiveTree(Tweet t)

1: ID rid = getRootID(t)
2: if rid is not null then
3: if Lt.containsKey(rid) then
4: Lt(rid).popularity += t.UPageRank
5: Lt(rid).timestamp = t.timestamp
6: if t.timestamp-Lc(rid).timestamp> θ then
7: Lc(rid).count = 1
8: else
9: Lc(rid).count++

10: if Lc(rid).count> γ then
11: Lt.insert(rid, getPopularity(rid), t.timestamp)
12: if some tweets in the tree are not indexed then
13: create index for the tweets on the fly
14: Lc(rid).timestamp = t.timestamp

In Algorithm 4, we outline the steps entailed in maintain-
ing the active tree in memory. Initially, all the trees are
assumed to be inactive trees. We keep two lists, a candidate
tree list Lc and an active tree list Lt, and use hash tables to
implement the lists. When a new tweet joins a tweet tree t,
we use t’s root ID to find its corresponding bucket in Lt and
Lc. If t belongs to an active tree, we increase the tree’s pop-
ularity and reset its timestamp (line 3-5). Otherwise, we
retrieve t’s record in Lc and compare the timestamp (line
6). If t.timestamp − Lc(t.rid) > θ, we reset the counter
to 1 (line 7). Otherwise, we update the timestamp and in-
crease the value of counter by 1 (line 9). If the counter is
larger than γ, we promote t as the active tree (line 10). In
function getPopularity(rid), we compute the popularity by
issuing the query:

SELECT SUM(U.PageRank) as Popularity

FROM tweet T, user U
WHERE T.UID = U.UID AND T.tree= rid

To efficiently process the above query, we build B+-tree in-
dexes on attribute T.UID, U.UID and T.tree. Recall that
in Theorem 2, we require the ranking function to be de-
creasing with time. But for an active tree, its popularity
may increase with time. Therefore, in line 12 and 13, we
index all the tweets which are not yet indexed in the active
tree, This can be done efficiently by following the pointers
in the tweet table.

The active tree will be discarded, if it does not obtain
any new tweet in more than δ time. In fact, in our ranking
function, the popularity of a tree remains steady after a
certain time. That is, after δ days, the rank of an inactive
tree becomes too small and does not affect the top-K results.
In that case, we remove it from Lt. The parameters θ, γ and
δ are used to control the accuracy and memory overhead,
which can be tuned based on statistics. In our experiment, θ,
γ and δ are set to 8 hours, 3 tweets and 10 days respectively.

5.3 Time-based Ranking Function
The final part of our ranking function is the similarity

between a query q and a tweet t. By using the bag-of-words
model, we transform q and t into vectors. Their similarity
is estimated as

sim(q, t) =
q × t

|q||t|
(7)

The general ranking function combines all the factors and
are computed as

F(q, t) =
w1 × t.UPageRank + w2 × sim(q, t)

q.timestamp − t.timestamp
+

w3 × tree.popularity

q.timestamp − tree.timestamp
(8)

where q.timestamp denotes the time when the query is sub-
mitted, tree.timestamp is the timestamp of the tree that t

belongs to (computed as the timestamp of the root node).
In Equation 8, UPageRank, sim(q, t) and popularity are
normalized into the same domain, [0, 1]. w1, w2 and w3 are
used to control the importances of different factors. Cur-
rently, w1, w2 and w3 are set to 1, as we treat all factors
equally important. If a tweet does not belong to a popular
tree, we discard the second term in above formula, as in that
case, the popularity should not contribute to its ranking. In
our definition, a tweet’s ranking is affected by its timestamp.
An older tweet is less important than a newly inserted one.
When searching, we prefer to the latest tweets with high
similarity.

5.4 Adaptive Index Search
To process a query, the inverted index is employed to re-

trieve the result tweets based on the scores derived from the
ranking function. In our ranking function, the PageRank
value, the timestamp and the similarity can be computed
based on the information in the inverted index, while the
popularity can be obtained by querying the active tree list
in memory. Hence, the ranking function is computationally
efficient as it does not incur a significant overhead.

Nevertheless, the main problem that affects the search
performance is the size of inverted index. Suppose the in-
verted index for keyword ki is Ii. The size of Ii will keep
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increasing, as more tweets are inserted.To address this prob-
lem, we propose an adaptive index searching scheme. The
maximal possible score of a tweet at timestamp ts is esti-
mated as:

score =
w1 × UPageRankmax + w2 + w3 × popularitymax

q.timestamp − ts

UPageRankmax denotes the maximal user PageRank. We
set similarity to 1. And popularitymax is estimated by cur-
rent active tree set. Let Stree denote the active trees that
have a timestamp before ts. If no such tree exists, popularitymax

is set to 0. Otherwise, popularitymax equals to the maximal
popularity in Stree.

Let Tθ(q) be the top-K threshold for query q. Instead
of reading the whole inverted index blindly, we iteratively
read a block of the index. If the last entry in the block has a
timestamp ts and based on the above equation, the maximal
score before ts is smaller than Tθ(q), we will stop reading the
index, since the remaining tweets will not contribute the the
search results. This strategy effectively reduces the index
search cost.

6. EXPERIMENTAL EVALUATION
In this section, we shall evaluate the performance of the TI

indexing scheme and the effectiveness of the propose rank-
ing functions. In the experiments, we use a Twitter dataset
collected for three years [6] from October 2006 to Novem-
ber 2009. 500 random users are selected from Twitter as
the seeds, including politicians, musicians, environmental-
ists and techies. Following the friend links, more users are
discovered and added into the social graph. The total num-
ber of involved users is about 465K. For each user, the tweets
are crawled every 24 hours. There are more than 25 million
of tweets in the dataset.

In the experiments, we start from September 26 2009 and
simulate users’ behavior for ten days. The first five days
are used to warm up the system (e.g. building the top-K
threshold, learning the popularities of topics). The remain-
ing five days are used to measure the performance. We col-
lect keywords from the first five days’ tweets. After removing
the keywords in the stop-list and the infrequent words (fre-
quency less than 10), we have less than 5K keywords left.
Queries in real-time search engine follows a skewed distribu-
tion [10]. Therefore, in the experiments, queries are gener-
ated by randomly combining the keywords, and the number
of keywords in queries follows Zipf’s distribution. Approx-
imately, 60% are 1-word queries; 30% are 2-word queries;
and 10% are queries with more than two keywords. The
queries are submitted to the system at random timestamps,
while the tweets are inserted into the system based on their
recorded timestamps. Each experiment is repeated for ten
times and the average result is reported.

6.1 Effects of Adaptive Indexing
In the first set of experiments, we study how the adaptive

indexing scheme affects the performance. In Figure 10, we
show the percentage of tweets that are indexed in real-time.
When only top-10 results are required, we can prune more
than 80% of tweets (by using batch indexing scheme). As
more results are returned to users, more tweets need to be
indexed to be searchable. Because only a portion of tweets
need to be indexed in real-time, the indexing cost is signif-
icantly reduced. Figure 11 compares the indexing time of
TI and full indexing scheme. In TI, the cost of indexing
is proportional to the number of indexed tweets. Therefore,
when more tweets are required in the results, TI will incur
higher indexing overhead.

To evaluate whether the adaptive indexing scheme reduces
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the quality of results, we compute the query accuracy as

accuracy = R
T

R′

|R|
, where R denotes the result set returned

by full indexing scheme (all tweets are inserted in real-time),
R′ denotes the result set returned by TI, R

T

R′ represents
the number of tweets in both result sets. Figure 12 shows
the accuracy of TI’s results. For comparison, we use two
strategies. In Constant Threshold, we do not update the
top-K threshold when processing queries. On the contrary,
in Adaptive Threshold, we use Algorithm 2 to update the
threshold adaptively. As shown in Figure 12, the accuracy
of Constant Threshold is just slightly worse than Adaptive
Threshold. The result verifies our observation made in Fig-
ure 6, where the top-K threshold remains stable in a period
of time. The accuracy of both strategies decreases as K de-
creases. This can also be observed in Figure 6. When K is
small, the top-K threshold changes more significantly. An
extreme case is when K = 1. Thus, the TI may wrongly
delay indexing some high ranking tweets. This problem can
be fixed by setting a lower bound, e.g. 20, for K. Although
user only requests for top 1 result, we always maintain the
threshold for top 20 results.

In Figure 13 and Figure 14, we show the changes of ac-
curacy by dates. The accuracy of Constant Threshold de-
grades, because it never updates its threshold values. How-
ever the quality of the results is still acceptable. For Adap-
tive Threshold, as the threshold is updated by the queries,
we always get results with high accuracy. In Figure 15, we
show the percentage of indexed tweets in Adaptive Threshold
by dates. We can observe from the figure that the Adaptive
Threshold scheme does lead to a stable performance, inde-
pendent of K. As the Adaptive Threshold exploits the query
results to update its threshold, which is almost free, we will
always use Adaptive Threshold strategy in the TI indexing
scheme.

6.2 Query Performance
To provide better search results, TI adopts a sophisticated

ranking function. In this experiment, we study whether the
ranking function leads to a better query performance. For
comparison purposes, we implement a tweet search, which
only ranks tweets via their timestamps. Such ranking strat-
egy has been adopted by Twitter and Google’s real-time
search. As we sort the tweets in the inverted index by their
timestamps, for a single keyword query, we just need to read
the first K entries from the index, which is quite efficient.
For a multi-keyword query, we iteratively read a block of
the index for all keywords, and we stop when K results are
obtained; otherwise, more blocks are searched.

Figure 16 shows the query performance of the TI and
time-based ranking schemes. TI’s costs are decomposed into
two parts, the ranking cost TIRank and the index search
cost TIRead. We group queries by their total number of
involved tweets. In Figure 16, the x-axis ranges from 0 to
80000, indicating that some popular queries get about 80000
hits in our dataset. Since the size of the inverted index for a
keyword ki is proportional to the number of tweets contain-
ing ki, the index search cost increases as more tweets are
involved. This is verified by the results. We have adopted
some optimization approaches, such as the adaptive index
search outlined in Section 5.4, in order to reduce the cost.
As shown in Figure 16, TIRead increases linearly with the
number of involved tweets. We can further reduce the search
cost by distributing the inverted index over a set of compute
nodes and applying the parallel search. We will study the
problem in our future work. On the contrary, the time-based
ranking scheme only retrieves some top tweets, and hence,
incurs less overhead. However, it achieves the efficiency by
sacrificing the quality of results. Without a reasonable rank-
ing scheme, the query results are less useful.



Figure 22: Search Result Ranked by TI
Figure 23: Search Result Ranked by Time

6.3 Memory Overhead
In this experiment, we evaluate the memory overhead in

our system. We have maintained some memory structures to
support adaptive indexing and efficient ranking. One struc-
ture is the active trees. Figure 17 shows the number of
active trees. For comparison, we also show the number of
total trees generated in October,2009, where less than ten
percent of the trees, approximately 13000 trees, are identi-
fied as active trees. Moreover, we observe that the number
of active trees does not increase with time. In conclusion,
the memory requirement is well controlled and is not high.

Another memory structure is the matrix index. Given n

keywords and m queries, we need nm
8

bytes to maintain the
index. To reduce the overhead, we adopt WAH encoding to
compress the matrix index. Figure 18 shows how the size of
in-memory index changes for different n and m. We change
the number of keywords from 3000 to 15000 and the number
of queries from 100000 to 1 million. The maximal memory
usage is only 12 MB, which indicates that the matrix index
is very cost-efficient and we can maintain a much larger one
for holding most keywords and queries. Another interesting
observation is that the memory use does not necessarily in-
crease even when more keywords and queries are used. This
is because more keywords and queries lead to more 0s and
1s in the matrix index, which improves the compression per-
formance of the WAH.

6.4 Ranking Comparison
In the ranking function, we have three components, the

similarity between query and tweets, the PageRank of au-
thors and the popularity of topics. Figure 19 shows the
distribution of users’ PageRanks in our dataset. It is not
surprising that the PageRank value follows a highly skewed
distribution, resembling that of Zipf’s or power law distri-
bution. Figure 20 shows the effects of time over the score

of tweets. In the figure, X-axis represents the elapsed time,
where 0 indicates the starting time of the tweets. Y-axis is a
score computed by Equation 8. In our ranking function, the
score is inversely proportional to time. Thus, the score of a
specific tweet will decrease with time. However, a few popu-
lar tweets receive many replies within a short period of time
after they are posted, contributing to a sudden rise in its
score. Figure 21 illustrates the ranking scores over the post
time of tweets. In the figure, the X-axis is the posting time of
tweets, while the Y-axis is the score computed by removing
the denominators in Equation 8. We use“Britney Spears”as
our query. Based on observation of the results, time-based
ranking scheme retrieves all recent queries as its top results,
while our approach considers both time and other factors,
which provides better results.

We show a demo result in Figure 22 and Figure 23. The
search is processed by assuming the time is at Nov 1, 2009
00:00:00, when the last tweets in our dataset were crawled
(some tweets after Nov 1 are considered as noisy and pruned).
For each result, we show its ranking, author, timestamp and
content. In Figure 22, we show the result of TI, where
tweets are ordered by our ranking function. The first three
tweets form a group, as they belong to the same tweet tree.
The first tweet is posted by the official account of Britney
Spears to publish a new video link. The second one repre-
sents 5 retweets. We aggregate them together, for all tweets
have the same content. The third tweet is a reply to the
first tweet, which shows the song name of the shared video.
By grouping tweets via their tree structures, we provide a
better visualization result.

In Figure 23, we show the result of time-based ranking,
where tweets are strictly sorted by their timestamps. As a
matter of fact, most results in Figure 23 also appear in Fig-
ure 22. And many results in Figure 23 are duplicates. This
is because when a hot tweet is published, many users will



retweet it within a short time after that. Another problem of
the time-based results is the lack of tree structures. Both the
first and second tweets are replies to another tweet, but the
time-based scoring function shows them individually, while
the TI scheme groups them together, presenting the results
more meaningfully.

7. CONCLUSION
The quest for real-time indexing has recently become more

pressing due to the inability of search engines in indexing
and retrieving the huge amount of social networking data as
soon as they are produced. The problem is further exacer-
bated by the increasing popularity of microblogging systems
where millions of tweets are produced each day. In this pa-
per, we have proposed the Tweet Index (TI ), a new index-
ing and ranking scheme for supporting real-time search in
microblogging systems. The TI adopts an adaptive index-
ing scheme to reduce the update cost. To this end, a new
tweet is indexed only if it may appear in the top-K results of
some cached queries with high probability. Otherwise, it is
grouped with other unimportant tweets, and a batch index-
ing scheme is used to reduce the indexing latency. We have
also proposed a cost-efficient and effective ranking function,
by taking the users’ PageRank, the popularity of topics, the
similarity between the data and the query, and the time
into consideration. To evaluate the performance of the TI
indexing scheme and ranking function, we have conducted
an extensive experimental study using a real dataset from
Twitter. The experimental results show that the TI is effi-
cient in handling tweets as they are produced and is able to
achieve high query effectiveness and efficiency at the same
time.
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