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ABSTRACT
The literature on the skyline algorithms so far mainly deal
with queries for static query points over static datasets.
With the increasing number of mobile service applications
and users, the need for continuous skyline query processing
has become more pressing. The continuous skyline opera-
tor involves not only static but also dynamic dimensions.
In this paper, we examine the spatio-temporal coherence of
the problem and propose a continuous skyline query process-
ing strategy for moving query points. First, we distinguish
the data points that are permanently in the skyline and use
them to derive a search bound. Second, we investigate into
the connection between data points’ spatial positions and
their dominance relationship, which provides an indication
on where to find changes of skyline and how to update the
skyline continuously. Based on the analysis, we propose a
kinetic-based data structure and an efficient skyline query
processing algorithm. We analyze the space and time costs
of the proposed method and conduct an extensive experi-
ment to evaluate the proposal. To the best of our knowledge,
this is the first work on continuous skyline query processing.

1. INTRODUCTION
With rapid advances in miniaturization of electronics, wire-

less communication and positioning technologies, the acqui-
sition and transmission of spatio-temporal data using mobile
devices is becoming pervasive. This fuels the demand for
location-based services (LBS)[12, 3, 16, 15]. Skyline query
retrieves from a given dataset a subset of interesting points
that are not dominated by any other point [4]. Skyline query
is an important operator of LBS. For example, mobile users
could be interested in restaurants that are near, reasonable
in pricing, and provide good food, service, and view. The
skyline query result is based on the current location of the
user, which changes continuously when the user moves.

Existing work on skyline queries assumes static setting,
where the distances from the query point to the data points
do not change. Using the common example in the literature

.

shown in Figure 1, there are a set of hotels and for each
hotel, we have its distance from the beach (x axis) and its
price (y axis). The interesting hotels are all the points not
worse than any other point in both distance from the beach
and the price. Hotels 2, 4 and 6 are interesting and can be
derived by the skyline query, for their distances to the beach
and prices are preferable to any other hotels. Note that a
point of the minimum value in any dimension is a skyline
point – hotels 2 and 6 for example.
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Figure 1: An example of skyline in static scenario

In the above query, the skyline is obtained with respect
to a static query point, and in this case, it is the origin
of the both axis. Now, let us change the example to the
scenario of a tourist walking about to choose a restaurant
for dinner. For ease of illustration, we again only consider
two factors, namely the distance to the restaurant and the
average price of the food. Different from the previous ex-
ample, the distance from the tourist to a restaurant is not
fixed since the tourist is a moving object. Figure 2 shows
the changes on the skyline due to the movement. In the fig-
ure, positions of the restaurants are drawn in the X-Y plane,
while the table shows their prices. A tourist as the query
point moves as the arrow indicates from time t1 to t2. The
skyline, i.e. interesting restaurants, changes with respect to
the tourist’s position. Skylines at different times are indi-
cated by different line chains. Such problem is common in
moving databases [3, 9, 7], and the lack of research in this
area motivated our work presented in this paper.

In this paper, we address the problem of continuous sky-
line query processing, where the skyline query point is a
moving object and the skyline changes continuously due to
the query point’s movement. We solve the problem by ex-
ploiting its spatio-temporal coherence. First, we distinguish
the data points that are permanently in the skyline and
use them to derive a search bound to constrain the contin-
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Figure 2: An example of skyline in mobile environ-

ment

uous skyline query processing. Second, we investigate the
connection between data points’ spatial locations and their
dominance relationship, which provides indication of where
to find changes of skyline and update it. Third, to efficiently
support processing continuous skyline queries, we propose a
kinetic-based data structure and propose associated efficient
query processing algorithm.

The paper presents the space and time cost analysis of
the proposed method. It also reports on an extensive exper-
imental study, which includes a comparison with an exist-
ing method adopted for the application. The results show
that the proposed method is efficient with respect to stor-
age space and continuous skyline queries. To the best of
our knowledge, this is the first work on continuous skyline
queries in mobile environment.

The rest of this paper is organized as follows. In Section
1, we present the preliminaries including our problem state-
ment and a brief review of related work. In Section 3, we
carry out a detailed analysis on the problem. In Section 4,
we propose our solution which continuously maintains the
skyline for moving query points through efficient update.
Experimental results are presented in Section 5. Finally, we
conclude in Section 6.

2. PRELIMINARIES

2.1 Problem Statement
In LBS, most of the queries are continuous queries [15].

Unlike snapshot queries that are evaluated only once, con-
tinuous queries require continuous evaluation as the query
results become invalid with the change of location and time.
Continuous skyline query processing has to re-compute the
skyline when the query location and objects move. Due to
the spatio-temporal coherence of the movement, the skyline
will change in a smooth manner. Notwithstanding, updat-
ing the skyline of the previous moment will be more efficient
than conducting a snapshot query at each moment.

We limit the data and query points moving in a 2D (2-
dimensional) space for an intuitive illustration. The state-
ment is however sufficiently general for high-dimensional
space too. We have a set of n data points in the format <xi,
yi, vxi, vyi, pi1, ..., pij , ..., pim> (i = 1, ..., n), where xi and
yi are positional coordinate values in the space, vxi and vyi

are respectively velocity in X and Y dimension, while pij ’s
(j = 1, ...,m) are the static non-spatio attributes. They will
not change with time.

For a moving object, xi and yi are updated using vxi and

vyi. When it is stationary, vxi and vyi are zero. We use
Tuple(i) to represent the i-th data tuple in the database.
Users are moving in 2D plane. Each of them moves in ve-
locity (vqx, vqy), starting from position (xq, yq). They pose
continuous skyline queries during the movement, which in-
volve both distance and all other static dimensions. Such
queries are dynamic due to change in spatial variables. In
our solution, we only want to compute the skyline for (xq, yq)
at the start time 0. Subsequently, continuously query pro-
cessing is conducted for each user by updating instead of
computing a new skyline from scratch each time.

Without loss of generality, we restrict our discussion in
what follows to the MIN skyline annotation [4], in which
smaller values of distance or attribute pij are preferred in
comparison to determine dominance between two points.

2.2 Related Work

2.2.1 Algorithms for Static Skyline Query
Borzonyi, Kossmann and Stocker [4] for the first time

introduced the skyline operator into database systems by
extending the SQL SELECT statement with an optional
SKYLINE OF clause. Two processing algorithms Block
Nested Loop (BNL) and Divide-and-Conquer (D&C) were
proposed. Basically, BNL sequentially scans the whole data
file and compares each new point to all skyline candidates
kept in memory. Only those points not dominated by others
are kept as skyline candidates. The D&C approach divides
the whole dataset into several partitions such that each can
fit in memory. A local skyline is computed for each parti-
tion, and the final skyline is obtained by correctly merging
these local skylines.

In [14], Tan, Eng and Ooi proposed two progressive pro-
cessing algorithms: Bitmap and Index. In the Bitmap ap-
proach, every dimension value of a point pt is represented by
a few bits, and pt itself is transformed into a bit vector by
concatenating those bits of all dimensions. In a top-down
fashion, vectors of all points form a bit matrix. Whether a
given point is in the skyline can be answered without refer-
ring to other points, by retrieving some specific bit columns
from the matrix and applying bit-wise and operation on
them. On the other hand, the Index approach uses a novel
transformation to map each point into a single dimensional
space such that they can be indexed by a B+-tree. The
skyline computation is conducted in several batches, whose
number equals that of all distinct values on all dimension in
the whole dataset. Within each batch, relevant points are
fetched from each partition with the aid of the B+-tree, and
over all those points a local skyline is computed. After each
batch the local skyline is merged into the final skyline with
unqualified points correctly excluded.

Kossmann, Ramsak and Rost [8] proposed a Nearest Neigh-
bor (NN) method to process skyline queries progressively.
It first carries out a NN search on the dataset indexed by
an R∗-tree, and then inserts the NN point into the skyline.
The NN point also determines a region which only contains
points dominated by NN and thus can be pruned. The re-
maining part of the space is partitioned into two parts based
on the NN point, and both are inserted into a to-do list.
Then the algorithm removes a part from the to-do list and
process it recursively, until the list is empty.

Recently, Papadias, Zhang and Tao [11] proposed a new
progressive algorithm named Branch−and−Bound Skyline



(BBS) based on the best-first nearest neighbor (BF-NN) al-
gorithm [6]. It first enqueues all the entries of the R∗-tree
root into a heap sorted on their mindist’s to the query point.
Then the entry e on the heap top will be dequeued and will
be discarded if it is dominated by some skyline point. Oth-
erwise it is either expanded, and enqueue its sub-entries if
it is an intermediate entry, or it is inserted into the skyline
if it is a point. However, unlike BF-NN, BBS uses L1 norm
to compute mindist, and only enqueues those entries that
are not dominated by any skyline point. In a slightly dif-
ferent context, Balke, Guntzer and Zheng [1] addressed the
skyline operation over web databases where different dimen-
sions are stored in different data sites. Their algorithm first
retrieves values in every dimension from remote data sites
using sorted access in round-robin on all dimensions, un-
til all dimension values of an object, called the terminating
object, have been retrieved. Then all non-skyline objects
will be filtered out from all those objects with at least one
dimension value retrieved.

2.2.2 KDS and Continuous Queries for Moving Ob-
jects

Basch, Guibas and Hershberger [2] proposed a conceptual
framework for kinetic data structures (KDS) as a means to
maintain continuously evolving attributes of mobile data.
The KDS keeps the desired relationship between data by
storing all those data in some structures specific to the re-
lationship. The contents in KDS do not change unless the
relationship between some data points has been changed.
In this way, the data retrieval result based on the desired
relationship can be maintained when the data points move
continuously.

KDS and its underlying ideas have inspired some database
query processing techniques that utilize events to maintain
the query result. Mokhtar, Su and Ibarra [9] proposed an
event-driven approach to maintain the result of k-NN query
on moving objects while time elapses. Their approach starts
with a list of all moving objects that are are sorted by their
current distance to the query point. Then events indicating
when a moving object will change position in the list with
its neighbor are computed based on the movement param-
eters of moving objects. All those events are pushed into a
priority queue, which gives priority to events that will hap-
pen earlier. The problem of maintaining k-NN query result
is transformed into the problem of maintaining the list of
moving objects. As time progresses, events are processed
and the order of moving objects are maintained, thus mak-
ing k-NN query result always available in the object list.

Instead of keeping all moving objects in ascending order of
distance to query point, Iwerks, Samet and Smith [7] present
another event-driven method to maintain continuous k-NN
queries on moving objects. Based on the fact that window
queries are cheaper to maintain on moving objects than k-
NN queries, the authors proposed the Continuous Window-
ing (CW) k-NN algorithm. The CW k-NN algorithm first
gets all those objects within a specific distance d around the
query point. And if at least k objects are found, all the
final k nearest neighbors must be among these objects and
only they need to be checked. Otherwise, the search will
be extended outwards with the distance d adjusted. Here
events indicating when and which objects will move into the
distance d around the query point are computed first, and
processed gradually to maintain the query result during the

period of query life time.

2.3 Time Parameterized Distance Function
Since the distance between moving query point and data

point is involved in the skyline operator in our problem,
we therefore present some background about the changing
distance in the moving context. For a moving data point pti

starting from (xi, yi) with velocity (vix, viy), and a query
point starting from (xq, yq) and moving with (vqx, vqy), the
distance between them can be expressed as a function of
time t: dist(q(t), pti(t)) =

√
a · t2 + b · t + c, where a, b and

c are constants determined by their starting positions and
velocities: a = (vix − vqx)2 + (viy − vqy)2; b = 2 · [(xi − xq) ·
(vix−vqx)+(yi−yq) ·(viy −vqy)]; c = (xi−xq)

2 +(yi−yq)
2.

For the sake of simplicity, we use function fi(t) = a·t2+b·t+c
to denote the square of the distance. When data point pti

is static, a, b and c are still determined by formulas above
with vix = viy = 0.

2.4 Terminologies
In this subsection, we define the terminologies used in this

paper. We use dist(pt1, pt2) to represent the Euclidean dis-
tance between two points pt1 and pt2. For two points pt1 and
pt2, if dist(pt1, q) ≤ dist(pt2, q) and pt1.pk ≤ pt2.pk, ∀k, and
at least one < holds, i.e., ∃k, such that pt1.pk < pt2.pk. we
say pt1 dominates pt2. We say pt1 and pt2 are incomparable
if pt1 does not dominate pt2 and pt1 is not dominated by pt2.
We use pt1 ≺ pt2 to represent that pt1 dominates pt2, and
pt1 ∼ pt2 that they are incomparable. In kinetic data struc-
tures, a certificate is a conjunction of algebraic conditions,
which guarantees the correctness of some relationship to be
maintained between mobile data objects [2]. In this paper,
we use a certificate to ensure the status of a data point valid
within a period of time t. For example, a certificate of a
point can guarantee it staying in the skyline for a period
of time t. Beyond t, its certificate is invalid. An event will
trigger a process to update the certificate. The process may
result in a change of the skyline.

3. ANALYSIS OF THE CHANGE ON SKY-
LINE

In this section, we start the analysis of the change of
skyline in continuous query processing. We first point out
the search bound that can be used to filter out unqualified
data points in determining skyline for a moving query point.
Then we carry out an analysis of the skyline change due to
the movement, which reveals some insights that can be used
to update the skyline for the query. The update algorithms
will be presented in the next section.

3.1 Skyline on Static Non-spatio Dimensions
Although in our problem the skyline operator involves

both dynamic and static dimensions, some data points could
be always in the skyline no matter how data points and
query points move. This is because they have domineer-
ing static non-spatial values, which guarantee that no other
objects can dominate them. We denote this type of sky-
line points as SKns and the whole set of skyline points
as SKall. We call SKns static partial skyline, and SKall

complete skyline. It is obvious that SKns is always on the
complete skyline as time elapses because its underlying ad-
vantage on static non-spatio values does not change as data
points and query point move.



We call points in SKns permanent skyline points. In this
way, we distinguish those points always in the complete sky-
line from the rest of whole dataset. The benefit of this dis-
crimination is threefold:

1. It extracts the unchanging part of a continuous skyline
query result from the complete skyline SKall, and thus
in query processing efforts can be concentrated on the
changing part only, i.e., SKall − SKns. We name the
changing part SKchg, and call those points in it volatile
skyline points. In continuous skyline query processing,
only SKchg is needed to be kept tracked for each query.
In this manner, we can reduce the overall processing
cost.

2. This discrimination reduces the size of data to be sent
to clients. Every time when change happens, only
SKchg as query result is needed to be transferred,
which is beneficial to real mobile applications where
clients and servers are usually connected via limited
bandwidth.

3. Static partial skyline SKns also provides indication
of search bound for processing a continuous skyline
query, as we will discuss next. We use pt1 � pt2 to
represent that pt1 dominates pt2 for all m static non-
spatio dimensions.

3.2 Search Bound
Since SKns is always contained in SKall, for any point not

in SKns to enter SKall it must be incomparable to anyone in
SKns. More specifically, it must have advantage in distance
to query point since it is dominated with respect to all static
dimensions by at least one point in SKns. This leads to the
following Lemma 3.2.1.

Lemma 3.2.1. At any time t, if spf is the farthest point
in SKns to the query point, then any point pt not nearer to
the query point than spf is not in the complete skyline.

Proof. Obviously pt /∈ SKns, thus ∃sp ∈ SKns s.t.
∀k, sp.pk ≤ pt.pk and at least one inequality holds. ¿From
dist(q, sp) ≤ dist(q, spf ) and dist(q, spf ) ≤ dist(q, pt), we
get dist(q, sp) ≤ dist(q, pt) by transitivity. Because of dis-
advantage in both spatial and non-spatio dimensions, pt is
dominated by sp at time t so that it is not in the complete
skyline.

Lemma 3.2.1 indicates a search bound for skyline on all
dimensions. This can be used to filter out part of unqualified
points in query processing: those ones that are farther away
than all points in SKns cannot be in the skyline.

3.3 Change of the Skyline
When the query point q and data points move, their dis-

tance relationships may change. It causes the skyline to
change as well. As discussed in Section 3.1, such changes
only happen to SKchg, i.e. SKall − SKns. It is also men-
tioned in Section 2.3 that the square of distance from each
point to query point can be described as a function of time t.
Figure 3 illustrates an example of such functions of several
points with respect to the moving query point.

Intuitively, a skyline point si in SKchg before time tx may
leave the skyline after that moment. On the other hand, a
non-skyline point nsp at time tx may enter the skyline and

time
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Figure 3: An example of distance functions

become part of SKchg after that moment. For the former,
after time tx, si must be dominated by a skyline point sj

in SKall. For the latter, when nsp enters the skyline after
time tx those points that used to dominate nsp before tx

must stop dominating it.
That moment tx is indicated by an intersection of two dis-

tance function curves. We use <pt1, pt2, tx> to represent an
intersection shown in Figure 3, where at time tx point pt2 is
getting closer to query than point pt1 but before that mo-
ment the inequality relationship is on the contrary. ¿From
the figure, we can see that such an intersection only alters
pt1 and pt2’s presence in or absence from SKchg if it does
cause change. Because before and after the intersection,
the only change of comparison is dist(q, pt1) < dist(q, pt2)
to dist(q, pt2) < dist(q, pt1). Apparently if no intersections
happen, skyline does not change at all, because the inequal-
ity relationship between all points’ distances to query point
remains unchanged.

Nevertheless, not every intersection will necessarily cause
the skyline to change. We need to investigate the conditions
in which an intersection <pt1, pt2, tx> causes pt1 and pt2
to enter or leave the skyline, since the intersection does not
affect any other points not involved in it. Whether an in-
tersection <pt1, pt2, tx> causes skyline to change is relevant
to which set pt1 and pt2 belong to just before time tx, i.e.,
SKns, SKchg or SKall (neither of the former two, i.e., not
in SKall). We have following Lemmas to clearly describe
the possibilities.

Lemma 3.3.1. An intersection <pt1, pt2, tx> has no in-
fluence on the skyline if one of the following conditions holds
before tx:
(1) pt1 ∈ SKns and pt2 ∈ SKns

(2) pt1 ∈ SKns and pt2 ∈ SKchg

(3) pt1 6∈ SKall and pt2 ∈ SKns

(4) pt1 6∈ SKall and pt2 ∈ SKchg

(5) pt1 6∈ SKall and pt2 6∈ SKall

Proof. 1. Both pt1 and pt2 will still be in the skyline
after tx because they are permanent skyline points.

2. Obviously pt1 does not leave the skyline. Assume
that pt2 leaves the skyline after tx, there must be an-
other skyline point s dominating it, i.e., dist(q, s) <
dist(q, pt2) for t > tx and ∀k, s.pk ≤ pt2.pk. Since in-
tersection <pt1, pt2, tx> does not change the distance
inequality relationship between s and pt2, dist(q, s) <



dist(q, pt2) also holds for t < tx. Thus s dominates pt2
before tx, which contradicts pt2 ∈ SKchg before tx.
Therefore pt2 does not leave the skyline either, and
there is no influence on the skyline.

3. Since pt1 /∈ SKall before tx, there must be at least
one skyline point s ∈ SKall dominating it. Because
dist(q, s) < dist(q, pt1) does not change after the in-
tersection, s still dominates pt1 and thus pt1 will not
enter the skyline. Since pt2 is a permanent skyline
point, it will not leave the skyline.

4. Due to the same reasoning as in (3), pt1 will not enter
the skyline after tx. Due to the same reasoning in (2),
pt2 itself will not leave the skyline after tx.

5. Due to the same reasoning as in (3), neither pt1 nor
pt2 will not enter the skyline after tx.

Lemma 3.3.2. An intersection <pt1, pt2, tx> may have in-
fluence on the skyline if one of the following conditions holds
before tx:
(1) pt1 ∈ SKns and pt2 6∈ SKall

(2) pt1 ∈ SKchg and pt2 ∈ SKns

(3) pt1 ∈ SKchg and pt2 ∈ SKchg

(4) pt1 ∈ SKchg and pt2 6∈ SKall

Proof. 1. Obviously pt1 will not leave skyline after
tx. Since pt2 /∈ SKall before tx there must be at least
one skyline point in SKall dominating it. If pt1 is
the only dominating pt2 before tx, after tx pt1 will
stop dominating pt2 and no other skyline points still
dominate it. Consequently, pt2 will enter the skyline
after tx.

2. Obviously pt2 will not leave skyline after tx. But
if ∀k, pt2.pk ≤ pt1.pk holds, pt2 will become domi-
nating pt1 and causes pt1 to leave the skyline, since
dist(q, pt2) < dist(q, pt1) holds after tx.

3. If ∀k, pt2.pk ≤ pt1.pk holds, pt2 will become dominat-
ing pt1 and causes pt1 to leave the skyline, because
dist(q, pt2) < dist(q, pt1) holds after tx. Due to the
same reasoning as in (2) of Lemma 3.3.1, pt2 itself
will not leave the skyline since no other points become
dominating it after tx.

4. Due to the same reasoning as in (1), pt2 may enter the
skyline after tx. We postpone to later the discussion
on whether pt2 will become dominating pt1 and make
it leave skyline.

Table 1 lists all possibilities attached to an intersection.
For the possibility that pt1 comes from SKchg and pt2 from
SKall, an interesting issue is whether pt2 can dominate pt1
after time tx.

Lemma 3.3.3. For an intersection <pt1, pt2, tx> in which
pt1 ∈ SKchg and pt2 6∈ SKall before tx, pt1 will not be
dominated by pt2 and leave the skyline after tx if no other
intersection happens at the same time and the static non-
spatio parameter values of pt1 and pt2 are not same for every
dimensions.

Table 1: Intersections and possible skyline changes

pt1 � pt2 SKns SKchg SKall

SKns — —
√

SKchg

√ √ √

SKall — — —

Proof. Assume that pt1 will be dominated by pt2 and
leave the skyline after tx, we have pt2 � pt1. Because pt2
is not in SKall before tx, in SKall there must exist at least
one pt3 dominating pt1, i.e. pt3 ≺ pt2. For simplicity of pre-
sentation we assume that pt3 is the only one skyline point
of such kind. By transitivity we have pt3 � pt1. But be-
cause pt1 is in SKchg distance from pt3 to query point must
be larger than that from pt1 before tx, otherwise pt3 ≺ pt1
means pt1’s absence from SKchg. Thus for pt2 to dominate
pt1 after tx, it must first become incomparable to pt3, which
requires that an intersection between pt1 and pt3 must hap-
pen no later than tx. If the time of intersection is earlier
than tx, however, pt2 will be in SKchg before tx. Thus that
time must just be tx. Therefore three points must have
their distance function curves intersect at the same point,
and <pt1, pt2, tx> is not the only intersection at time tx.

Note that pt3 cannot be pt1 in the above proof. Otherwise,
before tx, we have pt1 ≺ pt2. Thus, ∃k, such that pt1.pk <
pt2.pk because we assume that their static non-spatio pa-
rameter values are not same for every dimensions. It leads
to pt2 can not dominate pt1 after tk because pt1.pk < pt2.pk

still holds.

time
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Figure 4: Multiplex intersection example

Figure 4 shows such a scenario, and we call such an inter-
section multiplex intersection. One feasible processing strat-
egy for this situation is to only consider if pt2 has the chance
to enter SKchg. We need to check if pt1 is the only one
that used to dominate pt2. We ignore the possibility that
pt2 might enter the skyline and start dominating pt1 at the
same time. That possibility is indicated by other intersec-
tions at the same time, each of which is to be processed in
isolation.

Let us still refer to the example in Figure 4. According
to the strategy above the intersection <pt1, pt2, tx> will be
ignored. After time tx, both pt2 and pt3 are in SKall but pt1
is not. This result can be achieved as long as the three inter-
sections are correctly processed one by one according to our
discussion above, regardless of the order in which they are



processed. Now, let us look at the processing of the intersec-
tions in the order listed in the figure. First, <pt1, pt2, tx>
does not change the skyline, because pt1 does not dominate
pt2 and thus pt2 will not enter SKchg though it is getting
closer to query point than pt1. Second, <pt1, pt3, tx> will
cause pt1 to leave SKchg because pt1 starts dominating it.
Finally, <pt3, pt2, tx> will cause pt2 enter SKchg because
pt3 is the only one that used to dominate pt2 and now it
stops dominating due to its distance to query point becomes
larger. The procedures of other processing orders are similar
and thus omitted due to space constraint.

An extreme situation is that many distance function curves
are involved in the same multiplex intersection. Our process-
ing strategy can also ensure the correct change as long as
each legal intersection is processed correctly in isolation. In
fact, this situation is rather special and happens seldom be-
cause it requires that all those points involved to be on the
same circle centered at the query point. This situation only
happens to the minority data points in usual distributions,
and it becomes more infrequent in the moving context.

To summarize the above analysis, we only need to take
into account two primitive cases in which the skyline may
change.

Case 1. Just before time tx, si ∈ SKchg and ∃sj ∈ SKall

s.t. sj � si. At time tx an intersection <si, sj , tx> between
their distance function curves happens. Then from time tx

on, si /∈ SKchg and leaves the skyline because sj ≺ si, and
sj ∈ SKall still.

Case 2. Just before time tx, nsp /∈ SKall and ∃si ∈
SKall s.t. si ≺ nsp. At time tx an intersection <si, nsp, tx>
between their distance function curves happens. Then from
time tx on, nsp ∈ SKchg if ∀sj ∈ SKall, we do not have
sj ≺ nsp.

Case 1 determines a skyline change, whereas suggests a
possibility of change which requires further checking. For si

and sj in Case 1, the relationship of their distances to the
query point can be described formally in Corollary 3.3.1.
Similarly for nsp and si in Case 2, we have Corollary 3.3.2.

Corollary 3.3.1. For Case 1, ∃ ε > 0, dist(q, sj) >
dist(q, si) holds for any time t ∈ (t − ε, t). But for t ∈
(t, t + ε), dist(q, sj) < dist(q, si) holds.

Corollary 3.3.2. For Case 2, ∃ ε > 0, dist(q, nsp) >
dist(q, si) holds for any time t ∈ (t − ε, t). But for t ∈
(t, t + ε), dist(q, nsp) < dist(q, si) holds.

Corollary 3.3.1 indicates where to find a potential domi-
nating sj for a volatile skyline point si. For a period of time
before the change, such sj must be out of the circle deter-
mined by query point q and si. We use Cir(q, si) to denote
the circle whose center is q and radius is the distance from
q to si, i.e., dist(q, si). Corollary 3.3.2 indicates that for the
skyline point si involved in Case 2, the possible non-skyline
point nsp is also out of circle Cir(q, si) for a period of time
before the change. Namely, the distance from each current
skyline point (permanent or volatile) provides indication of
future change of skyline.

3.4 Continuous Skyline Query Processing
Based on the above observations, we now address the is-

sues of the continuous skyline query processing. A naive way

is to pre-compute and store all possible intersections of any
pair of distance function curves, and then process each one
when its time comes according to the discussion in Section
3.3. This method produces many "false hits" which actually
do not cause skyline changes as we have shown in Table 1.

To reduce storing and processing of unnecessary possibil-
ities, we compute and store intersections in an evolving way
taking into account the current skyline, rather than compute
all intersections at the very beginning. Specifically, first we
get the initial skyline and compute some intersections of the
distance curves in terms of the current skyline points. Then
when some intersections happen and the skyline is changed,
we further compute intersections in terms of updated sky-
line. By looking into near future, we ensure that the skyline
query result keeps updated, and more information will be
obtained later for updating the skyline in farther future.

Given the current skyline points, we only keep those in-
tersections with the likelihood to change the skyline in the
future according to Table 1. Besides, we keep all the current
skyline points sorted based on their distance to the query
point. At each evolving step, we only compute those pos-
sible intersections that involve points between two adjacent
skyline points si and si+1 and will happen before si and si+1

stop being adjacent. Therefore we need to keep track of any
intersection between two skyline points that are adjacent to
each other in the sorted order.
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Figure 5: An example of evolving intersections

In Figure 5, for example, s1, s2 and s3 are three adjacent
skyline points between time [0, tcur], while pt1 and pt2 are
two non-skyline points between s1 and s2. At an evolving
step of time tcur, only those intersections in dot will be com-
puted and stored for future processing. Next evolving step is
at time t2 and pt2 will enter the skyline if s1 is the only sky-
line point dominating it. The further next evolving step is at
time t2,3. If s2 is a volatile skyline point and s3 � s2, inter-
section <s2, s3, t2,3> will cause s2 to leave the skyline from
time t2,3 onwards. Otherwise it means an exchange of posi-
tions only. Either case causes the order of skyline points to
change. For future maintenance, intersection <s1, s3, t1,3>
will replace <s1, s2, t1,2> since now s1 and s3 are adjacent.
Thus, at time tcur only three intersections will be computed
and stored for later processing, less than half of the total
intersections in the figure.

4. DATA STRUCTURE AND ALGORITHMS
The analysis presented in Section 3 provides us a basis

for adapting the kinetic data structure for supporting con-
tinuous skyline query processing. The query results need to



be modified only when some existent skyline points leave or
non-skyline points enter the skyline. What we need to do
is to decide when such cases happen and then what actions
to take. Certificates (see subsection 2.4) can be defined to
certify no such instance occur within a period of time, thus
ensuring the skyline result does not change within that pe-
riod of time. If any certificate fails, an update on the skyline
is required.

In our method, each skyline point si ∈ SKchg has a cer-
tificate corresponding to Case 1 in Section 3.3, since only
volatile skyline points may be dominated by other skyline
points and leave the skyline. That certificate will fail when
another skyline point becomes dominating si, and then we
must remove si from the skyline. Corresponding to Case
2 we also have certificates, though it is not so straightfor-
ward as Case 1. At time t, non-skyline point nsp might be
dominated by more than one skyline point. For nsp to en-
ter the skyline it must get closer to query point q than all
other points dominating it. It is difficult to keep track of all
dominators for nsp and predict when nsp will get closer to
q than any of them, because those dominators themselves
might change as well. We choose another strategy. The
earliest time t when nsp gets closer than any of those domi-
nators is recorded. And when that time t comes, conditions
in Case 2 will be checked to determined whether nsp will
really enter the skyline.

4.1 Implementation Details
Based on the analysis in Section 3, it is obvious that the

static partial skyline not only constitutes the unchanging
part of the skyline but also provides a search bound for
other points that can be in the complete skyline. Besides,
the distance from each skyline point (permanent or volatile)
provides indication of future changes. Thus, it is beneficial
to keep all skyline points in an ordered structure such that
the observations from the analysis can be applied efficiently
in query processing.

We use a bidirectional linked list, named Lsp to store all
current skyline points, which are sorted in ascending order of
their distances to the query point. For each current skyline
point we keep an entry of form (flag, tuple id, a, b, c, tv , tskip).
flag is a boolean variable indicating if the skyline point is
in SKns. tuple id is the tuple identifier which can be used
to access the record. a, b, c are coefficients of the distance
function between this point and query point q, introduced
in Section 2.3. tv is only available to each changing skyline
point, indicating its validity time. tskip is the time when the
skyline point will exchange its position with its successor in
Lsp.

Besides Lsp for all skyline points, a global priority queue
Qe is used to hold all events derived from certificates to
represent future skyline changes, with preference being given
to earlier events. Next we define the certificates and events
to be used in our solution.

4.2 Certificates and Events
We define three kinds certificates, which are listed in Table

2. The first column is the name of a certificate, the second
is what the certificate to guarantee, and the third lists the
data points involved in the certificate.

An event occurs when any certificate fails due to distance
change resulting from the movement of the query point.
Each event is in the form of (type, time, self, peer), where

Table 2: Certificates and events
Cert. Objective Event

sisj ∀si ∈ SKchg, sj ∈ SKall, s.t. self = si

sj � si → dist(q, si) < dist(q, sj) peer = sj

nspij ∀nspj 6∈ SKall,∀si ∈ SKall, s.t. self = si

si ≺ nspj → peer = nspj

dist(q, si) ≤ dist(q, nspj)
ordij ∀si ∈ SKall, s.t. self = si

∃sj ∈ SKall ∧ sj 6� si peer = sj

∧sj = si.next in Lsp

→ dist(q, si) < dist(q, sj)

type represents the kind of its certificate; time is a future
time instance when the event will happen; and self and peer
respectively represent skyline point and relevant data point
involved in the event.

Certificate sisj ensures for an existent volatile skyline
point si that any other skyline point sj with the potential
to dominate si (sj � si) keeps being farther to query point
q than si, therefore si is not dominated by any of them and
stays in the skyline. Here self and peer respectively point
to si’s and sj ’s entries in Lsp.

Certificate nspij ensures for a non-skyline point nsp that
all those skyline points currently dominating it keeps being
closer to query point q than nsp, therefore nps is prevented
from entering the skyline. When a certificate of this kind
fails at time, nsp will get closer to query point q than one
skyline point si, but whether it will enter the skyline or not
depends on whether si is the only one that used to dominate
it. This will be checked when an event of this kind is being
processed (in Section 4.4). Here self points to si’s entry in
Lsp, whereas peer is the tuple identifier of data point nsp.

Besides, we define another kind of certificate ordij , which
ensures for an existent skyline point si that its successor
sj in ordered list Lsp keeps being farther to query point q
than it. This sj does not have the potential to dominate si,
otherwise an sisj certificate will be used instead. Here self
points to the entry of the predecessor skyline point in the
pair, and peer to the successor.

Certificate ordij not only keeps the order of all skyline
points in Lsp, but also implies a way to simplify event com-
putation and evolvement. For Case 1 described in Section
3.3, it also involves a position exchange in Lsp, i.e. just
before sj dominating it sj must be its successor. And we
need to determine if an exchange in Lsp really results in
sisj event. In this sense, we only need to check for si its
successor to compute a possible sisj event. If si does have
an event of sisj type, the event’s time value is exactly si’s
validity time tv. If si has no sisj event, its validity time is
set to infinity.

An event of certificate nspij with self = si is supposed
to have a time stamp no later than si.tv , and those events
with a later time are not processed. For each current sky-
line point si, we only need to consider the earliest event (si

becomes invalid or exchanges with its successor), and post-
pone the further ones after processing the earliest one. This
helps preclude unnecessary events to be processed, and thus
reducing the processing time.

In our proposed method, the Lsp initially contains the cur-
rent skyline points, and the priority queue contains events
that will happen in the nearest future time to cause the



skyline to change. As time elapses, every due event is de-
queued from the priority queue and processed based on its
type. While processing due events and updating the skyline
result accordingly, the procedure also creates new events
that will happen in later future and that will cause skyline
changes. Thus the event queue evolves with due events being
dequeued and new events being enqueued, providing correct
information for maintaining the skyline by looking into near
future. At any time t after all due events are processed, Lsp

is the correct skyline with respect to the moving query point
q’s current position.

4.3 Initialization
We partition the dataset D into two groups: the set of

static partial skyline points SKns, and the rest D′ = D −
Kns. We pre-compute SKns and store it as a system con-
stant. Thus, the initialization produces two outcomes: the
changing part, i.e. SKchg, of complete skyline with respect
to the starting position of the query point, and the earliest
events that will be used later to update the skyline.

Algorithm Initialization(q)
Input: q is the query point
Output:the skyline for q’s starting position

the event queue to be used in maintenance
// load SKns into skyline list

1. for each si in Skns

2. Compute a, b, c in terms of q;
3. Insert an entry (1, si, a, b, c,∞,∞) into Lsp;

// search bound determined by SKns

4. dbnd = dist(Lsp.last, q);
// compute initial skyline

5. Search the grid cell cellorg in which q lies;
6. while there still exist grid cells unsearched
7. for each cell celli on next outer surrounding circle
8. if (mindist(q, celli) ≥ dbnd)
9. break;

10. else Search celli;
// compute events

10. for each si from Lsp.last.prev to Lsp.first
11. CreateEvents(si, q);

// handle last skyline point specially
12. tnext = Qe.first.time;
13. slast = Lsp.last;
14. tnsp = ∞; peer = null;
15. C = Cir(q(tnext), slast) − Cir(q, slast)
16. for each point nsp in C
17. for each sj from slast to Lsp.first
18. t = time nsp will get closer to q than sj ;
19. if ((t ≥ sj .tv) or (t ≥ sj .tskip)) continue;
20. if (∀k, sj .pk ≤ nsp.pk)
21. Enqueue (sj , t, nsp, nspij) to Qe;
22. break;

Figure 6: Initialization framework

To compute SKchg over static dataset for the query point’s
starting position, in order to use the search bound deter-
mined by static partial skyline SKns and reduce intermedi-
ate steps to access data tuples when computing events, we
use the grid file to index all data points. Grid file provides
a regular partition of space and at most two-disk-access fea-
ture for any single record [10]. In our solution for the static

dataset, we use the simplest uniform 2D grid file that di-
vides the data space into h × v cells to index D′, and the
data points within each cell are stored in one disk page.

For the similar reasons we use a hash based method [13]
to index moving data points in D′. The data space is also
divided into regular cells, with each representing a bucket
to hold all those moving data points within its extent. Data
points can move across adjacent cells with the velocities in
its tuple, which is monitored by a pre-processing layer and
declared in an explicit update request to the database. An
update request can also change a data point’s speed. How
to deal with the updates of moving data points to maintain
the correct skyline will be addressed in Section 4.5. Except
for the difference on underlying indexing schemas, the ini-
tializations for static and moving datasets share the same
framework and events creation algorithms.

The initialization framework based on the grid file is pre-
sented in Figure 6. First all permanent skyline points in
SKns are inserted into Lsp according to their distance to
query point q’s starting position. The farthest distance is
recorded in variable dbnd as the search bound. Then start-
ing from cell cellorg where q’s starting position lies, all grid
cells are searched in a spiral manner that those on an inner
surrounding circle are searched before those on an outer one.
During the search, those cells farther than dbnd are pruned.
In line 7 of Figure 6, mindist(q, celli) is computed. After
all cells are searched or pruned, the algorithm CreateEvents
is invoked for each skyline point si from outer to inner, to
compute all events for all skyline points except for the last
one. After the loop, we compute a possible nspij event for
those points out of the last skyline point slast. That compu-
tation does not involve all outer non-skyline points of slast’s,
instead it is limited to an estimated region. This region C
is the difference between the two circles determined by slast

and query point q at two different times, the current time
and the earliest event time tnext in the future. The later is
represented by q(tnext). Because only the non-skyline points
in that region have chance to get closer to query point than
slast and enter the skyline before tnext.

Points in a grid cell that is not pruned by the search bound
dbnd are sequentially compared to the current skyline points
in Lsp, which is adjusted with deletion or insertion if neces-
sary.

Algorithm CreateEvents is presented in Figure 7. For a
given skyline point si in Lsp, the algorithm first computes
the time t when si and the next skyline point sj in Lsp

will exchange their position in the list, i.e. when sj will
get closer to q than si. If t is later than sj ’s skip time or
si’s validity time, it is ignored. Otherwise, it means an sisj

event depending on sj ’s validity time if si ∈ SKchg, or it
is a simple order change event. Then for each non-skyline
point nsp between Cir(q, si) and Cir(q, sj), the algorithm
computes nspij event by looping on all skyline points in
the inner of nsp. Once an nsp event is derived , the loop
on all inner skyline points is halted. All events created are
enqueued into the event queue.

4.4 Updating the Skyline
In maintaining the skyline, the due events are dequeued

and processed according to it type, and new events are com-
puted based on the new position of query point. As in the
initialization, the event of points out of the last skyline point
is computed in a special way with an estimated search re-



Algorithm CreateEvents(si, q)
Input: si is a skyline point in Lsp

q is the query point
Output:upcoming events for si

1. peer = null;
// compute events with next skyline point in Lsp

2. sj = si.next;
3. t = time si and sj will exchange position;
4. if ((t < sj .tskip) and (t < sj .tv))
5. if (!si.f lag)
6. if ((t < si.tv) and (∀k, sj .pk ≤ si.pk))
7. si.tv = t; peer = sj ;
8. else si.tskip = t;

// enqueue relevant events
9. if (peer 6= null)
10. Enqueue (si, si.tv, rep, sisj) to Qe;
11. if (si.tskip < si.tv)
12. Enqueue (si, si.tskip, sj , ordij) to Qe;

// compute events involving non-skyline points
13. for each point nsp between Cir(q, si) and Cir(q, sj)
14. for each sj from si to Lsp.first
15. t = time nsp will get closer to q than sj ;
16. if ((t ≥ sj .tv) or (t ≥ sj .tskip)) continue;
17. if (∀k, sj .pk ≤ nsp.pk)
18. Enqueue (sj , t, nsp, nspij) to Qe;
19. break;

Figure 7: Create events

gion. Algorithm updateSkyline is presented in Figure 8.
The actions to process each kind of events are described

respectively in Figures 9 to 11. For an sisj event, si is
removed from the skyline and new events are computed for
si’s predecessor because its successor skyline point in Lsp

has been changed. For an nspij event, the non-skyline point
nsp will be checked against all those skyline points closer to
the query point, to see if they will enter the skyline. If not,
a possible new nsp event is computed. Otherwise it will be
added into the skyline and events will be computed for itself
and its predecessor. For an ordij event the Lsp is correctly
adjusted by switching si and sj , and events are computed
for themselves and their predecessor.

4.5 Updating the Moving Plan
If a moving data point mpti’s moving plan changes, e.g.,

its velocity and its distance function, will change and in-
tersections with other ones will also be changed as a conse-
quence, which invalidates those events computed based on
mpti’s old distance function curve. Figure 12 shows how a
data point’s velocity change causes the intersections of the
function curves to change. Thus, it may cause the skyline
to change.

To ensure correct distance computation with updates, we
need to add for each moving object’s tuple a field tupt indi-
cating its last update time. We define an update request for
any moving data point mpti in the form update(id, x, y, vx, vy).
id is mpti’s identifier which can be used to locate its tuple
directly. x and y represent its current position. vx and vy

represent its current speed. When such an update request
comes in, we have to check if mpti has moved to a new cell
and if its speed has been changed since the last update. If
x and y indicate that mpti has moved to a different cell, we

Algorithm updateSkyline(tcur)
Input: tcur is the current time
Output:updated Lsp and Qe

1. slast = Lsp.last;
2. while (Qe.first.time == tcur)
3. evt = Qe.dequeue;

// call corresponding process for evt
4. Process evt in terms of evt.type;
5. if (slast 6= Lsp.last) return;
6. slast = Lsp.last;
8. tnext = Qe.first.time;
9. C = Cir(q(tnext), slast) − Cir(q(tcur), slast)
10. for each point nsp in C
11. for each sj from slast to Lsp.first
12. t = time nsp will get closer to q than sj ;
13. if ((t ≥ sj .tv) or (t ≥ sj .tskip)) continue;
14. if (∀k, sj .pk ≤ nsp.pk)
15. Enqueue (sj , t, nsp, nspij) to Qe;
16. break;

Figure 8: Update the skyline

Process sisj event e
1. si = e.self ; sj = e.peer;
2. Delete si from Lsp;
3. si = sj .prev;
4. CreateEvents(si, q);

Figure 9: Process sisj event

Process nspij event e
1. si = e.self ; nsp = e.peer
2. dominated = FALSE;

// check inner skyline points
3. for each sj in Lsp from si.prev to first
4. if (∀k, sj .pk ≤ nsp.pk)
5. dominated = TRUE;
6. break;

//nsp does not enter the skyline this time
7. if (dominated)
8. sk = si.prev;
9. t = time nsp will get closer to q than sk;
10. if ((t < sk.tv) and (t < sk.tskip)

and (∀k, sk.pk ≤ nsp.pk))
11. Enqueue (sk, t, nsp, nspij) to Qe;
12. else // nsp enters the skyline
13. Insert nsp into Lsp before si;
14. sj = si.prev;
15. CreateEvents(sj , q);
16. CreateEvents(sj .prev, q);

Figure 10: Process nspij event

Process ordij event e
1. si = e.self ; sj = e.peer;
2. Switch si and sj ’s positions in Lsp;
3. CreateEvents(si, q);
4. CreateEvents(sj, q);
5. if (sj .prev 6= null)
6. CreateEvents(sj .prev, q);

Figure 11: Process ordij event
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Figure 12: An example of the change of moving plan

need to remove it from the old one and insert it into the
new one. If vx and vy indicate that mpti’s speed has been
changed, we need to remove old events relevant to mpti and
compute new ones based on its new speed. This algorithm
is presented in Figure 13. To facilitate location of events
involving a data point efficiently, the priority event queue
is implemented using a B+-tree, and each current skyline
point si has a list of pointers to all those events whose self
is si.

It also can be seen in Figure 12 that right at the time,
an update request comes in the skyline does not change
abruptly. To keep the skyline correct, the update request
is only processed after all due events are processed, i.e.,
updateMotion(req) at time tu executes after updateSkyline(tu)
completes.

4.6 Cost Analysis
The space cost incurred by our method consists of two

components: the space used to keep the skyline and that
used to store events. For a d-dimensional dataset with N
points subject to independent distribution, the size of its
skyline is nsky = O((log N)d−1/(d − 1)!) as presented in
[5]. Since there are m static dimensions involved in skyline
operator in our assumption in Section 2.1, the size of sky-
line on static dimensions is |SKns| = O((log N)m−1/(m −
1)!), and the size of skyline on all dimensions is |SKall| =
O((log N)m/m!) at any time. Thus the size of changing
part is |SKchg| = |SKall|−|SKns| = O((log N)m−1(log N −
m)/m!) at any time. Now we consider the number events at
any time. In our method, any sisj event or ordij event
is determined by an underlying intersection between two
adjacent skyline points’ distance function curves. There-
fore, the maximum number of events of these two kinds are
|SKall| − 1, the number of such intersections. For nspij

events, the worst case is that every non-skyline point is in-
volved in such an event, which means the number of nspij

events is N − |SKall| at most. By summing up all events,
the number of total events in the worst case is N − 1.

The IO cost in our method is mainly incurred by Cre-
ateEvents, which accesses all non-skyline points between the
circles of two adjacent skyline points in Lsp. This access
can be regarded as a special region query over the dataset
indexed by grid file, asking for points between two circles
with same center but different radiuses. The IO cost of such
query can be estimated with a simple probabilistic model.
Let the data space be a 2D unit space, and the outer and
inner circles have radii r1 and r2 respectively. Then the area

Algorithm updateMotion(req)
Input: req is an update request
Output:updated hash index, tuple and Qe

1. cell1 = Tuple(req.id).cell;
2. cell2 = Hash(req.x, req.y);
3. if (cell1 6= cell2)
4. Tuple(req.id).cell = cell2;
5. remove req.id from cell1 and insert it to cell2;
6. if ((req.vx == Tuple(req.id).vx) and

(req.vy == Tuple(req.id).vy))
7. return;
8. Tuple(req.id).vx = req.vx

9. Tuple(req.id).vy = req.vy

10. Tuple(req.id).tupt = tcur

// Adjust relevant events
11. for each si in Lsp from Lsp.first
12. if (si.tuple id == req.id)
13. Delete all si’s events;
14. CreatEvents(si, q);
15. return;
16. Delete all si’s events with peer == req.id;
17. if (dist(q, Tuple(req.id)) ≤ dist(q, si))
18. break;
19. nsp = req.id;
20. for each sj from si to Lsp.first
21. t = time nsp will get closer to q than sj ;
22. if ((t ≥ sj .tv) or (t ≥ sj .tskip)) continue;
23. if (∀k, sj .pk ≤ nsp.pk)
24. Enqueue (sj , t, nsp, nspij) to Qe;
25. break;

Figure 13: Handle the change of moving plan

of the query circle is S = π · (r2
1 − r2

2), and the query will
access S · P = π · (r2

1 − r2
2) · P grid cells (pages).

Let us compare the time cost of continuous skyline query
to that of using snapshot skyline queries. Assume N snap-
shot queries are triggered within a time period [t1, t2], and
the cost of each is Ci. Then the total and average cost of

that method are
PN

i=1
Ci and

PN
i=1

Ci

N
respectively. More

snapshot queries incur higher total processing cost, while
each single snapshot query’s cost may vary little from the
average cost C because of the static processing fashion. For
the same time period, our method computes the initial sky-
line and events at time t1, and then updates the skyline only
when some certificate fails before t2. Suppose the number
of certificate failures during [t1, t2] is N ′ (including the ini-
tialization), and the cost of each is C ′

i, the total and average

cost of our method are
PN

′

i=1
C ′

i and
PN′

i=1
C′

i

N ′ respectively.
The number of certificate failures N ′ is a constant in a fixed
time period, therefore the average cost C′ is determined by
the total cost only.

It makes little sense to compare the total costs of these
two methods. If too many snapshot queries are triggered
the total cost will be very high, while few snapshot queries
deteriorate the result accuracy. To ensure a fair comparison
of average costs, we set N = N ′ in our experiment. In other
words, we trigger snapshot queries by assuming when the
skyline changes is known, which is gained from our method.
The experimental study results in the next section show that
our method even outperforms the privileged snapshot query



method.

5. EXPERIMENTAL EVALUATION
In this section we present the results of our experiments

conducted on a desktop PC running on Microsoft Windows
XP professional. The PC has a Pentium IV 2.6GHz CPU
and 1GB main memory. All experiments were programmed
in ANSI C++.

5.1 Experiments on Static Dataset
For the static dataset we mainly explored into the ef-

fects of cardinality and non-spatio dimensionality on the
performance. We used synthetic datasets of data points
with spatial attributes (x and y) and two to five static non-
spatio attributes. For each dataset, all data points are dis-
tributed independently within the spatial space domain of
10, 000×10, 000, and their non-spatio attribute values range
independently from 1 to 100,000. The cardinality of datasets
ranges from 100K to 1M. For each set of data we executed
100 continuous queries moving in random directions. For
each query, we randomly generated a point within the data
space as the starting position of the moving query point.
The speed of each moving query point is also randomly de-
termined and ranges from 10 to 30. Each query ends as soon
as the query point moves out of the data space extent. The
experiment results to be reported are the average values of
those 100 queries, if not explicitly stated otherwise.

Because currently BBS algorithm is the most efficient one
for computing skyline for a static query point [11], we imple-
mented and used it for comparison. At each time instance,
the BBS algorithm is invoked to re-compute the skyline in
terms of the query point’s new position. It is worth noting
that BBS can not correctly tell when the skyline changes as
our method does.

The comparison was carried out on a fair basis. The same
set of randomly generated queries are used by both methods
on the dataset of the same size. Processing costs, IO count
and CPU time, in both methods are amortized over the same
number of time units when the skyline changes.

5.1.1 Effect of Cardinality
In this set of experiments, we used datasets of two non-

spatio attributes to evaluate the effect of cardinality on our
method, by comparing it with the BBS method. For both
indices, R∗-tree and grid file, we set the data page size to
1K bytes.

Figure 14(a) shows that as cardinality increases the loga-
rithm of IO count of our maintenance method grows steadily,
and nearly 2 orders of magnitude less than that of BBS.
Figure 14(b) shows that as cardinality increases the CPU
time cost of our maintenance solution grows steadily, in a
rate much less than that of BBS. At each time instance,
our maintenance solution does not need to search the whole
dataset again to re-compute the skyline from scratch, in-
stead it mainly involves event processing which consists less
computation of distance and comparison of attribute val-
ues than BBS, which does a totally new search via R∗-tree.
This processing behavior difference leads to the difference
on processing costs.

Figure 14(c) shows the effect of cardinality on event queue
size at any time unit. The maximum size is gained through-
out all 100 queries. It can be seen that the queue event size
increases as the cardinality increases, the average queue size
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Figure 14: Effect of dataset cardinality

is much smaller compared to the maximum size, and it does
not exceed 6% of the cardinality.

Figure 14(d) shows the effect of cardinality on skyline size
and the number of events being processed at any time unit.
It can be seen that complete skyline size roughly increases as
cardinality increases, but the average number of due events
at any time unit of skyline change never exceeds 4, which
indicates the efficiency of our maintenance strategy.

By comparing Figure 14(c) and 14(d) we can see that
some events may be not processed at all before the query
ends. In a real application, we can take advantage of this
observation to further reduce the queue size. The lifetime
of a query can be estimated in a specific scenario, e.g., in 2
hours or this afternoon, and any event whose due time later
than it will be prevented from being enqueued.

5.1.2 Effect of Non-spatio Dimensionality
In this set of experiments, we used datasets of 500K points

with non-spatio dimensionality ranging from two to five to
evaluate the effect of non-spatio dimensionality on our solu-
tion. The settings are the same as in Section 5.1.1.

Figure 15(a) and 15(b) show the IO and CPU cost respec-
tively. Again our maintenance method outperforms the BBS
method. As the non-spatio dimensionality increases the gap
of costs keeps steady.

Figure 15(c) shows that the event queue size decreases
as the non-spatio dimensionality increases. The probability
that one volatile skyline point will be dominated by others
is lower when more dimensions are involved, because all di-
mensions are independent in our dataset. This may reduce
the number of events.

Figure 15(d) shows the effect of non-spatio dimensionality
on skyline size and the number of events being processed at
any time unit. It can be seen that both static partial skyline
and complete skyline size increases rapidly as non-spatio di-
mensionality increases, but the average number of due events
at any time unit is drastically much smaller. This indicates
that our maintenance strategy still works efficiently.
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Figure 15: Effect of non-spatio dimensionality

5.2 Experiments on Moving Dataset
For the moving dataset we mainly explored into the effects

of mobility on the performance. We used the dataset of 500K
data points with spatial attributes (x and y) and two static
non-spatio attributes. Every point in each dataset moves
within the 2-dimensional extent with a speed ranging from
10 to 30. Periodically, a number of moving data points send
in update requests. Queries are picked up in the same way
as on static datasets.

5.2.1 Effect of Update
In this set of experiments, the initial speeds of all 500K

points were uniformly distributed in the range of 10 to 30.
We investigate into two aspects of moving data points up-
date: update interval length and the ratio of points request-
ing update. We varied the update interval length from 30
to 120 time units and update ratio from 4% to 10%.

Figure 16(a) shows the IO count decreases as the update
interval increases, and higher ratio of moving data update
incurs more IO counts. Longer update interval reduces the
amortized update cost which involves changing tuple and
recomputing events. While higher update ratio increases
update cost at every update time. The similar trend is seen
for the CPU time shown in Figure 16(b).

5.2.2 Effect of Speed Distribution
In this set of experiments, we fixed the moving data points

update interval to 60, varied the update ratio from 4% to
10% to see the effect of skewed initial speed distributions.
The skew factor theta ranges from 0, which means a uniform
distribution, to 20, which means 80% data points have speed
lower than the top 20% largest speeds. Each data point’s
speed still varies from 10 to 30.

Figure 17(a) shows that when theta equals to 15, the IO
cost reaches the highest. In Figure 17(b), CPU time in-
creases slowly as theta increases from 0 to 15, and then
decreases when theta equals to 20. As the number of faster
moving data points increases the processing cost first also
increases. When that number is large enough, however, the

processing cost may stop increasing and go back to a lower
level. Beside, higher ratio of moving data update still incurs
higher processing costs.
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6. CONCLUSION
In this paper, we address the problem of continuous sky-

line query processing. The method, using the kinetic data
structure, is based on the analysis that explores the spatio-
temporal coherence of the problem. Our solution does not
need to compute the skyline from scratch at every time in-
stance. Instead, the possible change from one time to an-
other is predicted and processed accordingly, thus making
the skyline query result updated and available continuously.
Our solution is experimentally evaluated to be effective and
efficient.
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