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In a moving object database (MOD), the dataset, e.g., the location of objects and their distri-
bution, and the workload change frequently. Traditional static indexes are not able to cope well
with such changes, i.e., their effectiveness and efficiency are seriously affected. This calls for the
development of novel indexes that can be reconfigured automatically based on the state of the
system. In this paper, we design and present the ST2B-tree, a Self-Tunable Spatio-Temporal
B+-Tree index for MODs. In ST2B-tree, the data space is partitioned into regions of different
density with respect to a set of reference points. Based on the density, objects in a region are
managed using a grid of appropriate granularity - intuitively, a dense region employs a grid with
fine granularity, while a sparse region uses a grid with coarse granularity. In this way, the ST2B-
tree adapts itself to workload diversity in space. To enable online tuning, the ST2B-tree employs
a “multi-tree” indexing technique. The underlying B+-tree is logically divided into two subtrees.
Objects are dispatched to either subtree depending on their last update time. The two subtrees
are rebuilt periodically and alternately. Whenever a subtree is rebuilt, it is tuned to optimize per-
formance by picking an appropriate setting (e.g., the set of reference points and grid granularity)
based on the most recent data and workload. To cut down the overhead of rebuilding, we propose
an eager update technique to construct the subtree. Finally, we present a tuning framework for
the ST2B-tree, where the tuning is conducted online and automatically without human inter-
vention, and without interfering with the regular functions of the MOD. We have implemented

the tuning framework and the ST2B-tree, and conducted extensive performance evaluations. The
results show that the self-tuning mechanism minimizes the degradation of performance caused by
workload changes without any noticeable overhead.

Categories and Subject Descriptors: H.2 [Database Management]: ; H.2.8 [Database Applications]: Spatial
databases and GIS; H.3.1 [Content Analysis and Indexing]: Indexing methods

General Terms: Algorithms, Design, Experimentation, Performance

Additional Key Words and Phrases: Data distribution, Index tuning, Location-based services,
Moving object indexing, Self-tuning

1. INTRODUCTION

Database tuning is crucial to the efficient operation of a database management system
(DBMS). In fact, most commercial DBMS provides some tuning tools. The goal of tuning
is to ensure the database system always operates in a near “optimal” state. Variations in
workload, including both queries and updates, can significantly impact the performance of
the database. Usually, some components of the database, such as indexes and the query
optimizer, can be configured to adapt to workload changes.

Traditionally, the database administrator (DBA) was fullyresponsible for tuning the
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system to ensure optimal performance. However, it is impractical for the DBA to keep
track of the system’s performance all the time. The only practical solution is to make a
database system self-tunable so that tuning proceeds automatically with minimal human
intervention.

While some works have been done to develop self-tuning technologies in database sys-
tems, these are largely restricted to traditional static databases. A representative example
of this line of work can be found in [Chaudhuri and Narasayya 1997]. However, there
are a number of emerging applications (e.g., Geographical Information Systems and loca-
tion aware applications such as traffic monitoring) that manage highly dynamic data. In
particular, in aMoving ObjectsDatabase (MOD), a large number of objects are moving
continuously, and their locations have to be frequently updated. More importantly, the
distribution of moving objects varies over time and space. For example, in a traffic man-
agement system, some places are likely to be more crowded andpopulated than others. The
number of vehicles at certain locations may be larger duringthe day and relatively smaller
at night. This means that the workload for the same query overthe same region may be
quite different at different times. For these dynamic databases, the workload changes much
faster than in traditional databases, and hence they need tobe tuned more frequently. Thus,
there is a need to re-examine self-tuning methods for managing dynamic databases.

In this paper, we focus on designing self-tuning indexes forMODs. While some works,
such as [Kalashnikov et al. 2004; Mokbel et al. 2004; Mouratidis et al. 2005; Xiong et al.
2005], studied in-memory indexing and query processing formoving objects, many others
[Saltenis et al. 2000; Saltenis and Jensen 2002; Tao et al. 2003; Jensen et al. 2004; Patel
et al. 2004; Yiu et al. 2008; Chen et al. 2008a] focused on disk-based indexes and query
evaluation, considering the tremendous amount of ubiquitous moving objects. Our work
belongs to the second category. However, existing works on disk-based moving object
indexes mostly focused either on designing indexing structures or developing efficient al-
gorithms for various kinds of queries. Variability in data workload, i.e., cardinality and
distribution of objects, has so far been overlooked in the design of moving object indexes.

In addition, for a tuning mechanism to be useful in a MOD, it must be automated, light-
weight, and fully online. A MOD is operational at all times (24 by 7), making it impractical
and uneconomical to require DBAs to tune the system manually. Since updates and queries
arrive at the system continuously, we cannot afford to hold the system and postpone all
regular operations (i.e., updates and queries) until the tuning procedure completes. The
tuning should be performed online and completely in real time.

A preliminary report of this work appeared in [Chen et al. 2008], where we introduced
the ST2B-tree and an online tuning framework for it. The primary focus is on tuning the
grid granularity and on determining an optimal space partitioning. In this extended paper,
we addressed a key limitation of the “multi-tree” method - that of performance degradation
caused by migrating objects from one subtree to another during rollover. A tunable eager
update strategy is introduced to handle object migrations efficiently. In addition, we have
a more rigorous analysis and comparative experimental study that examines the effects
of various tuning knobs thoroughly. Specifically, the contributions of this paper are the
following:

—We identify and examine three kinds of data diversities in MODs and specify their im-
pact on a moving object index based on space partitioning.

—We present aSelf-TunableSpatio-TemporalB+-tree index (ST2B-tree) for moving ob-

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



Continuous Online Index Tuning in Moving Object Databases · 3

jects. The ST2B-tree employs the “multi-tree” technique, which facilitates online tuning
by maintaining two subtrees. The index dynamically adapts the granularity of space
partitioning based on the object density within regions around a set of reference points.

—We discuss the potential performance problem of the “multi-tree” technique and propose
an eager update approach to cut down the overhead of migrating objects in the ST2B-tree
between two subtrees before rebuilding the old subtree.

—We introduce an improved online tuning framework. In the framework, the ST2B-tree
tunes itself based on data variations. The tuning is performed online with low over-
head. We also propose methods to select the reference pointsand provide guidelines for
determining the grid granularity and other tunable parameters.

—An extensive experimental study is conducted to evaluate the performance of the pro-
posed self-tunable index. The results show that the self-tuning process lessens the degra-
dation in the effectiveness of the index with virtually no overhead.

The remainder of the article is organized as follows. In the next section, we review
some related works. In Section 3, we first briefly introduce the Bx-tree, which is the
base of the ST2B-tree. Section 4 presents the ST2B-tree, including the structure and basic
query algorithms; we also provide insights on why the ST2B-tree is amenable to tuning.
In Section 5, we propose the eager update technique to manageobject migrations during
rollover from one subtree to another. Sections 6 and 7 analyze the effect of grid granularity
and some temporal parameters. In Section 8, we present the online tuning framework and
describe how it works. Section 9 reports the results of an extensive performance study.
Finally, we conclude this paper in Section 10.

2. RELATED WORK

Moving object indexing is a well studied topic in database community. Specifically, a
moving object is a multi-dimensional point in natural, whose coordinates keep changing
with time. In most existing moving object indexes, objects are indexed as stationary points
in the spatial space. Depending on the space where objects are indexed, Tao and Xiao
[2008] classify moving object indexes into two categories,i.e., primal and dual indexes.
Primal indexes [Saltenis et al. 2000; Tao et al. 2003; Saltenis and Jensen 2002; Procopiuc
et al. 2002], index objects in their original spatial space.Dual indexes [Kollios et al. 1999;
Jensen et al. 2004; Kollios et al. 2005; Yiu et al. 2008; Chen et al. 2008a], on the other
hand, transform objects to some “dual” space first. Indexingand querying are performed
in the “dual” space.

No matter in which category, an index aims to preserve movingobjects’ location prox-
imity in the original space as much as possible. On the other hand, since objects are stored
as stationary points in both categories, an index needs to adopt some policy to preserve the
temporal information of each object, e.g., the updating time. Hence, in the remaining part
of this section, we review existing moving object indexes from these two perspectives.

2.1 Space Partitioning vs. Data Partitioning Indexes

While objects are represented as stationary (multi-dimensional) points, one essential issue
is how they are organized in the index. Considering this, existing moving object indexes
can be classified into two major categories: data partitioning and space partitioning in-
dexes.
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In data partitioning indexes, objects are organized into dynamic partitions. Representa-
tive schemes in this category include the TPR-tree [Saltenis et al. 2000], the TPR*-tree [Tao
et al. 2003], the REXP -tree [Saltenis and Jensen 2002] and the STAR-tree [Procopiuc
et al. 2002]. All of these methods are based on traditional spatial indexes such as the R-
tree [Guttman 1984] and R*-tree[Beckmann et al. 1990]. Specifically, at the bottom level,
a leaf node accommodates up to a given number of objects that are close to one another.
At higher levels of the hierarchical structure, each intermediate node contains up to a given
number of entries, each of which contains a pointer to one of its children and the MBR
(Minimum BoundingRectangle) of the corresponding child. The MBR of a leaf is the
smallest rectangle covering all the objects it contains. Similarly, the MBR of an intermedi-
ate node is the region which just bounds the MBRs of all its children. A node split occurs
when the number of objects/entries to be stored in a node exceeds its capacity. On the other
hand, two neighboring nodes are merged into one if objects/entries of both nodes can be
accommodated in only one node. As a result of splitting and merging, objects/entires are
clustered into groups based on their proximity. Therefore,the regions in which objects are
crowded always consist of many small (leaf) MBRs. Sparse regions, on the contrary, are
typically covered by a few large MBRs.

In the second category, space partitioning indexes adopt fixed space partitioning. These
methods typically partition the data space in advance usinga grid. An object is indexed by
the cell it belongs to. Indexes in [Mokbel et al. 2004; Mouratidis et al. 2005; Xiong et al.
2005], utilize the grid index directly, while some other indexes such as those developed
in [Jensen et al. 2004; Yiu et al. 2008] use a B+-tree on top of the grid. Each grid cell is
assigned a unique id, and objects are indexed by the B+-tree with the id of the cell they
belong to. As space partitioning indexes split the space using a single uniform grid, the
workload across different parts of the index may not be balanced. Such imbalance does
impact the performance of the indexes, especially in the presence of skewed data. By
comparison, data partitioning indexes are typically less susceptible to data diversities and
changes as a result of MBR merging and splitting.

In [Chen et al. 2008b], the authors compare several state-of-art indexes experimentally
and the result shows that space partitioning indexes outperform data partitioning indexes in
most cases, especially on the update performance. In general, space partitioning based in-
dexes surpass their counterparts that are based on data partitioning in two ways. First, both
the grid index and the B+-tree are well established indexing structures present in virtually
every commercial DBMS. The index can be integrated into an existing DBMS easily. No
fundamental (lower level) changes are required to the underlying index structure, concur-
rency control or the query execution module of the DBMS. Second, in comparison with
spatial indexes such as the R-tree, operations such as search, insertion and deletion on the
grid index and the B+-tree can be performed very efficiently. To keep the objects well
organized, updates in the R-tree are quite complex. Guo et al. [2006] have shown that the
pre-processing and tree optimization strategies employedin the TPR*-tree [Tao et al. 2003]
result in extra delay in locking, and hence reduce the performance gain in query process-
ing due to the preprocessing during insertions. Other techniques, such as the bottom-up
update [Kwon et al. 2002], lazy update [Lee et al. 2003] and update memo [Xiong and
Aref 2006], have been developed in the literature to improvethe update performance of the
R-tree. However, the update cost, although decreases with varying degrees, is still higher
than those space partitioning based indexes [Chen et al. 2008b].
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A recent work, STRIPES [Patel et al. 2004], is a hybrid of bothspace partitioning and
data partitioning indexes. It utilizes the quad-tree as theunderlying index, so that the
way of partitioning is fixed but guided by the data distribution. Since the quad-tree is an
unbalanced structure, dense regions are partitioned into finer quads and stored deeply in the
tree. Updates and queries on these objects always incur higher overhead. The ST2B-tree
presented in this paper is also a data supervised space partitioning index. The ST2B-tree
adopts the same technique used in [Yu et al. 2001; Jagadish etal. 2005]. The space is first
partitioned into Voronoi cells of a set of reference points,and objects inside a Voronoi cell
are clustered into a group, which occupies a contiguous segment of the entire key space. In
[Yu et al. 2001; Jagadish et al. 2005], objects inside each Voronoi cell are sorted by their
distances to the corresponding reference point. The ST2B-tree, however, further partitions
the space of each sub-space with a uniform grid. An object is indexed by the nubmer of
the grid cell it belongs to.

2.2 Indexes with Single Reference Time vs. Multiple Reference Times

As existing moving object indexes store objects as stationary points, some mechanisms are
required to get a synchronized view of object locations to enable spatio-temporal queries
on the objects. There are in general two mechanisms.

First, in indexes in [Saltenis et al. 2000; Tao et al. 2003], objects are stored with their
motion features (e.g., locations and velocities) at a specific reference timetref . Given an
update attup, the location attref , derived from the current motion features, is inserted
into the index. An insertion considers the current locations of objects, which are estimated
from the motion features stored in the index, and inserts theupdating object into the most
appropriate leaf node.

[Jensen et al. 2004] and [Chen et al. 2008b] both show that indexes which organize
objects in single reference time such as the TPR-tree sufferfrom significant performance
degradation with time. Consider the case where two objects,which are stored in the same
leaf node, have not been updated for quite a long time. Then, the MBR of the leaf node
could become quite large to bound both objects. With increasing large MBRs, the overlap
between upper level MBRs increases and the index performance deteriorates. It is shown in
[Tao and Xiao 2008] that such deterioration can be alleviated when the update frequency
is high enough, i.e., 10% objects update in each timestamp. However, this frequency is
too high that indexes such as TPR-tree cannot afford. In addition, since the performance
deterioration is mainly caused by those objects with low update frequencies, even a few
such objects will degrade the performance.

On the other hand, indexes such as those presented in [Jensenet al. 2004; Patel et al.
2004; Yiu et al. 2008; Chen et al. 2008a] have multiple (e.g.,two) reference times. The
time axis is partitioned into intervals. Each interval is assigned a certain reference time.
Objects are distributed into different groups according totheir last updating time. An
update moves the object from its old group into the group whose time interval covers the
current updating time. Indexes of this category also use a single tree structure, e.g., R-
tree, B+-tree and quad-tree, to manage all objects. The underlying tree is divided into
several logical subtrees each of which manages objects of a group, i.e., whose updating
time belongs to the same time interval. We call this method the “multi-tree” technique.

As a result of object updates, the “multi-tree” technique actually rebuilds the index pe-
riodically. All objects are required to update at least oncewithin a given time intervalT
so that the subtree with the oldest time interval is empty, i.e., all objects have been moved
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Fig. 3.1. Query Processing in the Bx-tree

to other subtrees. As a result, the oldest subtree can be reused for subsequent updates.
A range query searches all subtrees with extended query regions. For each subtree, the
query region is extended from the querying time to corresponding reference time using the
maximum velocities of objects in the subtree.

SinceT is the maximum update time interval of all objects, it could be quite large due
to few infrequently updated objects. As a result, a query needs to search too many subtrees
with large extended query regions. In [Chen et al. 2008a], the authors present a technique to
improve the query performance at the expense of higher update cost, regarding the highly
variable update frequencies. An object is inserted into multiple subtrees with different
reference times (rather than the one covering the updating time only). The number of
subtrees depends on the predicted time of the object’s next update and a tunable parameter
α. Instead of searching all subtrees, a query is performed on theα youngest subtrees only.
α is used to balance the update and query performance. Query performance is improved
as fewer subtrees are searched with smaller extended query regions.

3. INDEX MOVING OBJECTS USING THE B+-TREE

The ST2B-tree shares the same basic design as the Bx-tree while bears the highly de-
sired capability of self-tuning to avoid performance deterioration caused by imbalance and
changes in workload. Before presenting the ST2B-tree, we briefly introduce the Bx-tree
first.

The Bx-tree [Jensen et al. 2004] is the first effort to adapt the B+-tree to index moving
objects. Grid cells are linearized with the help of a space filling curve. Objects are indexed
in a B+-tree with the id of the cell it belongs to. To process a range query, the Bx-tree
searches each valid subtree with an enlarged query region. The query region is expanded
to the corresponding reference time according to the maximum velocity of objects. For
example in Figure 3.1, given a range queryRq = (−→x1,

−→x2) at tq, the enlarged queryR′
q at

tref is

R′
q = (−→x1 −

−−−→maxv · |tref − tq|,
−→x2 + −−−→maxv · |tref − tq|). (3.1)

−→x1 and−→x2 are the lower-left and the upper-right corners of the ofRq. −−−→maxv represents
the maximum velocity. Query enlargement is essential to avoid false negatives. Objects
outsideR′

q at tref cannot appear inRq at tq due to maximum velocity constraints. In
Figure 3.1, attref , o1 is outsideRq ando2 is inside. In contrast,o1 is actually insideRq
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while o2 is outsideRq at tq. Since botho1 ando2 are inside the enlarged regionR′
q at

Tref , there is no omission in the result.
The use of the space filling curve in deriving the 1d cell id destroys location proximity to

some extent. A 2d range query is transformed into several 1d range queries. In Figure 3.1,
the enlarged query regionR′

q covers five 1d queriesq1 to q5 which are shown as thick lines
(note thatq5 is a single value query).

The basic query processing algorithm for the Bx-tree uses global maximum speed for
query enlargement. This could result in oversized enlargedquery, introducing a large num-
ber of false positives. Jensen et al. [2006] improve the Bx-tree query efficiency through
more conscious query enlargements.

Recently, Yiu et al. [2008] present the Bdual-tree. The Bdual-tree is quite similar to the
Bx-tree, except that space partitioning is applied to the dualspace, i.e., both location and
velocity are considered in deriving the 1d key. Each internal entry in the B+-tree maintains
a set ofMOving Rectangles (MOR), indicating the spatial region and range ofvelocity
covered by the subtree of the entry. With the MORs, the Bdual-tree uses R-tree-like query
algorithms as in the TPR-tree. The Bdual-tree improves the query performance of the Bx-
tree, since query enlargement is replaced by MORs enlargement. However, maintaining
the MORs introduces high computation workload, which slowsdown the fast update of
the B+-Tree according to the findings in [Chen et al. 2008b]. In a concurrent environment,
the throughput is also lower, since during an update an internal node has to be locked for
a longer period until the MORs are updated to ensure consistency between its entries and
their MORs.

As introduced in [Jensen et al. 2004], the Bx-tree can work with more than one subtree,
each of which is called a “phase”. Two phases are necessary tomake the Bx-tree work
properly, i.e., to enable the rollover between subtrees. Inprinciple, the Bx-tree allows an
arbitrary number of phases. With more phases, a query needs to search over more subtrees,
but with smaller enlarged query regions. Figure 3.2 shows the effect of the number of
phases on the index performance1. We find that the “multi-tree” strategy achieves the best
query performance when the number of phases is minimized. Therefore, in the remaining
part of the paper, we use two phases for all “multi-tree” indexes, including our ST2B-tree.
More phases are also applicable directly.

1These results are based on the settings discussed in Section9.2
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(a) Dense/Coarse Grid (b) Sparse/Fine Grid

Fig. 4.1. The Co-relation of Data Density and Grid Granularity, Impact on Query Processing

4. ST2B-TREE: A SELF-TUNABLE MOVING OBJECT INDEX

In this section, we first examine the challenges that motivate the self-tuning of a moving
object index. Next, we introduce the structure and basic query algorithm of the ST2B-tree.
Then we explain why the ST2B-tree is amendable to tune itself to fit the workload changes
in MOD.

4.1 Challenges in MOD

In this section, we first examine the impact of data density and granularity of space partition
on index performance. Next, we present three kinds of data diversities in moving objects
databases. Object diversities hinder an index from being “optimal”. Index degradation
caused by differences and changes of data engenders the demand for tuning the index
online.

4.1.1 Impact of Data Density and Space Partition

To use the B+-tree for indexing spatial data, the first step is to reduce the dimensionality
of objects, i.e., mapping spatial data into 1d data. Typically, the data space is partitioned
into small grid cells. Each cell is assigned a unique key for indexing, using a space filling
curve for example. A 2d query is transformed into several 1d range queries that can be
evaluated over the B+-tree. The data density and granularity of the partitions exert a joint
effect on the index performance.

High Density or Coarse Grid: When the density of objects is high, or a coarse grid is
used to partition the space, each cell will contain many objects. During query processing,
we have to check all objects in the cells that intersect with the query. This may lead to a
large number of false positives for those cells that are on the boundaries. For example, in
Figure 4.1(a), all objects in the 3×3 cells (solid dots) that intersect with the query (the dark
square) must be examined, and 8 of these are boundary cells where most of their points
are not in the answers. On the other hand, since objects in thesame cell have the same
indexing key, a cell with too many objects may incur overflow pages. In most commercial
databases such as IBM DB2, Oracle and MS SQL Server, records with duplicate keys are
stored in overflow pages chained from the leaf nodes. This means that update cost will
be higher as overflow pages have to be read and searched linearly. The existence of too
many overflow pages compromises the balance property which bounds the search cost of
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(a) Case 1: at t0 (b) Case 2: at t1 (c) Case 3: at t2

Fig. 4.2. Spatial and Temporal Data Diversity

the B+-tree structure.

Low Density or Fine Grid: At the opposite end, if the density of objects is low, or a fine
grid is used to partition the space, few objects will be contained in a cell. For example,
we can partition the space in Figure 4.1(a) with a finer grid. Figure 4.1(b) zooms in on the
query region in Figure 4.1(a). Now, most cells contain no more than 1 object. Obviously,
no additional update overhead is incurred. The number of false positives also decreases in
query processing because the smaller boundary cells contain fewer objects. However, the
number of 1d range queries needed increases (from 2 to 9 in Figure 4.1, shown as dotted,
thick lines). Although the overhead to prune false positives is reduced, the increase in the
number of 1d range queries deteriorates query performance.

4.1.2 Types of Data Diversity

Intrinsically, moving objects are spatial objects whose positions change with time. The
differences and changes of data fall into the following three categories as illustrated in
Figure 4.2.

Diversity in Space: In general, the density of moving objects varies in different areas in
space. Hotspots, such as commercial centers and major road junctions, always have higher
object densities than other places. Such a situation is portrayed in Figure 4.2(a). At time
instance t0, we have two hotspots (enclosed in solid circles), and two other regions with
relatively lower object densities (enclosed in dashed circles).

Diversity with Time: In a moving object environment, the number of moving objects
changes with time. For example, we expect many vehicles in the day, causing heavy traf-
fic load on the roads. In contrast, traffic is relatively lightat night (as fewer vehicles
roam on the road). Referring to our running example, from time t0 (Figure 4.2(a)) to t1
(Figure 4.2(b)), hotspots are still hotspots; however, thedensities of all areas decrease
significantly.

Diversity in Space with Time: It is not uncommon to have a combination of the above
types of diversities, i.e., both the density and distribution of moving objects change with
time. In our example, from time t1 (Figure 4.2(b)) to time t2 (Figure 4.2(c)), besides an
increase in the total number of objects, the hotspots move aswell. Sparse areas may be-
come dense while dense areas may become sparse due to some external factors such as
peak hours, road work and accidents. As a real-life practical scenario, between 8am to
9am, people drive from the residential suburbs to downtown.During office hours, most
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Fig. 4.3. The Essence of the ST2B-tree

vehicles move in and around the downtown area. After 5pm, people start trickling home.
The residential suburbs and downtown behave as hotspots alternately.

In summary, object density and the granularity of space partitioning greatly affect the
efficiency of an index. Considering these three kinds of diversities in MODs, an index
suffers from performance degradation when the space is evenly partitioned using a uni-
form grid consistently. As a result, a good moving object index must: (1) discriminate
between regions of different densities, (2) adapt to density and distribution changes with
time. Moreover, the index must be always online even in the midst of adaptation, so as not
to disrupt or interfere with regular activities.

4.2 ST2B-tree Structure

The ST2B-tree is built on the B+-tree without any changes to the underlying B+-tree struc-
ture and insertion/deletion algorithms. It indexes movingobjects as 1d data points. A
moving object is a spatio-temporal point in its natural space. The 1d key is composed of
two components:KEYtime andKEYspace.

4.2.1 Index with Time

In general, the ST2B-tree adopts the “multi-tree” technique while dealing with the time
dimension. AssumeTup is the maximal time interval between contiguous updates of an
object, which means that an object is updated at least once intime intervalTup. The ST2B-
tree logically splits the B+-tree into two subtrees,BT0 andBT1. Each subtree is assigned a
range ofT consecutive time points, whereT = Tup. Specifically, the time ranges covering
BT0 andBT1 are[2iT, 2iT +T ) and[2iT +T, 2iT +2T ) respectively, as time elapses, the
value ofi increases from zero and the time ranges of the two subtrees roll over alternately.
The index therefore rolls over with time. This behavior is illustrated in Figure 4.3.

Without loss of generality, suppose that current time ist ∈ [2iT, 2iT + T ). As shown
in Figure 4.3,BT ′

1 is the older subtree, i.e., the one covering the earlier timeinterval
[2iT − T, 2iT ), while BT0 is the younger subtree, i.e., the one covering the current time
interval[2iT, 2iT+T ). BT ′

1 is now in a monotonic shrinking phase — only deletions affect
BT ′

1, and all insertions are conducted in the other subtreeBT0. SinceT = Tup, all objects
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Fig. 4.4. ST2B-tree: Spatial Key Generation

would be updated during[2iT, 2iT + T ). As a result, at the next transition time2iT + T ,
all objects are stored in the younger subtreeBT0, while the older subtreeBT ′

1 becomes
empty. Subsequently, a new time interval[2iT + T, 2iT + 2T ) is assigned to the empty
subtreeBT ′

1, which is now represented asBT in Figure 4.3. This change of time interval
for the subtreeBT1 does not interfere with any objects which are currently indexed inBT0.
The older subtreeBT1 is refreshed while the original younger subtreeBT0 now becomes
the “older” one and enters the shrinking phase. In the next transition time2iT + 2T , BT0

will become empty and assigned with the newer time interval[2iT + 2T, 2iT + 3T ), and
so on and so forth.

Suppose an objecto issues an update(−→x ,−→v ) at tup, where−→x and−→v represent the
location and velocity of the object attup. The object will be indexed in the subtree whose
time range coverstup. For instance, updates issued in[0, T ) are indexed in the first subtree
BT0 while those in[T, 2T ) fall into the right subtreeBT1. Subsequent updates in[2T, 3T )
go back toBT0, and so on and so forth.

Each subtree has a unique reference timeTref ando is indexed with its location atTref ,
−→x ′ = −→x +−→v · (Tref − tup). Herein, we setTref to the upper boundary of the time range,
which is:

Tref = (i + 1)T, if tup ∈ [iT, iT + T ). (4.1)

We will discuss the selection of a proper reference time for asubtree later in Section 7.1.
The temporal componentKEYtime, which is used to identify the subtree that the object

belongs to, is obtained as follows:

KEYtime =

{

0, if tup ∈ [2iT, 2iT + T ),

1, if tup ∈ [2iT + T, 2iT + 2T ).
(4.2)

4.2.2 Index in Space

Suppose we have a set ofn reference points{RP0, RP1, . . ., RPn−1}, the data space is
then partitioned inton disjoint regions{V C0, V C1, . . . , V Cn−1} in terms of the distance
to the reference points, that is, the partitioning forms a Voronoi Diagram of then reference
points as illustrated in Figure 4.4(a). Each reference point RPi maintains a gridGi, which
is centered atRPi and covers its Voronoi cellV Ci.

Given an objecto(−→x ,−→v ) whose nearest reference point isRPi, the spatial component
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Algorithm 4.1 computeKey(−→x )
1: KEYtime = btc/T c mod 2;
2: KEYspace = KEYspace(x);
3: key = KEYtime ∗ SPANtime + KEYspace;

Algorithm 4.2 Update(oid,−→x ,−→v ,−→x pre,
−→v pre, tpre)

1: Delete(−→x pre,
−→v pre, tpre)

2: Tref = dtc/T e ∗ T ;
3: −→x ′ = −→x + (Tref − tc) ∗ −→v ;
4: key = computeKey(x′);
5: Insert(key, (oid,−→x ′,−→v ));

KEYspace is:

KEYspace(o) = i × SPANspace + cid(−→x ′, Gi), (4.3)

wherei is the grid id, i.e., the id of the reference point closest too. A portion ofSPANspace

continuous keys in the B+-tree are reserved for each grid.i × SPANspace helps to locate
the portion of key values reserved for gridGi. cid(−→x ′, Gi) is the id of the cell inGi that
−→x ′ belongs to. The cell id is assigned with the help of a space filling curve. To preserve
locality well, the ST2B-tree utilizes the Hilbert curve as shown in Figure 4.1. In order to
guarantee that the keys of adjacent grids do not intersect with each other,SPANspace must
be an upper bound ofcid in all grids.

Figure 4.4(b) illustrates how objects are indexed around two reference pointsRP1 and
RP2. o1, whose nearest reference point isRP1, is indexed inG1 ando2 in G2 likewise.
Another objecto3, although covered byG2 as well, is indexed inG1 becauseo3 is closer
to RP1 thanRP2, i.e., inRP1’s Voronoi cellV C1. Although overlap may exist between
adjacent grids, the Voronoi cells of reference points are disjoint. Therefore, it is clear for
an object which grid it belongs to.

In summary, in the ST2B-tree, objecto is indexed withKEYST 2 :

KEYST 2 = KEYtime × SPANtime + KEYspace, (4.4)

whereSPANtime, similar toSPANspace, is the size of the key range reserved for each
subtree.SPANtime must be an upper bound ofKEYspace to avoid overlap between keys
in two subtrees.KEYtime andKEYspace are derived as described.

Algorithm 4.1 computesKEYST 2 as in Equation 4.4 and Algorithm 4.2 shows the steps
of an update, wheretc is the current time.KEYtime, Tref andKEYspace are derived
from the update timetup based on Equations 4.2, 4.1 and 4.3 respectively. To processan
update, the old entry of the object is first deleted from the index (line 1 in Algorithm 4.2).
Together with the current location−→x and velocity−→v , the object also sends the time, its
location−→x pre and velocity−→v pre of the previous update.Delete(−→x pre,

−→v pre, tpre) first
computes the indexing key of the old entry based on−→x pre,

−→v pre andtpre. With the old
indexing key, the old entry can be located and deleted from the B+-tree. When the old
record is deleted, ProcedureInsert(key, record) inserts therecord of the object into the
B+-tree using the new indexingkey.

Figure 4.3 shows the essence of the ST2B-tree. The current time is in[2iT, 2iT + T ).
The two logical subtrees areBT0 andBT1. At time 2iT + T , the time range ofBT ′

1 has
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Algorithm 4.3 Range Query
Input: Query regionRq, query timetq

Output: All objects inRq at tq

1: result = ∅
2: for each subtreeBTi do
3: R′

q = EnlargeRegion(Rq, maxv, tq, Trefi);
4: for each entry reference pointRPj do
5: if R′

q intersects withV Cj then
6: //V Cj stands for the Voronoi cell ofRPj

7: for each cell ofGj that intersects withR′
q do

8: for each objectso in cell do
9: ptq = Position(o, tq, Trefi);

10: if ptq ∈ Rq then
11: addo into result;
12: return result;

changed to[2iT + T, 2iT + T ), shown asBT1. The next rotation will happen at2iT + T .
BT0 will be assigned a newer time range, shown asBT ′

0. For key allocation, the key space
is halved according to the update time. At the second level, each half is further partitioned
for then grids. Finally, at the bottom level, within the key space of each grid, objects are
sorted in ascending order of the id of the cells they belong to.

4.3 Snapshot Query Algorithms

Algorithm 4.3 depicts the evaluation procedure of a simple range query in the ST2B-tree.
Both subtrees are searched. Since all objects in subtreeBTi are indexed with positions at
time Trefi, the algorithm first enlarges the query regionRq from query timetq to Trefi

using the global maximum velocitymaxv (line 3) (the same way as in the Bx-tree in
Equation 3.1). Then, the grids of the reference points whoseVoronoi cell intersects with
the enlarged query region need to be further searched (lines4-5). The cells that intersect
with the enlarged query region are retrieved (line 7) (in ascending order of cell id assigned
by using the space filling curve). Finally, an object is addedto the result set if its position
at timetq is contained in the query region (lines 8-10). When the queryq is a current query,
tq = tnow (tnow is the current time when the query is issued). Ifq is a predictive query,
tq = tnow + h, whereh denotes the prediction interval.

In the ST2B-tree, ak Nearest Neighbor (kNN) query is conducted as incremental range
queries until exactk nearest neighbors are found. It starts with an initial search radiusr. If
kNNs are not found in the initial search region, it extends thesearch radius byincrement.
Bothr andincrement are set toDk/k as in [Jensen et al. 2004], where

Dk =
2√
π

[1 −

√

1 −
√

k

N
]. (4.5)

Dk is the estimated distance to thek’th nearest neighbor [Tao et al. 2004] andN is the
number of objects in a unit space. Due to space constraints weomit the detailed algorithm
here and a similar procedure can be found in [Jensen et al. 2004].
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4.4 Why is the ST2B-tree Tunable?

We now explain why the ST2B-tree can be easily tuned to adapt to the three kinds of data
diversities discussed in Section 4.1.

Diversity in Space: The ST2B-tree partitions space usingn reference points. Each
reference point has its own grid and the cell sizes are not necessarily identical for all the
grids. In fact, grid granularity can be determined by objectdensity in the Voronoi cell of
the reference point. As shown in Figure 4.4(b), objects are relatively dense aroundRP1,
thereforeG1 is of finer granularity. ForRP2, objects are relatively sparse, soG2 uses
larger cells and partitions space at a coarser level. By using different grids in different
areas (for different reference points), the ST2B-tree can discriminate between regions of
different densities.

Diversity with Time: Based on the constraint thatT is the maximum update time interval,
at each transition timeiT , the subtree in ST2B-tree to be refreshed with a new time interval
is always empty. At this point, the ST2B-tree can use a different granularity of grids for
this empty subtree, according to the object densities investigated in the previousT time.
The grids of the other non-empty subtree are kept unchanged and all the objects currently
in the index are unaffected. Therefore, the two subtrees in the ST2B-tree can have their
own set of grids. While searching/updating in a subtree, thecorresponding set of grids is
used. No collision happens. Once the granularity are determined, they cannot be changed
during the nextT time before the next transition time.

Diversity in Space with Time: In a similar way as the granularity of grids can be tuned
to capture the change of object density with time, the numberand positions of reference
points can also be tuned to capture the change of object distribution with time. For exam-
ple, in Figure 4.2, att0 andt1, the centers of the four circles are used as reference points.
Later, att2, the centers of the three circles are used as reference points instead. Further,
the two subtrees use their own set of reference points and corresponding grids.

In short, thanks to the “multi-tree” structure of the ST2B-tree, the two subtrees work
independently without interference. Any settings about the indexing, including both refer-
ence points and grid granularity, are tunable in the ST2B-tree, in addition, the ST2B-tree
meets the two requirements mentioned in Section 4.1. We shall discuss the self-tuning
strategy of the ST2B-tree in Section 8, which helps the ST2B-tree perform better with
time-dependent workload changes.

5. EAGER UPDATE: MANAGING OBJECT MIGRATION DURING ROLLOVER

As discussed in the previous section, the “multi-tree” indexing technique opens the door
for tuning the index online. In addition, as indicated in Section 2.2, with the “multi-tree”
technique, an object is indexed with a reference timetref , growing in step with the current
time. The overall query performance of a “multi-tree” indexwill not deteriorate as time
elapses. This is in contrast with the single-tree indexes such as the TPR-tree [Saltenis et al.
2000].

5.1 Effect of T : the length of the time interval covered by a subtree

The effectiveness and efficiency of the “multi-tree” structure depend largely on the value
of T , i.e., the length of the time interval covered by a subtree.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



Continuous Online Index Tuning in Moving Object Databases · 15

Query Cost: The subtree rollover at the transition timeiT is feasible only if no existing
objects are affected, i.e. when the old subtree contains no objects. This condition is guar-
anteed by constraining the length of the time interval covered by a subtreeT to be at least
the maximum time interval between contiguous updates of an objectTup, as mentioned in
Section 4.2.1. In practice, some objects update very infrequently, resulting in a largeTup

and a largeT as well. As aforementioned, in query processing, the ST2B-tree avoids false
negatives by query enlargement. The query performance largely depends on the query en-
largement, while the query enlargement is proportional to the value ofT . With a largerT ,
a query is enlarged into a larger size, which incurs higher query processing costs. In the
extreme case whenT → ∞, the “multi-tree” index degrades to a single tree index. The
query enlargement keeps increasing as time elapses and the query performance deteriorates
significantly with a largerT .

Objects Migration: Since the length ofT affects the query performance significantly, we
consider settingT as small as possible. However, ifT is set smaller than the maximum
update intervalTup, at the point of transition, there may be some remaining objects in the
older subtree. For the “multi-tree” technique to work correctly, we have to migrate all these
un-updated objects to the younger subtree manually before assigning a new time interval
to the subtree.2 In particular, objects are inserted into the younger subtree with their lo-
cations at the corresponding reference time. This locationis estimated from the location
and velocity stored in the older subtree. The migration of un-updated objects incurs extra
update workload on the index. Furthermore, since the migration happens at the transition
time, it causes a burst of updates. All the upcoming regular updates are postponed until
the migration finishes and the older subtree is empty. Although, a query can be processed
as usual, the response time may be long due to lock contentioncaused by those updates.
From this point of view,T should be as large as possible so as to minimize the migration
cost. The smallerT is, the larger portion of objects need to be migrated, and themore
frequent migration happens.

In brief, the value ofT affects the query cost and the migration cost in opposite ways.
We will discuss the effect ofT on both the query and update theoretically in Section 7.2.

5.2 Eager Update

As discussed above, a largerT leads to a higher in query cost, while a smallerT may
introduce extra migration cost. In order to avoid migrationas much as possible while
keepingT relatively small, we now introduce an eager update technique.

The principle of eager update is to update as many objects as possible without increasing
the number of I/O accesses. Algorithm 5.1 shows the steps of an eager update. Consider
an update in the form of(oid,−→x ,−→v ), whereoid is the identity of the object,−→x ,−→v are the
current location and velocity of the object.

The update procedure first finds the record of objectoid. oldkey is the current indexing
key of oid and L is the leaf node that contains the record (lines 1-2). If the object is
already indexed in the younger subtree (line 4), the update continues in a normal way as

2An alternative way of dealing with these un-updated objectsis to discard them from the database, simply assum-
ing that those objects have left the system (e.g., parking).No migration is required in this case. The older subtree
is treated as empty. All the active objects are indexed by theother subtree and kept unaffected by the tuning. We
do not consider this situation here.
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Algorithm 5.1 EagerUpdate(oid,−→x ,−→v )
1: L = search(oid);
2: oldkey = key of the existing record ofoid in L;
3: KEYtime = boldkey/SPANtimec;
4: if KEYtime = t/T mod 2 then
5: continue with Update(oid,−→x ,−→v );
6: else
7: Tref = dt/T e ∗ T ;
8: −→x ′ = −→x + −→v ∗ (Tref − t);
9: key = computeKey(−→x ′);

10: Q = ∅
11: for each recordri = (keyi, oidi,

−→x i,
−→v i) in the leaf nodeL do

12: −→x ′ = −→x i + −→v i ∗ T ;
13: key′ = computeKey(−→x ′);
14: if key == key′ then
15: Q = Q∪ (key, oidi,

−→x ′,−→v i);
16: deleteri from L;
17: L′ = search(key);
18: for eachri ∈ Q do
19: insertri into L’;

in Algorithm 4.2 (line 5). Otherwise, if the update needs to move the object from the
older subtree to the younger one, the eager update checks allthe other objects in the same
leaf nodeL (line 11), and computes their estimated locations in the reference time of the
younger subtree (line 12). If the object will be indexed by the same key as the objectoid
(line 14), this record is inserted into a queueQ (line 15) and then is deleted from the current
leaf nodeL (line 16).Q maintains objects to be updated in an eager manner. Subsequently,
the update procedure finds the leaf nodeL′ in the younger subtree which objectoid is to
be inserted into (line 17). Finally, all objects inQ are inserted intoL′, since they have the
same indexing key as objectoid (lines 18-19).

Benefits of Eager Update:
As we can see, an eager update accesses the same tree nodes as aregular update. There-

fore, additional I/Os are incurred only when the eager update causes node splitting or
merging while the regular update does not. With eager update, a regular update moves
more than one object to the younger tree. As a result, inT time (supposingT is smaller
than the maximal update time interval), more objects are updated to the younger tree than
usual. Fewer objects are left in the older subtree and the migration cost decreases. An-
other benefit of eager update is that it saves the cost of regular update as well. If an object
has been updated into the younger subtree eagerly, the real update of the object affects
the younger subtree only, i.e., both deletion and insertionhappen in the younger subtree.
Considering that objects move continuously in the space, itis likely that the deletion and
insertion access the same leaf node. The insertion and deletion of an update work along
the same path. The number of I/Os could decrease, with an LRU buffer, even if it is small
in volume. On the contrary, if eager update is not supported,the deletion operation would
delete an entry in the older subtree and the insertion operation would insert an entry in the
younger subtree. In this case, even if the object does not move at all, different set of nodes
will be visited during these two steps of the update. We shallsee the effect of migrations
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and costs of different updates in Section 9.3.

Varying Degree of Eagerness:
In Algorithm 5.1, all objects, which have the same key as the core updating object in

the younger subtree, are updated eagerly. Here, we introduce a tuning knob, denoted as
De, to more aggressively migrate objects from the older subtree to the younger subtree.
Essentially, all objects whose indexing keys in the youngersubtree differ no more thanDe

are migrated from that of the core updating object. The intuition here is that objects with
similar indexing key values are likely to be geographicallyclose together. However, since
objects move continuously in space, there is no guarantee onwhere those objects will be
(in the younger subtree) afterT time. As such, asDe increases, the I/O overhead will
also increase. Moreover, since objects with key values smaller thanDe may be found in
other nodes, accessing these nodes will further increase the I/O cost. To handle the second
problem, we restrict the migration to only those objects that are in the same leaf node as the
core updating objects. In this way,EagerUpdate corresponds to the case whenDe = 0.
On the other extreme, withDe = ∞, all objects within the leaf node will be migrated. A
moderate value ofDe will result in migrating only subset of the objects within the node.

6. GRID GRANULARITY

As discussed in Section 4.1, data density and grid granularity are important factors that
affect the performance of any index based on grid partitioning. Thus, grid granularity is a
core parameter to be tuned for the ST2B-tree and any other space partitioning indexes. To
find the optimal granularity, we now analyze the effects of different grid granularity on the
overall performance of an index.

For ease of analysis, we assume that objects are uniformly distributed in the entire space
and the space is partitioned using a single grid. Without ambiguity, the result is directly ap-
plicable to each grid in the ST2B-tree with local uniform assumption around each reference
point.

The notations used are listed in Table 6.1. We start our analysis by giving a definition of
the grid orderλ.

DEFINITION 6.1. The grid orderλ is defined as the resolution of the space filling curve
used for mapping grid cells into 1d values. A grid of orderλ partitions the data space into
2λ × 2λ cells.

Suppose that the entire space is a unit space which is partitioned by a grid of orderλ.
Then the side length of each cell is2−λ. The following Lemma 6.2 estimates the number
of leaf I/Os [Yiu et al. 2008].

LEMMA 6.2. The number of leaf node accesses of a square-sized range query is:

IOL = NL[L + Lq + V · |tq − Tref |]2. (6.1)

NL is the number of leaf nodes. LetNL = 22i, wherei is an integer no larger than
λ. Then, each leaf node covers22(λ−i) cells on average, which forms a square with side
lengthL = 2−i = (1/NL)1/2.

Let LQ = Lq + V · |tq − Tref |. LQ is the side length of the enlarged query region.
(L+LQ)2 is the probability that the enlarged query range intersectswith the spatial region
covered by a leaf node. The number of leaf nodes to be accessedby a query is therefore
NL[L + LQ]2.
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Table 6.1. Notations for Analyzing Grid Granularity
Symbol Description
N number of objects
λ resolution of space filling curve
IOL number of leaf node I/O
NL number of leaf nodes
no average number of overflow nodes per leaf node
CL capacity of leaf nodes
CO capacity of overflow nodes
f average fan-out of tree nodes
h height of the tree
V velocity used in query enlargement
L side length of square covered by a leaf node
Lq side length of a square-sized range query
tq time of the query
Tref reference time of objects stored in the index
Nq number of 1d range queries
NI number of internal node accesses

However, Equation 6.1 in Lemma 6.2 is valid only when there are no overflow pages in
the tree, which means that there are very few objects having the same key. Considering
the uniform distribution of objects,N

22λ ≤ 1 (λ ≥ 1
2 log2 N) is a necessary condition of

Lemma 6.2.

LEMMA 6.3. If λ ≥ 1
2 log2 N , IOL does not change whenλ increases.

PROOF. If λ ≥ 1
2 log2 N , each cell contains at most 1 object and duplicate keys are

rare.NL = N
f andf = 69% · CL, where 69% is a typical fill factor of the B+-tree.

IOL = NL(L + LQ)2 = NL

(

(1/NL)
1

2 + LQ

)2

=
N

f

(

(f/N)
1

2 + LQ

)2

.

Thus,IOL is independent ofλ.

LEMMA 6.4. If λ ≤ 1
2 log2 N − 1

2 log2 CL, IOL increases whenλ decreases.

PROOF. If λ ≤ 1
2 log2 N − 1

2 log2 CL ( N
22λ ≥ CL), the number of objects contained in

a cell is larger than the capacity of a leaf node. Each leaf node has only one key; therefore
NL = 22i, i = λ. Suppose each leaf node hasno overflow nodes, then:

IOL = NL(1 + no)
(

(1/NL)
1

2 + LQ

)2

Let CL = CO,

no =
N

22λ − CL

CO

=
N

22λCO

− 1

IOL =

(

N

CO

)

(2−λ + LQ)2.

Clearly,IOL increases asλ decreases.

Lemma 6.4 can be explained as follows. All objects containedin the boundary cells,
which partially intersect with the query range, need to be checked. Asλ decreases, the
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extent of a grid cell grows exponentially, bringing in more false positives. Access to these
false positives incurs additional I/Os.

COROLLARY 6.5. The grid orderλ that minimizesIOL is in range[ 12 log2 N− 1
2 log2 CL, 1

2 log2 N ].

PROOF. This can be easily deduced from Lemma 6.3-6.4,IOL keeps unchanged when
λ is larger than1

2 log2 N (Lemma 6.3), and increases whenλ is smaller than12 log2 N −
1
2 log2 CL (Lemma 6.4).

According to Corollary 6.5, in order to minimize the number of leaf node accesses during
a query, the space filling curve with resolution1

2 log2 N − 1
2 log2 CL ≤ λ ≤ 1

2 log2 N
should be used.

While Corollary 6.5 focuses on the I/O overhead of the leaf nodes, we now consider
the overhead of internal node accesses. The problem with dimensionality reduction is that
a multidimensional range query is split into several 1d range queries. The number of 1d
range queries has a significant impact on internal node accesses.

LEMMA 6.6. The number of 1d range queriesNq and internal node accessesNI in-
creases withλ.

PROOF. As proven in [Moon et al. 2001], the number of 1d range queries is about half
the perimeter of the query range. Therefore, we haveNq = 2 · LQ/2−λ. Suppose we
do not modify the query algorithm of the B+-tree. Each 1d range query starts from the
root and searches for the lower boundary of the range. Then, the number of internal node
accesses is:

NI = Nq · h = Nq · logf NL = 2λ+1 · logf NL · LQ.

The height of the treeh is relatively stable whenNL varies.NI is mainly determined by
Nq. As λ increases,Nq increases, and so doesNI . Therefore, a larger value ofλ indicates
a heavier overhead on internal nodes.

To evaluate the query performance of a tree-index, the number of leaf I/O NL is usu-
ally the main concern. However, as we shall see in Section 9.2, the number of I/O varies
slightly with a wide range of grid order (in between[ 12 log2 N − 1

2 log2 CL, 1
2 log2 N ]).

Consequently, the number of accesses to internal nodes dominates query performance in
terms of query time. In addition, the effect of internal nodeaccesses becomes even more
important in a concurrent environment. When queries and updates arrive simultaneously,
each access to the internal node requires locking the node and postponing concurrent up-
dates accessing the same node. Therefore, according to Lemma 6.6 and Corollary 6.5,
d 1

2 log2 N − 1
2 log2 CLe is the best value forλ that minimizes the query costs.

We also need to consider the effect of grid granularity on update cost. An update consists
of deleting the old record and inserting the new record. To find the old record,1 + 1

2no

nodes are searched on average, apart from the cost for node underflow. The old record is
deleted and the node is written back. Despite the sporadic node overflow, inserting the new
record incurs(1 + no) + 1 leaf and overflow node I/O. The insertion follows the overflow
chain to obtain the last overflow node into which the new record is to be inserted. Writing
it back contributes another I/O. The update cost increases with the average number of
overflow pages. The cell size increases with smallerλ and so does the number of overflow
pages.

In summary, a smallerλ within the range indicated in Corollary 6.5 leads to better query
performance; nevertheless it incurs higher update costs. As we shall see in Section 9.1, the
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Table 7.1. Notations for Analyzing Time-related Parameters
Symbol Description
Ni number of objects inBTi

Tup maximum update time interval
T length of the time interval covers a subtree
Trefi reference time of subtreeBTi

Tli lower boundary ofBTi ’s time range
Tui upper boundary ofBTi ’s time range
tr offset betweenTrefi to Tli (Trefi − Tli)
CQavg average cost of a query
CUavg average cost of an update
CU1 average cost of an update involving only one subtree
CU2 average cost of an update involving both subtrees
CUm average cost of migrating an object

costs of query and update achieve the best trade-off when

λ = d1

2
log2 N − 1

2
log2 CLe. (6.2)

In the analysis in this section, we have an implicit uniform assumption on query dis-
tribution. The performance of an index is sensitive to querydistributions as well. Here,
we simplify our cost model to uniform queries for the ease of analysis. We will show the
impact of query distribution experimentally in Section 9.

7. TIME RELATED PARAMETERS

In this section, we will discuss the selection of two parameters of the ST2B-tree: the refer-
ence timeTref and the length of the time intervalT covered by a subtree in the ST2B-tree
currently. Both are critical parameters for the “multi-tree” structure, having significant
impact on the overall index performance. Table 7.1 shows thenotations we use in the
following analysis in addition to the notations in Table 6.1.

7.1 Reference Time of a Subtree: Tref

In Section 4, as shown in Equation 4.1, we simply set the reference timeTref to be the
upper boundary of the time interval of a subtree. In fact, thereference time of a subtree
does affect query performance. Since a query is enlarged into Tref using maximum object
velocitymaxv, Tref andmaxv have a joint effect on query enlargement.maxv is a data-
related parameter, over which the system has no control, while Tref is a system parameter.
In the following, we try to find an “optimal”Tref which minimizes the average query cost
CQavg. SinceTref only affects query performance of the indexand has no effecton the
update performance, update cost is not our concern here.

Since each subtree covers a temporal range of lengthT , the query cost exhibits a periodic
variation. Therefore, we investigate the average query cost CQavg in [Tl, Tu), whereTl

and Tu are the lower and upper boundary of the time interval coveredby the younger
subtree. Assuming that queries arrive evenly in time,

CQavg =
1

Tu − Tl

∫ Tu

Tl

CQ(t)dt, i = 1, 2, ... (7.1)
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Fig. 7.1. Graphic Representations for Notations

whereCQ(t) is the cost of a query at timet. GivenT as the length of the time interval,

CQavg =
1

T

∫ Tl+T

Tl

CQ(t)dt, i = 1, 2, ...

In Section 6, the number of leaf I/O for a query is estimated asIOL = NL[L + LQ]2 =
N
f [( f

N )
1

2 +LQ]2 = 1+2(N
f )

1

2 LQ+NL2
Q. The cost is dominated byNL2

Q. To simplify the

analysis, we now estimate the query cost usingNL2
Q, i.e., the number of objects contained

in the enlarged queryLQ. The experimental results in Section 9 empirically confirm the
fact that the query cost is proportional to the number of objects in the enlarged query.
Consider a square-sized range query with side lengthLq enlarged with speedV along each
side,

CQ(t) = N0(Lq + V |t − Tref0
|)2 + N1(Lq + V |t − Tref1

|)2, (7.2)

whereNi represents the number of objects in the corresponding subtreeBTi at time t.
(Lq + V |t − Trefi

|)2 is the enlarged query range of subtreeBTi. The cost of a query
consists of two parts, i.e., the cost of processing the enlarged query over each subtree.

Combining Equations 7.1 and 7.2,

CQavg =
1

T

∫ Tl+T

Tl

[

(Lq + V |t − Tref0
|)2N0 + (Lq + V |t − Tref1

|)2N1

]

dt.

Without loss of generality, we assume thatBT0 is older thanBT1 in the current ST2B-
tree. Figure 7.1 illustrates the meaning of the notations. For BT1, the query region is
enlarged by∆t, where∆t is the time difference betweenTref1 to the query timet, i.e.,
∆t = t−Tref1

. SinceTref1 = Tref0+T , the query region is enlarged byT +∆t for BT0.
, then∆t + T = t− Tref0

. Let tr = Tref1
− Tl, which is the offset between the reference

time to the lower boundary ofBT1’s time range. When the query timet varies fromTl to
Tl + T , ∆t varies from−tr to T − tr. Then,CQavg can be alternatively represented by
the following equation:

CQavg =
1

T

∫ T−tr

−tr

[

N0(Lq + V |∆t + T |)2 + N1(Lq + V |∆t|)2
]

d∆t.

(1) The case when T ≤ Tup:
Here,Tup is the maximum update time andN is the total number of objects. Suppose

that object updates are uniformly distributed inTup time. If T ≤ Tup, the numbers of
objects inBT0 andBT1 are:

{

N0 = N − t−Tl

Tup
N

N1 = t−Tl

Tup
N

T ≤ Tup. (7.3)
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At the last transition timeTl, BT1 is empty whileBT0 contains allN objects. Till times-
tampt, t−Tl

Tup
N objects have been updated toBT1 andN − t−Tl

Tup
N objects remain in the

older subtreeBT0.
According to Equation 7.3, we have

CQavg =
N

TTup

∫ T−tr

−tr

[

(Lq + V |∆t + T |)2(Tup − ∆t − tr) + (Lq + V |∆t|)2(∆t + tr)
]

d∆t.

LEMMA 7.1. WhenT ≤ Tup, CQavg is minimized at

tr = T + αTup −
√

α2T 2
up + αT 2 − αTupT ∈ [T, 2T ], whereα = 1 + V T/2Lq.

PROOF.

CQavg =
N

TTup

∫ T−tr

−tr

[

(Lq + V |∆t + T |)2(Tup − ∆t − tr) + (Lq + V |∆t|)2(∆t + tr)
]

d∆t

=
N

TTup

E1 + 2LqV
N

TTup

E2,

where

E1 =

∫ T−tr

−tr

[

L2
qTup + V 2[Tup∆t2 + (T 2 + 2T∆t)(Tup − ∆t − tr)]

]

d∆t,

E2 =

∫ T−tr

−tr

(∆t + tr)|∆t|)d∆t +

∫ T−tr

−tr

(Tup − ∆t − tr)|∆t + T |d∆t,

E1 = L2
qTupT + V 2[TupTtr2 + T 3tr − 3TupT 2tr +

7

3
TupT 3 −

7

6
T 4].

E1 is minimized attr = T +
Tup−T
2Tup

T , which is betweenT and2T .

E2 =







− 1

2
(T − Tup)T 2 + Tup(T − tr)T + 1

3
tr3 if tr ≤ T ,

1

3
(T − tr)3 + Tup(T − tr)2 + Tup(T − tr)T + 1

2
(Tup − T + 2tr)T 2 − 2

3
T 3 if T ≤ tr ≤ 2T ,

1

2
(T − Tup)T 2 − Tup(T − tr)T if tr ≥ 2T .

Whentr ≤ T , E2 is minimized attr = T , where

min(E2) =
1

2
(Tup −

1

3
T )T 2.

Whentr ≥ 2T , E2 is minimized attr = 2T , where

min(E2) =
1

2
(Tup + T )T 2.

Therefore,E2 should be minimized whentr ∈ [T, 2T ].
CombiningE1 andE2, if T ≤ Tup, CQavg should be minimized whentr ∈ [T, 2T ].

min(CQavg) =
N

TTup

[L2
qTupT + V 2(TupTtr2 + T 3tr − 3TupT 2tr +

7

3
TupT 3 −

7

6
T 4)]

+ 2LqV
N

TTup

[
1

3
(T − tr)3 + Tup(T − tr)2 + Tup(T − tr)T +

1

2
(Tup − T + 2tr)T 2 −

2

3
T 3],

which is minimized whentr = T + αTup −
√

α2T 2
up + αT 2 − αTupT , whereα =

1+V T/2Lq.

From Lemma 7.1, we see thatCQavg is minimized when the reference timeTref1
is some-

time betweenTl + T = Tu andTl + 2T = Tu + T . The “optimal” reference time varies
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with different queries, i.e., differentLq andV . To simplify the problem, we consider the
case thatT is equal toTup.

COROLLARY 7.2. If T = Tup, all objects have been updated to the younger subtree in
T time.CQavg is minimized whentr = T . Tref1

is set toTl +T = Tu, which is the upper
boundary of its time range, the same as shown in Equation 4.1.

PROOF. Derive from Lemma 7.1.

Object migration can be reduced, or even avoided, by using the eager updates as in-
troduced in Section 5. Since update cost is not our concern here, we can assume that all
objects are eagerly updated to the younger subtreeBT1 within T time. As a result, al-
thoughT is actually smaller thanTup, Corollary 7.2 also holds. The average query cost is
minimized whenTref is set to the upper boundary of the time range of a subtree, that is,
whentr = T , we have:

CQavg = N

[

L2
q +

V 2

12
(4T 2 − 2T 2 T

Tup

) +
LqV

6T
(6T 2 − 2T 2 T

Tup

)

]

(7.4)

(2) The case when T > Tup: If T > Tup, the numbers of objects inBT0 andBT1 are:
{

N0 = N − t−Tl

Tup
N andN1 = t−Tl

Tup
N if Tup < t ≤ Tl + Tup,

N0 = 0 andN1 = N if t ≥ Tl + Tup.
(7.5)

BeforeTl + Tup, i.e., t ≤ Tl + Tup, N0 andN1 are the same with Equation 7.3. After
Tl + Tup, i.e.,Tup < t ≥ Tl + Tup all objects are moved to the younger subtreeBT1 and
BT0 is empty. According to Equation 7.5 , we have

CQavg =
N

TTup

∫ Tup−tr

−tr

[

(Lq + V |∆t + T |)2(Tup − ∆t − tr) + (Lq + V |∆t|)2(∆t + tr)
]

d∆t

+
N

T

∫ T−tr

Tup−tr

[

(Lq + V |∆t|)2
]

d∆t.

LEMMA 7.3. If T ≥ Tup, CQavg is minimized whentr = 1
2 (T + Tup). Tref1

=
Tl + 1

2 (T + Tup) and

CQavg = N

[

L2
q +

V 2

12
(T 2 + T 2

up) +
LqV

6T
(3T 2 + T 2

up)

]

. (7.6)

PROOF.

CQavg =
N

TTup

∫ Tup−tr

−tr

[

(Lq + V |∆t + T |)2(Tup − ∆t − tr) + (Lq + V |∆t|)2(∆t + tr)
]

d∆t

+
N

T

∫ T−tr

Tup−tr

[

(Lq + V |∆t|)2
]

d∆t

=
N

TTup

E1 + 2LqV
N

TTup

E2 +
N

T
E3,

where

E1 =

∫ Tup−tr

−tr

[

L2
qTup + V 2[Tup∆t2 + (T 2 + 2T∆t)(Tup − ∆t − tr)]

]

d∆t,

E2 =

∫ Tup−tr

−tr

(∆t + tr)|∆t|)d∆t +

∫ Tup−tr

−tr

(Tup − ∆t − tr)|∆t + T |d∆t,

E3 =

∫ T−tr

Tup−tr

[

(Lq + V |∆t|)2
]

d∆t.
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E1 is minimized whentr = 1
2 (T + Tup) and,

min(E1) = L2
qT 2

up +
V 2

12
T 2

up[T 2
up − 2TupT + 3T 2].

E2 is minimized whentr is any time in[Tup ≤ T ],

min(E2) =
1

6
T 2

up(3T − Tup).

E3 is minimized whentr = 1
2 (T + Tup)

min(E3) = L2
q(T − Tup) +

V 2

12
(T − Tup)3 + 2LqV

1

4
(T − Tup)2.

Therefore,CQavg is minimized, whentr = 1
2 (T + Tup) and

min(CQavg) = N [L2
q +

V 2

12
(T 2 + T 2

up) +
LqV

6T
(3T 2 + T 2

up)].

In summary, for the purpose of minimizing the average query cost, we set the reference
time of a subtree as follows:

Tref =

{

Tl + T if T ≤ Tup,

Tl + 1

2
(T + Tup) if T > Tup.

(7.7)

Note that whenT ≤ Tup, Equation 7.7 is the same as Equation 4.1.

7.2 The Length of the Time Interval of a Subtree: T

While the reference timeTref affects the query performance only, the length of the time
intervalT has an impact on both the queries and updates as discussed in Section 5.1.

Effect of T on Queries: Given thatTref is determined according to Equation 7.7, the
average query cost is as follows:

CQavg =

{

N [L2
q + V 2

12
(4T 2 − 2T 2 T

Tup
) +

LqV

6T
(6T 2 − 2T 2 T

Tup
)] if T ≤ Tup,

N [L2
q + V 2

12
(T 2 + T 2

up) +
LqV

6T
(3T 2 + T 2

up)] if T > Tup.

The average query costCQavg always increases with largerT . In order to minimize the
query cost,T should be as small as possible.

Effect of T on Updates: Now let us consider the update, concerning the average cost of
each “real” update, i.e., update issued by the object actively.

LEMMA 7.4. WhenT ≤ Tup, the average cost of an update is:

CUavg = CU2 +
Tup − T

T
CUm.

PROOF. Suppose that objects update evenly inTup time. 1
Tup

N objects update at each

timestamp. Just before the transition, a total number ofT
Tup

N objects have been deleted

from the older subtree and inserted into the younger subtree. The remainingN - T
Tup

N

objects need to be migrated. The average cost of a “real” update is
CUavg = [CU2

T
Tup

N+Tup−T
Tup CUmN ]/ T

Tup
N , which isCUavg = CU2+Tup−T

T CUm
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LEMMA 7.5. WhenT > Tup, the average cost of an update is:

CUavg =
Tup

T
CU2 +

T − Tup

T
CU1.

PROOF. Till t = Tup, all objects have been updated to the younger subtree actively and
the total cost isCU2N . After Tup and before the transition, all subsequent updates operate
on the younger subtree only. In the remainingT − Tup time, there are a total number of
T−Tup

Tup
N updates and the cost isCU1

T−Tup

Tup
N . As a result, the average update cost is

CUavg = [CU2N+CU1
T−Tup

Tup
N ]/ T

Tup
N , which isCUavg =

Tup

T CU2+T−Tup

T CU1

Combining Lemma 7.4 and 7.5,

CUavg =

{

CU2 +
Tup−T

T
CUm if T ≤ Tup,

Tup

T
CU2 +

T−Tup

T
CU1 if T > Tup.

The three types of updates incur different costs, as we will see in Section 9.3. In essence,
CU2 > CU1 > CUm. If T ≤ Tup, the average update cost is minimized when no
migration happens atT = Tup. Otherwise, ifT > Tup, it is better to maximize the
percentage of single tree updates, henceT should be as large as possible.

The length of subtree time intervalT has an opposite effect on query and update costs.
In Section 9.5, we will investigate the effect ofT with respect to various query/update
ratios via empirical studies.

8. SELF-TUNING OF THE ST2B-TREE

As discussed in Section 4, the multi-tree design makes the ST2B-tree feasible for tuning.
Sections 6 and 7 provide guidelines for choosing optimal values for the various parameters
used in the ST2B-tree. We now introduce how self-tuning is realized on the ST2B-tree.

Figure 8.1 shows the tuning framework of the ST2B-tree. The tuning framework adds
four components on top of the underlying DBMS: theIndex Profile, theKey-Gen, the
Statistics and theOnline Tuning.

8.1 Index Profile

Index Profile maintains the current settings of the ST2B-tree. As shown in Figure 8.1,
for each subtreeBTi, the global profile contains three parameters: the time interval of the
subtree[Tli , Tui

] and the reference timeTrefi
. If we do not want to tuneT—the length

of the time interval covering a subtree—there is no need to maintain Tli , Tui
andTrefi

.
WhenT is fixed,Tli andTui

can be derived from the current time, andTrefi
is known

according to Equation 4.1.
Besides global parameters,Index Profile keeps a reference table for the reference points

in each subtree. Each reference pointRPj has an entry in the reference table, including
its position, size of its gridGj and granularity of its gridλj . If eager updates are allowed,
Index Profile also keeps the degree of eagernessDe currently used by the index.

8.2 Key-Gen

TheKey-Gen module works as an interface between the ST2B-tree and the underlying B+-
tree. On receiving an object update, it reads the index settings from theIndex Profile that
are necessary for computingKEYST 2 , including the reference time and reference points
of the younger subtree. It then calculatesKEYST 2 according to Equation 4.4. Finally, the
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Fig. 8.1. Online Tuning Framework

update is performed over the B+-tree withKEYST 2 and new location and velocity of the
object.

8.3 Statistics

The purpose of tuning is to make the index adaptive to the workload. TheStatistics
module maintains statistics about the workload in the current time interval, i.e., the time
interval of the younger subtree. The statistics will be usedto tune the index at the next
transition time. While dealing with an object update, the statistics is updated accordingly.
Right after the tuning process finishes, the statistics is cleared for the next time interval.

Generally, two kinds of statistics are maintained. The global statistics contains statistics
about all objects and queries in the entire space. In order totune the length of subtree time
interval T as discussed in Section 7.2, the following statistics are required: 1) the total
number of objectsN , 2) maximum update timeTup, 3) three types of update costCU1,
CU2 andCUm as defined in Table 7.1, 4) update/query ratioR, and 5) average query
side lengthL andmaxv for query enlarging. In addition, if the eager update technique is
applied, the global statistics maintains one more field which is the number of objectsNm

that are migrated at the last transition time.
Besides the global statistics, we use a 2d histogram to maintain regional statistics. The

2d histogram consists ofn × n buckets, each of which maintains the statistics of a cell
in the space. Specifically, the entire space is partitioned evenly inton × n square sized
cells (different from the cells used for indexing in Section4.2). In the histogram, the
bucket of cellcij , wherei andj denote the row and column number of the cell, is a tuple
hij = (−→xij , nij), wherenij is the estimated number of objects in that cell and−→xij is the
centroid of objects in the cell. The statistics maintained by the histogram summarizes the
distribution in difference regions (cells) all over the space, which is necessary for the tuning
purpose.

Histogram Maintenance:
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Suppose the current time interval is[Tl, Tu] and the reference time for the younger
subtree isTref . The next transition time should beTu, when the online tuning process
starts. The tuning process aims to find the best space partitioning for the next time interval
[Tu, Tu + T ]. During that time, all objects will be indexed at a new reference timeT ′

ref .
Therefore, objects are estimated and counted at the time instance ofT ′

ref in the histogram.
Specifically, given an updateo(−→x ,−→v ) at tup, the histogram is updated as follows:

(1) Estimateo’s position at the time instanceT ′
ref :

−→x ′′ = −→x + −→v · (T ′
ref − tup) = −→x + −→v · (Tref + T − tup).

Since the optimal length of the next time intervalT is determined only when the
tuning process completes, we simply assume thatT will not change for the next time
interval while maintaining the histogram.T ′

ref can be determined accordingly, where
T ′

ref = Tref + T . Then,

−→x ′′ = −→x + −→v · (Tref + T − tup).

Note that if the update affects only the youngest subtree, the old record is deleted from
the youngest subtree. The statistic should be updated in a reverse manner first, i.e.,
re-computing the centroid by subtracting old position of the object and decreasing the
number of objects.

(2) hij of the cell that−→x ′′ belongs to is updated

−→xij =
nij · −→xij + −→o.x′′

nij + 1
,

nij = nij + 1.

Thus,−→xij is always the centroid of all objects estimated to be in cellcij atT ′
ref .

−→xij =

∑nij

k=1

−→
x′′

k

nij
.

8.4 Online Tuning

TheOnline Tuning module is responsible for executing the tuning process. At each tran-
sition time, i.e., the upper boundary of current time interval, theTimer triggers theOnline
Tuning module to start the tuning procedure. Based on the statistics maintained, it deter-
mines new parameters for the ST2B-tree. At the end of the tuning procedure, parameters
in the Index Profile are updated accordingly.

As shown in Figure 8.1, the tuning can be applied in two aspects. On the one hand, we
can tune the length of the subtree time interval and the reference time. On the other hand,
we can improve the space partitioning by adjusting the set ofreference points and their
grid granularity.

8.4.1 T andTref

As shown in Section 7.2, the value ofT affects update and query performance in oppo-
site ways. In order to get the best tradeoff, we can also tune the value ofT with respect to
the latest query and update loads. With the global statistics maintained by theStatistics
Module, theOnline Tuning module can estimate the average query and update costs. In
order to improve query performance, the system can tune downthe value ofT ; in order
to minimize the average update cost, the system can tune up the value ofT . The final
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(b) Region Growing
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(c) New Reference Points

Fig. 8.2. Finding Reference Points

decision is made depending on the main concern of the system,either query response time
or supporting more updates/objects.

Given thatTup is maintained as a global statistics in theStatistics module, onceT is
determined, we can get theTref that minimizes average query cost according to Equa-
tion 7.7.

8.4.2 Reference Points and Grid Granularity

The ST2B-tree can dynamically adjust to different space partitioning. However, since
the data is highly dynamic, it is difficult to find an optimal partitioning. Even if such an
optimal partitioning exists, it is costly to discover it; moreover, its optimality is bound to
be short-lived because of the dynamics of the system. Therefore, we aim to rapidly find a
moderate set of reference points that roughly, but effectively, partitions the space based on
density differences, so that the tuning procedure can be done online without deferring any
other operations.

Finding Reference Points via Region Growing:
The tuning procedure is triggered by the timer at each transition time. With the his-

togram, e.g., Figure 8.2(b), we identify dense and sparse regions by region growing. Recall
that theStatistic module maintains a histogram withn × n buckets, each of which stores
information about a cell in the space. Note here these cells of the histogram are detached
from the cells which are used by the reference points for the purpose of indexing. The cells
of the histogram are over all the space simply to have an idea of density distribution.

Region growing is a technique widely used in image segmentation for finding adjacent
similar pixels. In image processing, similarity of pixels is defined over color, brightness,
etc. For us, each cell in the histogram acts as a pixel. Two cells are said to be similar if they
have a similar number of objects. Algorithm 8.1 shows the procedure of region growing.

First, we take the previous reference points as the seeds forgrowing3. Since the dis-
tribution and density of moving objects change gradually, the positions of the reference
points should move slightly. Starting from cellc, we examine its neighboring cells. If
a neighboring cellc′ does not belong to any existing region and|c.n−R.maxn|

R.avgn
6 ε and

|c.n−R.minn|
R.avgn

6 ε, c′ is added into the regionR of c. R.maxn, R.minn, R.avgn are the
maximum, minimum and average number of objects of cells inR currently. ε is a prede-

3At the very beginning, reference points are obtained from historical data. In the absence of historical data,
reference points are randomly picked during the initialization and will quickly fit the data after a few rounds of
tuning.
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Algorithm 8.1 Region Growing
Output: a set of regions{R}

1: RS = ∅;
2: for each previous reference pointsRPk do
3: c = the cell that containsRPk

4: if c is unmarkedthen
5: Add c to a new regionR; markc;
6: Growing(c, R); Add R to RS;
7: while there isc that is unmarkeddo
8: Add c to a new regionR; markc;
9: Growing(c, R); Add R to RS

10: return RS;
Function Growing(c, R)

1: for each neighbor cellc′ of c do
2: if c′ is unmarked and|c.n−R.maxn|

R.avgn
6 ε and |c.n−R.minn|

R.avgn
6 ε then

3: Add c′ to R; markc;
4: Growing(c′, R);

fined threshold that defines similarity. The growing procedure terminates when all the cells
belong to some region.

The output of the region growing algorithm is a set of regionsthat have similar object
density. The centers of the resultant regions are marked as the reference points. More
specifically, a resultant regionR consists of several adjacent cells. The center ofR, i.e.,
the reference pointRP , is calculated as:

RP.−→x =

∑

cij∈R nij ·
−→xij

∑

cij∈R nij
.

The object density forRP is

RP.ρ =

∑

cij∈R nij

|R|
.

where|R| is the number of cells inR.
Figure 8.2 shows a running example of finding reference points by Algorithm 8.1.

Region-growing starts with four previous reference pointsas shown in Figure 8.2(a). Fig-
ure 8.2(b) shows the resultant regions (ε = 1) filled with different patterns and enclosed by
thick lines. Then all regions that contain no more than 3 cells are pruned. Finally, we get 6
regions (shaded regions). As shown in Figure 8.2(c), the region growing method roughly
identifies 6 reference points, which further partition the space into disjoint Voronoi cells.
We use the cells inR (with a similar number of objects) for estimating density for RP , ig-
noring the other cells which are noted as noises. When the reference points are determined,
the grid granularity for eachRPi can be computed according to Equation 6.2.

Alternative Methods:
Intuitively, we can also apply density-based clustering methods to partition the space.

Examples of density based spatial clustering methods include DBSCAN [Ester et al. 1996]
and OPTICS [Ankerst et al. 1999]. However, none of these existing methods facilitates
online tuning. First, they can only find dense areas; sparse regions may be completely
disregarded. Second, density-based clustering methods are time-consuming. DBSCAN
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takes seconds to cluster a few thousand data points, even in the presence of a spatial index.
While the tuning procedure is running, all updates have to besuspended. An update costs
a few milliseconds over a B+-tree on average, which means that thousands of updates may
need to be postponed during the tuning procedure. This is notacceptable for online tuning
of an index meant to support high update load.

Yet another practical approach to select reference points is to consider the characteristics
of real world moving objects, e.g., city traffic. In reality,hotspots remain hotspots, no
matter how many objects there are. Prominent landmarks, such as major road junctions and
commercial centers, always attract more vehicles than the other places. These hotspots can
be used as reference points most of the time. On the other hand, we can also discover that
real traffic often exhibits seasonal patterns, either daily, weekly or monthly. For example,
many vehicles move toward the downtown area of a city between8 to 9am and travel
back to the residential suburbs at around 5 to 6pm every weekday. Based on the above
observations, reference points can also be computed off-line based on historical data. We
can compute and preserve the reference points for each time slice that the data shows
similar patterns regularly. An online tuning module can then choose the set of preset
reference points of the right slice of time as the tree rolls over with time. However, this
method is only acceptable for a fairly stable environment. The preset settings may not be
suitable once the environments changes for a non-trivial amount of time. For instance,
road construction may last long enough to disrupt the system’s responsiveness but not long
enough to warrant changes to the indexes. It is a better choice if the tuning process can
select the reference points and other parameters based on the latest workload at real-time
and incurring imperceptible overhead.

8.4.3 Degree of EagernessDe

Last but not least, if eager update is employed, we can also vary the degree of eagerness
De according to the number of objects being migratedNm last time. IfNm ≤ ξ, we may
increaseDe by one; otherwise decreaseDe. Here,ξ is a user defined threshold, which
depends on the latency that the system can afford to wait for object migration.

9. PERFORMANCE EVALUATION

9.1 Experiment Setup

In order to evaluate the ST2B-tree and the self-tuning framework we used the most repre-
sentative moving object indexes: the Bx-tree [Jensen et al. 2004], the Bdual-tree [Yiu et al.
2008], the TPR*-tree [Tao et al. 2003] and STRIPES [Patel et al. 2004], which are also
based on different underlying structures. We use the implementations of the four indexes
provided in [Chen et al. 2008b]. The ST2B-tree is built on top of the same B+-tree used by
the Bx-tree and the Bdual-tree for fairness. The ST2B-tree adopts the same optimal query
enlargement algorithm [Jensen et al. 2006] as the Bx-tree.

[Chen et al. 2008b] provides a benchmark for evaluating and comparing the performance
of moving objects. Our experiments follow the standard evaluation procedure introduced
by that benchmark. Using the data generator included in the benchmark, we generate
two kinds of workload, uniform and Gaussian datasets. Generally, the uniform datasets
are used for evaluating the benefits of tuning time-related parameters, the eagerness of
eager update strategy, etc. Since we intend to investigate the imbalance and changes in
the workloads, we use Gaussian workloads to test the impact on the density-based space
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Table 9.1. Workload Settings
Parameter Setting

Space domain 100,000×100,000m2

Data size 100K, ..., 1M
Maximum object speed 10m/ts, ...,100m/ts
Maximum update intervalTup 120ts
Range query size 1,000×1,000m2 , ...,10,000×10,000m2

Number of neighbors,k 10, ..., 100
Query Predictive Time 0ts, 10ts, ...,60ts, ..., 120ts
Time duration 240ts, 1200ts
Buffer size (number of pages) 50
Disk page size (KB) 4
Number of hotspots 10
Query/Update ratio 100:1, ...,1:100, ..., 1:10,000
Number of threads 1, 2, 4, ... , 128,10
Length of subtree time intervalT 0.1Tup, 0.2Tup, ..., 0.9Tup, Tup

Offset of reference timeTref -Tl 0, 0.2T , 0.4T , ...,T , 1.2T , ..., 2T
Degree of eagernessDe 0, 1, 2, 4, 8, 32, 64

partitioning scheme of the ST2B-tree. Specifically, the data generator randomly selects
some points in the space as hotspots. Each hotspot uses a Gaussian distribution to generate
objects around it. The queries can be either uniformly distributed or not; in the case of
non-uniform queries they follow the same distribution as the objects. The details about
how the workloads are generated can be found in [Chen et al. 2008b].

Table 9.1 summarizes the settings of workload used in the experiments, where default
values of variable parameters are shown in bold. ts is short for timestamp. Parameters are
shown in groups based on their meanings. The experiments usethe same range and default
settings as the benchmark. In order to evaluate the tuning effect, we vary the tunable
parameters such asT , Tref , De. Parameterε for region growing is fixed at 1 in all the
experiments. The execution time for region growing increases with the number of cells in
the 2d-histogram. In our experiments, we use 100×100 cells in the 2d-histogram to keep
the tuning time to be lower than 5ms, so that the system will not be stalled by the tuning
process.

All the indexes are implemented in C++. All experiments are conducted on a IBM
ThinkPad with Pentium M 1.86GHz processor, 1.0GB RAM and 60GSATA Disk, running
Windows XP. All the results are the average for 10 runs. As theauthors in [Jensen et al.
2004; Tao et al. 2003; Tao and Xiao 2008; Chen et al. 2008a] do in the experiments, we
also use a block file with 4KB blocks to simulate a disk with 4KBpages. A LRU buffer
with 50 pages is used. We use a tool,Lavalys R© EVEREST, to test the random I/O speed
on disk and memory respectively. The speeds of read and writeof 4KB clusters on disk
are∼20MB/s and∼12MB/s respectively. The speeds of memory reads and writes are
∼3356MB/s and∼2770MB/s. The simulating experiments count the exact I/Os with our
experimental settings. However, since we cannot prohibit the operating system from using
the physical memory, the results actually shows the time formemory I/Os. Since all the
indexes are implemented with the same disk manager, we did a fair lateral comparison
between all indexes by simulation.
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Fig. 9.1. Grid Granularity

9.2 Tunable Parameters

Before comparing with other moving object indexes, we first investigate the effect of the
tunable parameters discussed in Sections 6 and 7. In this setof experiments, we use uni-
form datasets to get a clearer understanding of the effect ofthese parameters.

Effect of Grid Granularity:
We first study the effect of grid granularity empirically to verify the analysis in Section 6

and to determine the optimal grid order. We test on two uniform workloads, including
100K and 1M moving objects. Since the objects are uniformly distributed, the object
density in the whole space is the same. The ST2B-Tree will have only one reference point
at the center of the space. The query workload consists of 100uniform range queries with
default settings.

Figure 9.1 illustrates the overall performance with grid orderλ varying from 3 to 11.
We make the following observations:

(1) The update I/O increases significantly whenλ ≤ 1
2 (log2N − log2CL) (about 7 for 1M

objects) and hardly changes with finer partitioning.
(2) Whenλ ≤ 1

2 (log2N−log2CL), the query I/O increases with smaller value ofλ. How-
ever, with largerλ, the number of average query I/O hardly changes. In Figure 9.1(b),
the query I/O of the 1M dataset is labeled with the right y-axis with different values,
because we do not intend to compare the I/O of 100K and 1M datasets but to show the
trend of I/O changes with grid orderλ.

(3) The query processing time increases dramatically with alargerλ due to increasing
number of key retrievals. Notice that the query processing time increases whenλ
becomes smaller. This can be explained by the fact that with excessively large grid
cells, very few number of 1d searches are required. However, the I/O cost increases
significantly, which contributes more to the processing time. In addition, it incurs
more time to prune away a large number of false positives whenthe grid cells are too
large.

Based on the observation in Figure 9.1 and the analysis in Section 6, we set the grid
granularityλ to d 1

2 (log2N−log2CL)e as in Equation 6.2, which results in the best tradeoff
between update and query performance. In the following experiments, this rule is applied
to the selection of global space partitioning for the Bx-tree, while for the ST2B-tree, it
guides the selection of grid granularity of each reference point.

Effect of Reference Time:
We now see the effect of the reference time. As discussed in Section 7.1, the reference

time only affects the query performance. Therefore, we investigate the query time and I/O
with respect to different choices of reference time. We varythe value ofTref − Tl from 0
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Fig. 9.3. T vs. Migration Cost

to 240ts (2Tup), i.e., the offset from the reference time to the lower boundary of the time
interval of the subtree. The maximum update timeTup is fixed at the default value of 120ts.
Figure 9.2 shows the average cost when the length of the subtree time intervalT is set to
0.5Tup, Tup, 1.5Tup and 2Tup.

As shown, whenT = 0.5Tup, the query cost is minimized whenTref − Tl = 60,
which be equal toT . WhenT ≥ Tup, i.e.,T = Tup, 1.5Tup and2Tup, the query cost is
minimized whenTref − Tl = 120ts, 140ts, 200ts respectively. The results in Figure 9.2
verify the analysis in Section 7.1. The optimal reference time is selected as Equation 7.7.
While Tref deviates from the optimal value, the query cost increases monotonically.

Effect of the Length of Subtree Time Interval T :
In this experiment, we investigate the problem caused by object migration during rollover.

The length of the subtree time intervalT varies from 0.1Tup to Tup (if T is larger thanTup,
no migration occurs). In order to see the pure effect of object migration, eager update is
disabled.
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Figure 9.3 shows the total running time and number of I/Os of one migration. As ex-
pected, the total migration time is proportional to the number of un-updated objects left
in the old subtree, which decreases with largerT . WhenT is only 10% of the maximum
update timeTup, there is a delay of more than 3s to finish the migration. IfT increases to
about0.9Tup, the migration time is reduced to around 0.5s. Note that the migration I/Os is
less affected whenT is smaller than0.9Tup. This is because migration is done by deleting
objects from the older subtree and inserting them into the younger subtree in a batch mode,
which saves a number of I/Os, especially with the help of the LRU buffer.

Figure 9.4 illustrates the corresponding costs for different types of updates, where “up1”
represents updates that involve only one subtree, “up2” represents updates that affect both
subtrees and “mg” denotes the amortized cost of migrating one object. The amortized
migration cost is the minimum, i.e., around 0.04ms and no more than 0.1 I/O access. A
single-subtree update (up1) incurs about 2/3 I/Os of an update involving both subtrees.

Although the total migration time seems to be not very long (only a few seconds), it is
still not acceptable in a continuous running MOD. As shown inFigure 9.4, the average
update time is only about 0.1 millisecond. During the migration time, the MOD is capable
of handling tens of thousands of updates.

Figure 9.5 shows the effect ofT on query performance. As expected, the query cost,
including the CPU time and the number of I/O accesses increase withT .

9.3 Effect of Eager Updates

Now we proceed to investigate the effect of eager updates.T is set to be half of the
maximum update time, i.e.,0.5Tup. In this set of experiments, we vary the degrees of
eagernessDe from 0 to 64. The corresponding benefits on migration cost andexpense
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on update cost are shown in Figure 9.6 and Figure 9.7 respectively. The leftmost point
(marked as “no ea”) in both Figures represents the corresponding result of the case where
eager update is disabled.

First Figure 9.6 shows the benefits of eager updates in terms of total time and I/O cost of
an migration. If there are no eager updates, it requires about 1.3 seconds for migrating ob-
jects during rollover. However, when eager update is enabled, the migration cost decreases
dramatically. Specifically, whenDe = 0, which means the smallest degree of eagerness,
the migration time is reduced to about 50ms. WhenDe = 4, the migration time is around
5ms only, which is much more acceptable considering the continuity of a MOD.

Eager update technique undoubtedly relaxes the constraints onT by reducing the mi-
gration cost, but at the expense of an increase in update cost. Figure 9.7 shows the average
update cost. As shown, the migrating cost (“mg”) is still thesmallest. The cost of single
tree update (“up1”) is more or less the same as that in Figure 9.4, since eager update is
only applicable to updates involving two subtrees as described in Algorithm 5.1. There is
a significant increase on the average cost of updates (“up2”) when eager update is applied.
WhenDe = 0, the update is about 7 times slower than normal update (the one marked
with “no mig”), while the increase in the number of I/Os is no more than 1. Intuitively,
whenDe = 0, the update cost should not increase since the deletion and insertion access
the same tree nodes as a normal update. In practice, by deleting and inserting more records
from a leaf may cause leaf merge or split, which incurs additional I/Os. With largerDe, the
I/O cost increases more significantly, since the insertionsmay happen in leaf nodes other
than the leaf node where the core object, i.e., the object causes the eager update, is inserted.

Figure 9.8 shows the number of updates of different types. With higher degree of eager-
ness, i.e., largerDe, not only the number of objects to be migrated decreases, butalso the
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number of updates involving both subtrees. Through eager updating, a number of updates
are avoided and reduced into single subtree updates. Therefore, as we can see, the number
of single tree updates (“up1”) increases withDe.

Finally, Figure 9.9 shows the effect ofDe on the total update throughput, i.e., the total
number of active updates processed in unit time. Updates caused by migration are not
counted here since they are additional workload introducedby the design constraints of the
system. When there is no eager update, the throughput is quite high since the update cost
is the lowest as shown in Figure 9.7. With eager updates, although the throughput becomes
much smaller, the system will not be paused for object migration. From Figure 9.8, we can
observe that the percentage of single tree updates increases with largerDe. Since single
tree updates are less costly, the total update throughput increases whenDe increases. When
De is larger than 8, the throughput starts to drop. This is because whenDe is large enough,
the percentage of single tree updates does not increase substantially, while the cost of eager
updates does increase.

In summary, regarding the migration cost, the benefit of eager updating is already sig-
nificant whenDe is as small as 0 or 1. With largerDe, the further improvement is minor.
Considering the migration time and the update cost, we believe that settingDe to 0 or 1 is
sufficient enough for the tuning purpose.

9.4 Spatial Diversity

We now investigate the effectiveness of the ST2B-tree with regard to the spatial diversity
of moving objects. We use a Gaussian workload generated with10 randomly selected
hotspots as default. Figure 9.10 shows a sample of the workload used (some hotspots are
close to others and cannot be clearly seen). In order to examine the effect of data skew
only, we keep the distribution and cardinality of workload unchanged with time in this set
of experiments. For the same purpose, eager updating is disabled andT is fixed toTup so
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as to guarantee that there is no object migration. The indexes run up to 2Tup (240ts). The
query workload consists of 100 queries. The queries are evaluated every 12 timestamps
and the average costs are record.

Scalability Test:
First, Figure 9.11 shows the effect of the data size on query performance. The number of

objects varies from 100K to 1M, with an increment of 100K. Theresults of all the indexes
(except the ST2B-tree) conform to the findings in [Chen et al. 2008b]. Specifically, as
shown in Figure 9.11(a), the TPR*-tree incurs a high update cost in both I/O and time. This
is because of the overlap between MBRs that results in the TPR*-tree having to search
multiple paths in an update. The MBR adjustment during an update operation further
degrades the update time. The update time of the TPR*-tree isabout 7 and 14 times higher
than that of the ST2B-tree with 100K and 1M objects respectively. The Bx-tree has fast
update, but the number of update I/Os is higher than the others except the TPR*-tree. The
number of update I/Os of the Bx-tree is affected by the granularity of space partitioning
with regard to the data distribution. Since the workload is skewed, a uniform grid leads to
some densely populated cells which break the balance of the B+-tree by introducing many
overflow pages. Consequently, the update I/O cost increases. Owing to the data-adaptive
space partitioning, the ST2B-tree has both fairly constant update time, i.e., about 0.2ms,
and number of I/Os, which is around 4. STRIPES and the Bdual-tree, although having
smaller number of update I/Os than the Bx-tree, take longer time to process a query.

Figure 9.11(b) shows the average query cost with respect to the number of objects. As
expected, for all indexes, the query cost increases linearly with the data size. This is
because more objects need to be retrieved in a given query region for a larger dataset. The
ST2B-tree, the Bx-tree and the TPR*-tree incur similar number of I/Os. The cost of the
ST2B-tree and the Bx-tree are mainly determined by the number of objects contained in
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the enlarged query region, while the TPR*-tree has been specifically designed to reduce its
I/O cost over the original TPR-tree. The Bdual-tree incurs a larger number of I/Os. This
is partially because the partitioning in the velocity dimensions makes some nearby objects
of different velocities distributed into different leaf nodes, while in the ST2B-tree and Bx-
tree, nearby objects are clustered together. Among all the indexes, STRIPES is the most
expensive regarding the I/O cost due to the unbalancing structure and low utilization space
of the quad-tree.

Regarding the query processing time, the Bx-tree is not able to handle hotspots well due
to its use of one single grid granularity, and causes many false positives to be retrieved
and examined, and therefore incurs higher I/Os. The ST2B-tree is most efficient in terms
of query time due to its adaptive use of appropriate grid granularity when it rolls forward
with time.

In Figure 9.11, the Bx-tree consistently outperforms the Bdual-tree. This is somewhat
surprising, since it does not conform to the findings in [Yiu et al. 2008], where the Bdual-
tree is expected to beat the B+-tree in terms of the number of I/Os. We find the following
reasons for this inconsistency. In [Yiu et al. 2008], the disk page is only 1K bytes and no
buffer is used. Query processing of the Bx-tree incurs larger number of I/Os, since it has
to revisit upper-level tree nodes several times. However, in our experiments, a small LRU
buffer is used and intermediate nodes are kept in memory mostof the time. The buffering
effect brings a considerable decrease on the number of querying processing I/Os. As for the
query processing time, [Yiu et al. 2008] does not provide anyresult on the query processing
time of the Bdual-tree. In our experiments, we find that the decomposition andoverlapping
testing of the MORs in theBdual-tree are both time-consuming tasks. Therefore, the query
processing time of the Bdual-tree is consistently higher than all the other indexes.

Size of Query:
Figure 9.12 shows the average cost of processing range queries. All the indexes are

tested with square-sized range queries with side length varying from 1km to 10km. As
expected, the query cost of each index increases with an increasing query window size.
Larger windows contain more objects and therefore lead to more node accesses. In general,
Figure 9.12 shows the same relative order between the curvesas in Figure 9.11(b). The
TPR*-tree, the Bx-tree and the ST2B-tree have the similar number of I/Os. With the default
100K Gaussian workload, the Bx-tree spends twice the query processing time of the TPR*-
tree. As discussed in Section 2, the TPR*-tree is a data partitioning index, which is less
affected by the data distribution comparing with the Bx-tree. The ST2B-tree shortens the
processing time of the Bx-tree by about 30% for queries with 10km side length. The ST2B-
tree improves the Bx-tree with more adaptive space partitioning. As a result, the effect of
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data skew is mitigated. The Bdual-tree takes the longest processing time and incurs twice
number of I/Os than the TPR*-tree, the Bx-tree and the ST2B-tree. As for STRIPES, the
processing time increases the fastest among all indexes because of the significant increase
in the number of I/Os.

Figure 9.13 examines the performance ofkNN queries further, with the number of neigh-
borsk varying from 10 to 100. As forkNN queries, all indexes have a slight increase in
I/O cost and query processing time. The I/O cost of thekNN queries, which depends on
the number of objects in the expanded query region, is less sensitive tok for the Bx-tree
and the ST2B-tree. In terms of the number of I/Os, the ST2B-tree surpasses the Bx-tree by
a greater margin forkNN queries than for range queries. ThekNN queries in both Bx-tree
and the ST2B-tree are conducted as incremental range queries with the initial search region
estimated from the objects density. The cost depends largely on the accuracy of the esti-
mated search radius. The Bx-tree makes such estimation using global object density. As
a result, in dense regions, the Bx-tree starts thekNN search with an oversized search re-
gion; in sparse regions, the Bx-tree starts with a small search region, but has to expand the
region for many times to find thekNNs. Both affect the query processing time and I/Os.
The ST2B-tree, on the other hand, starts the search with a more accurate radius according
to the object density around the reference points. Owing to more accurate search region,
the performance of the ST2B-tree onkNN queries is less affected by the data skew. The
TPR*-tree incurs fewer I/Os because of its branch-and-boundkNN search algorithm. The
kNN query performance of STRIPES and the Bdual-tree are similar to their performance
on range queries, contributing the highest number of I/Os and the highest processing time
respectively.

9.5 Temporal Diversity

Next, we examine the effectiveness of the ST2B-tree’s self-tuning to adapt to the time-
dependent changes in data cardinality. All the objects follow the same distribution used
in the previous experiments (Figure 9.10). We build the indexes in the first round and run
them for another 9 rounds of time. Each round is 120s. In each round, each object updates
once and the whole index will be refreshed after the round. The number of queries is 1%
of the number of updates each round. This is to simulate the real applications where many
moving objects will keep on updating their positions, and the number of positional updates
significantly outnumbers the number of queries. We study thetotal time of processing
the updates and queries in each round as a measure of the overall performance. Then we
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Fig. 9.14. Increasing Data Cardinality

compute the speedup introduced by the self-tuning feature of the ST2B-tree, defined as:

Speedup=
total processing time of the Bx-tree

total processing time of the ST2B-tree
.

The granularity of the Bx-tree is selected using the initial number of objects, whilethe
space partitioning of the ST2B-tree is dynamically tuned in accordance to the workload.
When the data is uniformly distributed, the performance of the ST2B-tree degrades to that
of the Bx-tree with only one reference point at the center of the space. In other words,
the Bx-tree is a static version of the ST2B-tree which completely ignores the distribution
and changes of objects. Hence we compare the ST2B-tree with the static Bx-tree to show
the effectiveness of the self-tuning features. The runningtime of the self-tuning process is
included in the total processing time of the ST2B-tree.

First, we start with 100K objects and add another 100K each round. Figure 9.14 shows
the speedup brought by self-tuning in each round of time. Thespeedup introduced by
self-tuning grows with time, when the hotspots and data distribution change with time.

Initially, the Bx-tree selects the granularity of space partitioning with 100K objects. It
then uses a grid with large cells (about 3000×3000m2). With the increasing number of
objects in the following rounds, the update performance degrades, because the increase
in the number of overflow pages affects the balance of the underlying B+-tree. On the
other hand, since the ST2B-tree partitions and indexes objects according to the distribution
and density, the update cost remains at about 0.2ms all the time. Since the Bx-tree uses
a large cell, it saves on query processing time according to our findings in Section 9.2.
However, with carefully chosen granularity of space partition, the query processing time
of the ST2B-tree is higher than the Bx-tree only in the dense regions. In those sparse
regions, the ST2B-tree might use even larger grid cells, which would reduce the query
processing time. Therefore, combining all these facts, theoverall speedup introduced by
the self-tuning of the ST2B-tree over static Bx-tree, especially when there are more updates
than queries, are obvious and significant.

Figure 9.15 shows the results of a reverse process. Startingwith 1M objects, the number
of objects being indexed decreases by 100K per round. The Bx-tree now uses a fine grid
with smaller cells (about 200×200m2) to partition the entire space. As we can see, the
speedup introduced by the self-tuning to the system is just alittle higher with non-uniform
queries. That is because the cost of the Bx-tree is also near optimal with such a fine grid.
Non-uniform queries follow the same distribution as objects, and therefore queries are con-
centrated at those dense regions. Now, in those dense regions, the ST2B-tree also employs
fine grid. Therefore, the system speedup introduced by tuning is less significant. However,
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Fig. 9.16. Distribution of Workload in Spatio-Temporal Test
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for the uniform queries, the ST2B-tree gains more by tuning with the data workload. The
ST2B-tree reduces the processing time of queries in the sparse regions by using larger grid
cells. The overall performance gain is much more significantthan for non-uniform queries.

9.6 Spatio-Temporal Diversity

Now we further investigate the performance of the self-tuning phase of the ST2B-tree with
regard to the changes of objects distribution with time. We generate a set of workloads
in which the skewness of objects increases with time. In round 0, we build the indexes
with 1M uniformly distributed objects. Next, in round 1, theobjects are generated with
10 hotspots. Subsequently, the number of hotspots is reduced by 1 each round. Finally, in
round 9, there is only one hotspot. Figure 9.16 shows the snapshots of objects at round 5
(moderately skewed) and round 9 (highly skewed). The query-update ratio is still 1:100.

Figure 9.17 shows the changes of system speedup with time. Asexpected, the gain of the
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self-tuning ST2B-tree over the static Bx-tree increases when the data become even more
skewed with time. During round 1, the ST2B-tree is comparable to the Bx-tree. Since
the objects are uniformly distributed, the region-growingalgorithm will result in only one
reference point and hence the ST2B-tree degenerates to a Bx-tree with only one reference
point. However, with skewed objects joining in the subsequent rounds, the ST2B-tree grad-
ually outperforms the Bx-tree owing to the self-tuning phases, which are equipped with
adaptive space partitioning and granularity of indexing. For range queries (Figure 9.17(a)),
the ST2B-tree outperforms the Bx-tree by about 2 times in round 9 for both uniform and
non-uniform query workloads. ForkNN queries (Figure 9.17(b)), the performance gain is
much higher, which is about 4 times.

9.7 Throughput Test

Finally, we evaluate all indexes in a multiple-user environment. We use a multi-thread
program to simulate the real multiple-user environment. The B+-tree adopts the B-link
concurrency control mechanism as presented in [Lehman and Yao 1981]. The R-tree (for
TPR*-tree) employs the R-link technique [Ng and Kameda 1994]. We implement a native
concurrency control of the quad-tree for STRIPES. Specifically, a search operation holds
a read lock on each node on its current searching path while aninsertion/deletion holds
a write lock on the current node. The write lock is released when locks on its children
are granted and split/merge will not happen to the current node after the insertion/deletion.
The default 1M dataset as shown in Figure 9.10 is used. The query workload consists
of range queries with default settings, following the same distribution of the data objects.
Updates and queries arrive evenly in time and are loaded intoa task pool and then randomly
distributed to each free working thread. The performance ismeasured by two metrics:
throughput and response time. The throughput is defined as the average number of tasks
finished in a unit time. The results are the average of 10 runs of simulation.

Figure 9.18 shows the throughput and response time with the query-update ratio varying
from 100:1 to 1:1000 using 10 working threads. In real movingobject applications, the
update load caused by the changes in object locations and moving speed is much higher
than the query load, and the query-update ratio is to simulate such scenario. As expected,
the throughput of the indexes increases significantly with more updates and the response
time decreases. The queries, which hold shared lock on the node being accessed, do not
prevent the other queries. However, although queries allowother read operations, they
block the update operations, and by design of the experiment, the updates contribute more
to the throughput. The updates access only a few nodes in the index and can finish very
quickly. The (range) queries, on the other hand, have to traverse multiple paths and read
many leaf nodes (data nodes); hence they take longer than theupdates. Since the through-
put is defined as the number of operations completed by the indexes every second, the
updates contribute more to it. Therefore, when the percentage of updates in the workload
increases, the throughput increases and the response time decreases accordingly.

Figure 9.19 shows the effect of the number of threads under workload whose query-
update ratio is 1:100. The number of threads varies from 1 to 128. The throughput reduces
with increasing number of threads for all indexes, and the response time increases with the
number of threads being used. An update locks exclusively the node being accessed and
all the concurrent requests for reading/writing the node are suspended. As the workload
includes more updates than queries, the indexes are frequently being write-locked. The
throughput decreases with more threads and each thread waits for a longer time for its turn
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to access the tree.
However, with more queries, the throughput first increases and then reduces with in-

creasing number of threads. As shown in Figure 9.20, when theworkload consists of
50% queries and 50% updates, the throughput reaches the peakwith about 2 threads or
4 threads for both indexes. As more threads are introduced, they start to compete for re-
sources and the throughput reduces as a result. Because the queries hold a shared lock on
the node being accessed, it will not suspend the other query operations. Therefore, the de-
gree of concurrency becomes higher with more queries. With more queries, the throughput
reaches the peak with more threads. For example, when query-update ratio is 10:1, the
peak of the throughput is 4 threads or so. However, in the MODs, there are typically more
short updates than queries, so we omit the results for such workload composition.

As can be observed from Figures 9.19 and 9.20, the indexes hitthrashing point after
the number of threads increases to a certain point and this iswhen the throughput starts to
decrease after hitting the peak. We note that the throughputand the response time can be
improved by implementing some admission controls to throttle the amount of work being
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performed concurrently. However, the admission control introduces another dimension of
effect to the performance, which has not been taken into account here.

10. CONCLUSION

In this paper, we have re-examined the problem of indexing moving object databases
(MODs). We identified several forms of data diversity (namely, space, time, and spatial-
temporal diversities) in MODs that existing static indexesare unable to handle effectively.
We then proposed the ST2B-tree, an online self-tunable B+-tree index that continuously
adapt to the changes in object locations and distributions.To adapt to space diversity, the
ST2B-tree partitions the data space using a set of reference points. Each reference point
uses its own individual grid to partition its Voronoi cell. The grid granularity is determined
by object density around a reference point. By monitoring the distribution and density
of objects continuously, the ST2B-tree dynamically determines a different set of refer-
ence points, and adaptively adjusts the granularity of space partitioning. We also proposed
methods to choose the reference points, and provide a guideline on the optimal choice of
granularity. To deal with the time diversity, the ST2B-Tree employs a “multi-tree” ap-
proach, where two subtrees are used to index objects regarding their last update time. The
basic idea is to rebuild the subtrees periodically and alternately, during which the newly
identified reference points and granularity are used. We have also proposed a novel ea-
ger update mechanism to facilitate object migration from one subtree to another. We have
conducted an extensive performance evaluation of the ST2B-Tree against several state-of-
the-art techniques. The experimental results showed the superiority of the ST2B-Tree over
these methods, confirming that the ST2B-tree is efficient, robust and scalable with respect
to data distribution, volume and concurrent operations. More importantly, equipped with
the self-tuning capability, the ST2B-tree is also adaptive to changes in workload with time.
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