Continuous Online Index Tuning in Moving Object
Databases

SU CHEN

National University of Singapore
MARIO A. NASCIMENTO

University of Alberta

and

BENG CHIN OOI and KIAN-LEE TAN
National University of Singapore

In a moving object database (MOD), the dataset, e.g., the location of objects and their distri-
bution, and the workload change frequently. Traditional static indexes are not able to cope well
with such changes, i.e., their effectiveness and efficiency are seriously affected. This calls for the
development of novel indexes that can be reconfigured automatically based on the state of the
system. In this paper, we design and present the ST?B-tree, a Self- Tunable Spatio- Temporal
BT-Tree index for MODs. In ST2?B-tree, the data space is partitioned into regions of different
density with respect to a set of reference points. Based on the density, objects in a region are
managed using a grid of appropriate granularity - intuitively, a dense region employs a grid with
fine granularity, while a sparse region uses a grid with coarse granularity. In this way, the ST?B-
tree adapts itself to workload diversity in space. To enable online tuning, the ST2B-tree employs
a “multi-tree” indexing technique. The underlying Bt-tree is logically divided into two subtrees.
Objects are dispatched to either subtree depending on their last update time. The two subtrees
are rebuilt periodically and alternately. Whenever a subtree is rebuilt, it is tuned to optimize per-
formance by picking an appropriate setting (e.g., the set of reference points and grid granularity)
based on the most recent data and workload. To cut down the overhead of rebuilding, we propose
an eager update technique to construct the subtree. Finally, we present a tuning framework for
the ST?B-tree, where the tuning is conducted online and automatically without human inter-
vention, and without interfering with the regular functions of the MOD. We have implemented
the tuning framework and the ST?B-tree, and conducted extensive performance evaluations. The
results show that the self-tuning mechanism minimizes the degradation of performance caused by
workload changes without any noticeable overhead.

Categories and Subject Descriptors: H¥a{abase Management]: ; H.2.8 [Database Applications]: Spatial
databases and GIS; H.3@dntent Analysis and I ndexing]: Indexing methods

General Terms: Algorithms, Design, Experimentation, Performance
Additional Key Words and Phrases: Data distribution, Index tuning, Location-based services,
Moving object indexing, Self-tuning

1. INTRODUCTION

Database tuning is crucial to the efficient operation of abate management system
(DBMS). In fact, most commercial DBMS provides some tuniogl$. The goal of tuning
is to ensure the database system always operates in a néiandBstate. Variations in
workload, including both queries and updates, can sigmifiggmpact the performance of
the database. Usually, some components of the databaseasucdexes and the query
optimizer, can be configured to adapt to workload changes.

Traditionally, the database administrator (DBA) was ful@sponsible for tuning the

ACM Transactions on Database Systems, Vol. V, No. N, Montfi2®ages 1-45.

2 . S. Chenetal.

system to ensure optimal performance. However, it is imjralcfor the DBA to keep
track of the system’s performance all the time. The only ficatsolution is to make a
database system self-tunable so that tuning proceeds atitaty with minimal human
intervention.

While some works have been done to develop self-tuning tdolgies in database sys-
tems, these are largely restricted to traditional stattalszses. A representative example
of this line of work can be found in [Chaudhuri and Narasay987]. However, there
are a number of emerging applications (e.g., Geographifairhation Systems and loca-
tion aware applications such as traffic monitoring) that aggnhighly dynamic data. In
particular, in aMoving ObjectsDatabase (MOD), a large number of objects are moving
continuously, and their locations have to be frequentlyatpd. More importantly, the
distribution of moving objects varies over time and spaaar. &xample, in a traffic man-
agement system, some places are likely to be more crowdgubgrudated than others. The
number of vehicles at certain locations may be larger dutieglay and relatively smaller
at night. This means that the workload for the same query thesame region may be
quite different at differenttimes. For these dynamic dasas, the workload changes much
faster than in traditional databases, and hence they ndexittmed more frequently. Thus,
there is a need to re-examine self-tuning methods for magatyinamic databases.

In this paper, we focus on designing self-tuning indexedf@Ds. While some works,
such as [Kalashnikov et al. 2004; Mokbel et al. 2004; Modiatet al. 2005; Xiong et al.
2005], studied in-memory indexing and query processingrfoving objects, many others
[Saltenis et al. 2000; Saltenis and Jensen 2002; Tao et@R; 2@nsen et al. 2004; Patel
et al. 2004; Yiu et al. 2008; Chen et al. 2008a] focused on-bested indexes and query
evaluation, considering the tremendous amount of ubigsaitooving objects. Our work
belongs to the second category. However, existing worksisk-lshsed moving object
indexes mostly focused either on designing indexing stinestor developing efficient al-
gorithms for various kinds of queries. Variability in datamkload, i.e., cardinality and
distribution of objects, has so far been overlooked in theégieof moving object indexes.

In addition, for a tuning mechanism to be useful in a MOD, itstrlye automated, light-
weight, and fully online. AMOD is operational at all timegBy 7), making it impractical
and uneconomical to require DBAs to tune the system manutilhze updates and queries
arrive at the system continuously, we cannot afford to hb&ldystem and postpone all
regular operations (i.e., updates and queries) until thenguprocedure completes. The
tuning should be performed online and completely in reaktim

A preliminary report of this work appeared in [Chen et al. @)@vhere we introduced
the STB-tree and an online tuning framework for it. The primarydeds on tuning the
grid granularity and on determining an optimal space pantitg. In this extended paper,
we addressed a key limitation of the “multi-tree” methodattbf performance degradation
caused by migrating objects from one subtree to anothengluollover. A tunable eager
update strategy is introduced to handle object migratidfigently. In addition, we have
a more rigorous analysis and comparative experimentayshat examines the effects
of various tuning knobs thoroughly. Specifically, the cidmttions of this paper are the
following:

—We identify and examine three kinds of data diversities @D and specify their im-
pact on a moving object index based on space partitioning.
—We present &elf-TunableSpatio-TemporalB*-tree index (S¥B-tree) for moving ob-

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

Continuous Online Index Tuning in Moving Object Databases . 3

jects. The S¥B-tree employs the “multi-tree” technique, which facili¢a online tuning
by maintaining two subtrees. The index dynamically adapesgranularity of space
partitioning based on the object density within regionsiaba set of reference points.

—\We discuss the potential performance problem of the “ntrag” technique and propose
an eager update approach to cut down the overhead of migijacts in the STB-tree
between two subtrees before rebuilding the old subtree.

—We introduce an improved online tuning framework. In thenfiework, the SiB-tree
tunes itself based on data variations. The tuning is peddronline with low over-
head. We also propose methods to select the reference pomhisrovide guidelines for
determining the grid granularity and other tunable paranset

—An extensive experimental study is conducted to evaldseperformance of the pro-
posed self-tunable index. The results show that the seifitiprocess lessens the degra-
dation in the effectiveness of the index with virtually nceovead.

The remainder of the article is organized as follows. In tegtrsection, we review
some related works. In Section 3, we first briefly introduce BY-tree, which is the
base of the SAB-tree. Section 4 presents the%BFtree, including the structure and basic
query algorithms; we also provide insights on why théBTree is amenable to tuning.
In Section 5, we propose the eager update technique to mafgert migrations during
rollover from one subtree to another. Sections 6 and 7 aaahgeffect of grid granularity
and some temporal parameters. In Section 8, we present line tuming framework and
describe how it works. Section 9 reports the results of arrestte performance study.
Finally, we conclude this paper in Section 10.

2. RELATED WORK

Moving object indexing is a well studied topic in databasenownity. Specifically, a
moving object is a multi-dimensional point in natural, waaordinates keep changing
with time. In most existing moving object indexes, objectsiadexed as stationary points
in the spatial space. Depending on the space where objexiadgexed, Tao and Xiao
[2008] classify moving object indexes into two categories, primal and dual indexes.
Primal indexes [Saltenis et al. 2000; Tao et al. 2003; Sili@nd Jensen 2002; Procopiuc
et al. 2002], index objects in their original spatial spa@aal indexes [Kollios et al. 1999;
Jensen et al. 2004; Kollios et al. 2005; Yiu et al. 2008; Chesl.e2008a], on the other
hand, transform objects to some “dual” space first. Inderimgj querying are performed
in the “dual” space.

No matter in which category, an index aims to preserve moulrjgcts’ location prox-
imity in the original space as much as possible. On the othedhsince objects are stored
as stationary points in both categories, an index needsijotadme policy to preserve the
temporal information of each object, e.g., the updatingtitdence, in the remaining part
of this section, we review existing moving object indexesrirthese two perspectives.

2.1 Space Partitioning vs. Data Partitioning Indexes

While objects are represented as stationary (multi-dino@a) points, one essential issue
is how they are organized in the index. Considering thisstaxag moving object indexes

can be classified into two major categories: data partitigrsind space partitioning in-

dexes.

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

4 . S. Chenetal.

In data partitioning indexes, objects are organized intoedhyic partitions. Representa-
tive schemes in this category include the TPR-tree [Saltetral. 2000], the TPR*-tree [Tao
et al. 2003], the RX”-tree [Saltenis and Jensen 2002] and the STAR-tree [Procopi
et al. 2002]. All of these methods are based on traditionafishindexes such as the R-
tree [Guttman 1984] and R*-tree[Beckmann et al. 1990]. Bjpady, at the bottom level,

a leaf node accommodates up to a given number of objectshatase to one another.
At higher levels of the hierarchical structure, each intetliate node contains up to a given
number of entries, each of which contains a pointer to onésothildren and the MBR
(Minimum BoundingRectangle) of the corresponding child. The MBR of a leaf is the
smallest rectangle covering all the objects it containsiil@rly, the MBR of an intermedi-
ate node is the region which just bounds the MBRs of all itédclin. A node split occurs
when the number of objects/entries to be stored in a nodeedsdts capacity. On the other
hand, two neighboring nodes are merged into one if objettéés of both nodes can be
accommodated in only one node. As a result of splitting anchimg, objects/entires are
clustered into groups based on their proximity. Thereftire regions in which objects are
crowded always consist of many small (leaf) MBRs. Spars@®nsgon the contrary, are
typically covered by a few large MBRs.

In the second category, space partitioning indexes adagt pace partitioning. These
methods typically partition the data space in advance usiggd. An object is indexed by
the cell it belongs to. Indexes in [Mokbel et al. 2004; Moid&tet al. 2005; Xiong et al.
2005], utilize the grid index directly, while some other @xaés such as those developed
in [Jensen et al. 2004; Yiu et al. 2008] use a-Bee on top of the grid. Each grid cell is
assigned a unique id, and objects are indexed by thdr& with the id of the cell they
belong to. As space partitioning indexes split the spaceguaisingle uniform grid, the
workload across different parts of the index may not be kaddn Such imbalance does
impact the performance of the indexes, especially in thegree of skewed data. By
comparison, data partitioning indexes are typically lesgaptible to data diversities and
changes as a result of MBR merging and splitting.

In [Chen et al. 2008b], the authors compare several statetafidexes experimentally
and the result shows that space partitioning indexes dietipedata partitioning indexes in
most cases, especially on the update performance. In desigaae partitioning based in-
dexes surpass their counterparts that are based on datepig in two ways. First, both
the grid index and the B-tree are well established indexing structures preserittnally
every commercial DBMS. The index can be integrated into astiegy DBMS easily. No
fundamental (lower level) changes are required to the Uyidgrindex structure, concur-
rency control or the query execution module of the DBMS. &€¢cdn comparison with
spatial indexes such as the R-tree, operations such afhisgeertion and deletion on the
grid index and the B-tree can be performed very efficiently. To keep the objeciti w
organized, updates in the R-tree are quite complex. Guo E2Q06] have shown that the
pre-processing and tree optimization strategies emplioybe TPR*-tree [Tao et al. 2003]
result in extra delay in locking, and hence reduce the perdoice gain in query process-
ing due to the preprocessing during insertions. Other figcies, such as the bottom-up
update [Kwon et al. 2002], lazy update [Lee et al. 2003] andatg memo [Xiong and
Aref 2006], have been developed in the literature to imptbeaupdate performance of the
R-tree. However, the update cost, although decreases waiifting degrees, is still higher
than those space partitioning based indexes [Chen et e8b200

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

Continuous Online Index Tuning in Moving Object Databases . 5

A recent work, STRIPES [Patel et al. 2004], is a hybrid of bgglce partitioning and
data partitioning indexes. It utilizes the quad-tree asuhderlying index, so that the
way of partitioning is fixed but guided by the data distribati Since the quad-tree is an
unbalanced structure, dense regions are partitioned irgoduads and stored deeply in the
tree. Updates and queries on these objects always incuethiglerhead. The SB-tree
presented in this paper is also a data supervised spactgpamtj index. The STB-tree
adopts the same technique used in [Yu et al. 2001; Jagadidh2&05]. The space is first
partitioned into Voronoi cells of a set of reference poiats] objects inside a Voronoi cell
are clustered into a group, which occupies a contiguous eepofithe entire key space. In
[Yu et al. 2001; Jagadish et al. 2005], objects inside eachni cell are sorted by their
distances to the corresponding reference point. TH@Sfee, however, further partitions
the space of each sub-space with a uniform grid. An objectdsexed by the nubmer of
the grid cell it belongs to.

2.2 Indexes with Single Reference Time vs. Multiple Reference Times

As existing moving object indexes store objects as statiopaints, some mechanisms are
required to get a synchronized view of object locations tabds spatio-temporal queries
on the objects. There are in general two mechanisms.

First, in indexes in [Saltenis et al. 2000; Tao et al. 2008]geots are stored with their
motion features (e.g., locations and velocities) at a $peeference time,..;. Given an
update at,,, the location at,..s, derived from the current motion features, is inserted
into the index. An insertion considers the current locatiohobjects, which are estimated
from the motion features stored in the index, and insertsiitating object into the most
appropriate leaf node.

[Jensen et al. 2004] and [Chen et al. 2008b] both show thaxiesl which organize
objects in single reference time such as the TPR-tree sffer significant performance
degradation with time. Consider the case where two objedtgh are stored in the same
leaf node, have not been updated for quite a long time. TienMBR of the leaf node
could become quite large to bound both objects. With inéngdarge MBRs, the overlap
between upper level MBRs increases and the index perforedeteriorates. Itis shown in
[Tao and Xiao 2008] that such deterioration can be allediateen the update frequency
is high enough, i.e., 10% objects update in each timestangweler, this frequency is
too high that indexes such as TPR-tree cannot afford. Intiaddisince the performance
deterioration is mainly caused by those objects with lowatedrequencies, even a few
such objects will degrade the performance.

On the other hand, indexes such as those presented in [Jehabr2004; Patel et al.
2004; Yiu et al. 2008; Chen et al. 2008a] have multiple (ewgo) reference times. The
time axis is partitioned into intervals. Each interval isigaed a certain reference time.
Objects are distributed into different groups accordindheir last updating time. An
update moves the object from its old group into the group whivse interval covers the
current updating time. Indexes of this category also usaglesitree structure, e.g., R-
tree, B"-tree and quad-tree, to manage all objects. The underlya®yis divided into
several logical subtrees each of which manages objects ofwpgi.e., whose updating
time belongs to the same time interval. We call this methed'thulti-tree” technique.

As a result of object updates, the “multi-tree” techniquiially rebuilds the index pe-
riodically. All objects are required to update at least onithin a given time intervall’
so that the subtree with the oldest time interval is empay, all objects have been moved

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

6 . S. Chenetal.

i i
-1 o A -

SFH ! f
"ot 1 1
(1 S o o

biocs 01(te) 3 _t’_e_'?,
ar [T -"".&'"I
i [Rat !
(o - ol

' |Re 1 02(tq)
Lo i R

| Ga asi

Fig. 3.1. Query Processing in thé'Bree

to other subtrees. As a result, the oldest subtree can beddas subsequent updates.
A range query searches all subtrees with extended quergnggiFor each subtree, the
guery region is extended from the querying time to corredpanreference time using the
maximum velocities of objects in the subtree.

SinceT is the maximum update time interval of all objects, it couddduite large due
to few infrequently updated objects. As a result, a querylagée search too many subtrees
with large extended query regions. In [Chen et al. 2008a]atithors present a technique to
improve the query performance at the expense of higher apdst, regarding the highly
variable update frequencies. An object is inserted intotigial subtrees with different
reference times (rather than the one covering the updaitimg only). The number of
subtrees depends on the predicted time of the object’s ipekdta and a tunable parameter
«. Instead of searching all subtrees, a query is performeten youngest subtrees only.
« is used to balance the update and query performance. Qudoympeance is improved
as fewer subtrees are searched with smaller extended cqgons.

3. INDEX MOVING OBJECTS USING THE B*-TREE

The STB-tree shares the same basic design as thér@ while bears the highly de-
sired capability of self-tuning to avoid performance deteation caused by imbalance and
changes in workload. Before presenting theBTree, we briefly introduce theBtree
first.

The B*-tree [Jensen et al. 2004] is the first effort to adapt tHet&e to index moving
objects. Grid cells are linearized with the help of a spatiadicurve. Objects are indexed
in a BT-tree with the id of the cell it belongs to. To process a rangery the B-tree
searches each valid subtree with an enlarged query regtmmgiliery region is expanded
to the corresponding reference time according to the maximelocity of objects. For
example in Figure 3.1, given a range quéty = (771, 13) att,, the enlarged querg/, at
tref IS

R;:(x—{*m'|t7“8f7tq|a$—2>+7m}'|tref7tq|>' (3-1)
77 andz are the lower-left and the upper-right corners of theRgf maz, represents
the maximum velocity. Query enlargement is essential tadefadse negatives. Objects
outsideR;, att,.; cannot appear ik, at ¢, due to maximum velocity constraints. In
Figure 3.1, at,..s, o1 is outsideR, ando, is inside. In contrast, is actually insideR,,

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

Continuous Online Index Tuning in Moving Object Databases . 7

34
32
30
28
26
24
22
20
18
16
14

2

i
o

Query I/0
Query Time (ms)

N W A O N ® ©
L

3 4 5 6 2 3 4 5 6
Number of Phases Number of Phases

(a) Query I/O (b) Query Time

Fig. 3.2. Effect of Number of Phases

while o, is outsideR, att,. Since botho; ando, are inside the enlarged regidef, at
T,c¢, there is no omission in the result.

The use of the space filling curve in deriving théckll id destroys location proximity to
some extent. A 2range query is transformed into severdlrange queries. In Figure 3.1,
the enlarged query regia, covers five I queriesy; to g5 which are shown as thick lines
(note thatys is a single value query).

The basic query processing algorithm for thé-tBee uses global maximum speed for
query enlargement. This could result in oversized enlagyedy, introducing a large num-
ber of false positives. Jensen et al. [2006] improve thierBe query efficiency through
more conscious gquery enlargements.

Recently, Yiu et al. [2008] present th¢/B!-tree. The B““!-tree is quite similar to the
B*-tree, except that space partitioning is applied to the dpate, i.e., both location and
velocity are considered in deriving the key. Each internal entry in the'Btree maintains
a set ofMOving Rectangles (MOR), indicating the spatial region and rangeetdcity
covered by the subtree of the entry. With the MORs, tH&Btree uses R-tree-like query
algorithms as in the TPR-tree. Th&'B!-tree improves the query performance of the B
tree, since query enlargement is replaced by MORs enlangierhowever, maintaining
the MORs introduces high computation workload, which slaleg/n the fast update of
the B™-Tree according to the findings in [Chen et al. 2008b]. In accorent environment,
the throughput is also lower, since during an update anriaterode has to be locked for
a longer period until the MORs are updated to ensure consigteetween its entries and
their MORs.

As introduced in [Jensen et al. 2004], th&-Bee can work with more than one subtree,
each of which is called a “phase”. Two phases are necessanake the B-tree work
properly, i.e., to enable the rollover between subtreegrilmciple, the B-tree allows an
arbitrary number of phases. With more phases, a query nesésitch over more subtrees,
but with smaller enlarged query regions. Figure 3.2 showsetifiect of the number of
phases on the index performahc@/e find that the “multi-tree” strategy achieves the best
guery performance when the number of phases is minimizedretdre, in the remaining
part of the paper, we use two phases for all “multi-tree” et including our SiB-tree.
More phases are also applicable directly.

IThese results are based on the settings discussed in S@&ion

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

8 . S. Chenetal.

a
a
N Aa . a

(a) Dense/Coarse Grid (b) Sparse/Fine Grid

Fig. 4.1. The Co-relation of Data Density and Grid Grantyatmpact on Query Processing

4. ST?B-TREE: A SELF-TUNABLE MOVING OBJECT INDEX

In this section, we first examine the challenges that matitta¢ self-tuning of a moving
object index. Next, we introduce the structure and basicygaigorithm of the S¥B-tree.
Then we explain why the SB-tree is amendable to tune itself to fit the workload changes
in MOD.

4.1 Challenges in MOD

In this section, we first examine the impact of data densitygranularity of space partition
on index performance. Next, we present three kinds of datrslties in moving objects
databases. Object diversities hinder an index from beimqgirf@al”. Index degradation
caused by differences and changes of data engenders thedidonauning the index
online.

4.1.1 Impact of Data Density and Space Partition

To use the B -tree for indexing spatial data, the first step is to redueadimensionality
of objects, i.e., mapping spatial data int@ data. Typically, the data space is partitioned
into small grid cells. Each cell is assigned a unique keyrideking, using a space filling
curve for example. A 2 query is transformed into severad tange queries that can be
evaluated over the Btree. The data density and granularity of the partitiorerex joint
effect on the index performance.

High Density or Coarse Grid: When the density of objects is high, or a coarse grid is
used to partition the space, each cell will contain manyabjeDuring query processing,
we have to check all objects in the cells that intersect withquery. This may lead to a
large number of false positives for those cells that are erbtiundaries. For example, in
Figure 4.1(a), all objects in the® cells (solid dots) that intersect with the query (the dark
square) must be examined, and 8 of these are boundary cadi® witost of their points
are not in the answers. On the other hand, since objects isatime cell have the same
indexing key, a cell with too many objects may incur overflaxgps. In most commercial
databases such as IBM DB2, Oracle and MS SQL Server, recatiisiuplicate keys are
stored in overflow pages chained from the leaf nodes. Thimm#eat update cost will
be higher as overflow pages have to be read and searchedylin€he existence of too
many overflow pages compromises the balance property wiiahds the search cost of

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

Continuous Online Index Tuning in Moving Object Databases . 9

(b) Case 2: atjt (c) Case 3: att

(a) Case 1: aipt

Fig. 4.2. Spatial and Temporal Data Diversity

the Bt -tree structure.

Low Density or Fine Grid: At the opposite end, if the density of objects is low, or a fine
grid is used to partition the space, few objects will be corgd in a cell. For example,
we can partition the space in Figure 4.1(a) with a finer grigufe 4.1(b) zooms in on the
guery region in Figure 4.1(a). Now, most cells contain noerthan 1 object. Obviously,
no additional update overhead is incurred. The number séfabsitives also decreases in
query processing because the smaller boundary cells odetaer objects. However, the
number of X range queries needed increases (from 2 to 9 in Figure 4.%yrshs dotted,
thick lines). Although the overhead to prune false pos#tigereduced, the increase in the
number of X range queries deteriorates query performance.

4.1.2 Types of Data Diversity

Intrinsically, moving objects are spatial objects whossiflans change with time. The
differences and changes of data fall into the following ¢hoategories as illustrated in
Figure 4.2.

Diversity in Space: In general, the density of moving objects varies in diffel@eas in
space. Hotspots, such as commercial centers and majornuneétibns, always have higher
object densities than other places. Such a situation isgyad in Figure 4.2(a). At time
instance ¢, we have two hotspots (enclosed in solid circles), and twermtegions with
relatively lower object densities (enclosed in dashedes)c

Diversity with Time: In a moving object environment, the number of moving objects
changes with time. For example, we expect many vehiclesamé#y, causing heavy traf-
fic load on the roads. In contrast, traffic is relatively ligiitnight (as fewer vehicles
roam on the road). Referring to our running example, frometig(Figure 4.2(a)) tot
(Figure 4.2(b)), hotspots are still hotspots; however, dbasities of all areas decrease
significantly.

Diversity in Space with Time: It is not uncommon to have a combination of the above
types of diversities, i.e., both the density and distrilmtdf moving objects change with
time. In our example, from time t(Figure 4.2(b)) to timest (Figure 4.2(c)), besides an
increase in the total number of objects, the hotspots moweetls Sparse areas may be-
come dense while dense areas may become sparse due to senmalefgictors such as
peak hours, road work and accidents. As a real-life prdcsicanario, between 8am to
9am, people drive from the residential suburbs to downtol@aring office hours, most

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

10 . S. Chen et al.

Rotate with time

77T @iHDT 26+ DT _
e Y IS

SPANiime N SPANiime X\
r L 1
SPAN ey SPANguce, SPAN e SPANqpuce
T | Ll 1————-

G Gl G% G

I N | N} N
T d T Ar d
Cp C1 Ca... Cp C; C2... CpCy Ca... Cp Cy Ca...

Fig. 4.3. The Essence of the &3-tree

vehicles move in and around the downtown area. After 5pmpleesiart trickling home.
The residential suburbs and downtown behave as hotspetaatiély.

In summary, object density and the granularity of spaceitpmaring greatly affect the
efficiency of an index. Considering these three kinds of @ities in MODs, an index
suffers from performance degradation when the space idyepantitioned using a uni-
form grid consistently. As a result, a good moving objecteianust: (1) discriminate
between regions of different densities, (2) adapt to dersid distribution changes with
time. Moreover, the index must be always online even in thestrof adaptation, so as not
to disrupt or interfere with regular activities.

4.2 ST?B-tree Structure

The STB-tree is built on the B -tree without any changes to the underlying-Bee struc-
ture and insertion/deletion algorithms. It indexes mowvatgects as d data points. A
moving object is a spatio-temporal point in its natural gpathe X key is composed of
two componentsK EY;jme and K EYpqce.

4.2.1 Index with Time

In general, the SAB-tree adopts the “multi-tree” technique while dealinghntite time
dimension. Assumé’,, is the maximal time interval between contiguous updatesof a
object, which means that an object is updated at least onmérintervall’,,,. The SEB-
tree logically splits the B-tree into two subtreed; Ty andBT;. Each subtree is assigned a
range ofl’ consecutive time points, whefe= T,,,. Specifically, the time ranges covering
BTy andBT; are[2:iT, 2iT+T) and[2iT+ 1T, 2iT + 2T) respectively, as time elapses, the
value ofi increases from zero and the time ranges of the two subtréeseo alternately.
The index therefore rolls over with time. This behavior igstrated in Figure 4.3.

Without loss of generality, suppose that current time ¢ [2iT, 2¢T7 + T'). As shown
in Figure 4.3,BT] is the older subtree, i.e., the one covering the earlier fimerval
[2iT — T,2iT), while BT is the younger subtree, i.e., the one covering the curnem ti
interval[2:T, 2¢T+T). BT} is now in a monotonic shrinking phase — only deletions affect
BT, and all insertions are conducted in the other subB&g. Sincel' = T,,, all objects

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

Continuous Online Index Tuning in Moving Object Databases . 11

(a) Space Partition (b) Grouping Objects

Fig. 4.4. STPB-tree: Spatial Key Generation

would be updated durin@iT, 2iT + T'). As a result, at the next transition tiél" + T,
all objects are stored in the younger subti&g,, while the older subtre®&T| becomes
empty. Subsequently, a new time interf&!T" + T, 2T + 2T') is assigned to the empty
subtreeBT}, which is now represented &7 in Figure 4.3. This change of time interval
for the subtreBT; does notinterfere with any objects which are currently keakin BTj.
The older subtre®T; is refreshed while the original younger subti@g, now becomes
the “older” one and enters the shrinking phase. In the naxrsition time2:T" + 27", BT
will become empty and assigned with the newer time intef&l + 27, 2T + 3T'), and
so on and so forth.

Suppose an objeet issues an updat€z’, v') at t,,, where@ and v’ represent the
location and velocity of the object &f,,. The object will be indexed in the subtree whose
time range covers,,. For instance, updates issued(nT’) are indexed in the first subtree
BTy while those inT, 2T) fall into the right subtredT;. Subsequent updates[2¥’, 37")
go back toBTy, and so on and so forth.

Each subtree has a unique reference tiing ando is indexed with its location &f;.. ¢,

7' =7 + 70 - (Tyes — tup). Herein, we sef;..; to the upper boundary of the time range,
which is:

Tref = (Z + 1)T, if tup € [ZT, oI+ T) (41)

We will discuss the selection of a proper reference time feutatree later in Section 7.1.
The temporal compone £'Y;;..,., Which is used to identify the subtree that the object
belongs to, is obtained as follows:

0, if tuy € [24T, 20T + T),

. . . (4.2)
1, ifty, €27 +T,2iT 4 2T).

KEthime = {

4.2.2 Indexin Space

Suppose we have a setiofeference point$RP,, RP, ..., RP,_1}, the data space is
then partitioned inta disjoint region{V Cy, VCy,...,VC,_1} in terms of the distance
to the reference points, that is, the partitioning forms eoviei Diagram of the: reference
points as illustrated in Figure 4.4(a). Each referencetp®i, maintains a grid~;, which
is centered aR P; and covers its Voronoi celf C;.

Given an object(2’, ©') whose nearest reference pointii$’;, the spatial component

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

12 . S. Chen et al.

Algorithm 4.1 computeKeyg)
1. KEYiime = |te/T] mod 2;
2. KEYspace = KEYspace(x);
3: key = KEYiime ¥ SPANtime + KEY space;

Algorithm 4.2 Updatebid, ', V', @ pre, U pres tpre)
1: Delete(T pre, U pre, tpre)
2 Trep = [te/T) % T;

3T =T 4 (Trep —te) * U,

4: key = computeKey(z');

5: Insert(key, (oid, @', V));

KEYpace Is:
K EYpace(0) =i x SPANgpace + cid(T', G), (4.3)

wherei is the grid id, i.e., the id of the reference point closest td portion of SPANgpgce
continuous keys in the B-tree are reserved for each grid<x SPAN;,... helps to locate
the portion of key values reserved for gif. cid(7’,G;) is the id of the cell inG; that
7' belongs to. The cell id is assigned with the help of a spadeditturve. To preserve
locality well, the SEB-tree utilizes the Hilbert curve as shown in Figure 4.1. ides to
guarantee that the keys of adjacent grids do not interséitieach others PAN 4. must
be an upper bound efd in all grids.

Figure 4.4(b) illustrates how objects are indexed arourareference point® P, and
RPs. 01, whose nearest reference pointi#’;, is indexed inG; andos in G4 likewise.
Another objecbs, although covered bgs as well, is indexed iz, becauses is closer
to RP; thanRP, i.e., in RP;'s Voronoi cell VC;. Although overlap may exist between
adjacent grids, the Voronoi cells of reference points as@itit. Therefore, it is clear for
an object which grid it belongs to.

In summary, in the SAB-tree, objecb is indexed withK EY g»:

KEYST2 = KEY%ime X SPANtime + KEYspacu (44)

whereSPANim., similar to SPAN 4., IS the size of the key range reserved for each
subtree S PAN¢;,. must be an upper bound &f EY... to avoid overlap between keys
in two subtreesK EY;;me and K EY,q.. are derived as described.

Algorithm 4.1 compute&(EYg7= as in Equation 4.4 and Algorithm 4.2 shows the steps
of an update, where, is the current time. K EYyime, Trey and K EYpqc. are derived
from the update time,,, based on Equations 4.2, 4.1 and 4.3 respectively. To praress
update, the old entry of the object is first deleted from tlein(line 1 in Algorithm 4.2).
Together with the current locatiom and velocityw’, the object also sends the time, its
location@ .. and velocityv',,,.. of the previous updateDelete(Z pre, U pre, tpre) first
computes the indexing key of the old entry basedﬁﬁpre, ?p're andt,... With the old
indexing key, the old entry can be located and deleted freemBth-tree. When the old
record is deleted, Procedufesert(key, record) inserts therecord of the object into the
B*-tree using the new indexingey.

Figure 4.3 shows the essence of theBree. The current time is if2iT, 2T + T).
The two logical subtrees a7, and BT;. At time 2T + T, the time range 0BT} has

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

Continuous Online Index Tuning in Moving Object Databases . 13

Algorithm 4.3 Range Query
Input: Query regionk,, query timet,
Output: All objects inR, att,
1: result =)
2: for each subtre®T; do
3: R, = EnlargeRegion(Rq, mazy,tq, Tresi);
4: for each entry reference poiftP; do
5 if R, intersects with/C; then
6: //V C; stands for the Voronoi cell aR P;
7
8
9

for each cell ofG; that intersects withR;, do
for each objects in cell do
: pt, = Position(o,tq, Trefi);
10: if pt, € Ry then
11: addo into result;
12: return result;

changed td2:T + T, 2iT + T'), shown asBT;. The next rotation will happen at7" + T.
BT, will be assigned a newer time range, showrBd3,. For key allocation, the key space
is halved according to the update time. At the second leaeh &alf is further partitioned
for then grids. Finally, at the bottom level, within the key space a€le grid, objects are
sorted in ascending order of the id of the cells they belong to

4.3 Snapshot Query Algorithms

Algorithm 4.3 depicts the evaluation procedure of a simplege query in the B-tree.
Both subtrees are searched. Since all objects in suBtiéare indexed with positions at
time T'..s;, the algorithm first enlarges the query regiip from query timet, to T}..;
using the global maximum velocityiax, (line 3) (the same way as in the*Bree in
Equation 3.1). Then, the grids of the reference points wivosenoi cell intersects with
the enlarged query region need to be further searched @di¥gs The cells that intersect
with the enlarged query region are retrieved (line 7) (ireasking order of cell id assigned
by using the space filling curve). Finally, an object is adttethe result set if its position
attimet, is contained in the query region (lines 8-10). When the qyésya current query,
tq = tnow (tnow IS the current time when the query is issued)q I§ a predictive query,
tq = tnow + h, Whereh denotes the prediction interval.

In the STB-tree, ak Nearest NeighbofNN) query is conducted as incremental range
gueries until exact nearest neighbors are found. It starts with an initial desadiusr. If
kNNs are not found in the initial search region, it extendssigrch radius byncrement.
Bothr andincrement are set taDy,/k as in [Jensen et al. 2004], where

2 k
Dy, = ﬁ[l —y\/1- \/;]. (4.5)

Dy, is the estimated distance to th&h nearest neighbor [Tao et al. 2004] andis the
number of objects in a unit space. Due to space constraintswitehe detailed algorithm
here and a similar procedure can be found in [Jensen et a4]200

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

14 . S. Chen et al.

4.4 Why is the ST?B-tree Tunable?

We now explain why the S’B-tree can be easily tuned to adapt to the three kinds of data
diversities discussed in Section 4.1.

Diversity in Space: The STB-tree partitions space using reference points. Each
reference point has its own grid and the cell sizes are nassecily identical for all the
grids. In fact, grid granularity can be determined by obgstsity in the Voronoi cell of
the reference point. As shown in Figure 4.4(b), objects alatively dense aroung& P,
thereforeG; is of finer granularity. ForRP,, objects are relatively sparse, 6 uses
larger cells and partitions space at a coarser level. Bygudiffierent grids in different
areas (for different reference points), the?81tree can discriminate between regions of
different densities.

Diversity with Time: Based on the constraint tHAtis the maximum update time interval,
at each transition timél, the subtree in SB-tree to be refreshed with a new time interval
is always empty. At this point, the SB-tree can use a different granularity of grids for
this empty subtree, according to the object densities tigated in the previoug' time.
The grids of the other non-empty subtree are kept unchangdlbthe objects currently
in the index are unaffected. Therefore, the two subtreelarS{FB-tree can have their
own set of grids. While searching/updating in a subtreectiteesponding set of grids is
used. No collision happens. Once the granularity are détednthey cannot be changed
during the nexf” time before the next transition time.

Diversity in Space with Time: In a similar way as the granularity of grids can be tuned
to capture the change of object density with time, the nunaberpositions of reference
points can also be tuned to capture the change of objecitdistm with time. For exam-
ple, in Figure 4.2, at, andt;, the centers of the four circles are used as reference points
Later, atto, the centers of the three circles are used as referencespogitead. Further,
the two subtrees use their own set of reference points amedsponding grids.

In short, thanks to the “multi-tree” structure of the BFtree, the two subtrees work
independently without interference. Any settings aboatittfdexing, including both refer-
ence points and grid granularity, are tunable in théBTree, in addition, the SB-tree
meets the two requirements mentioned in Section 4.1. We disaluss the self-tuning
strategy of the S3B-tree in Section 8, which helps the E-tree perform better with
time-dependent workload changes.

5. EAGER UPDATE: MANAGING OBJECT MIGRATION DURING ROLLOVER

As discussed in the previous section, the “multi-tree” kidg technique opens the door
for tuning the index online. In addition, as indicated in 8&t 2.2, with the “multi-tree”
technique, an object is indexed with a reference tirpg, growing in step with the current
time. The overall query performance of a “multi-tree” indeitl not deteriorate as time
elapses. This is in contrast with the single-tree indexebk as the TPR-tree [Saltenis et al.
2000].

5.1 Effect of T": the length of the time interval covered by a subtree

The effectiveness and efficiency of the “multi-tree” sttuetdepend largely on the value
of T, i.e., the length of the time interval covered by a subtree.

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

Continuous Online Index Tuning in Moving Object Databases . 15

Query Cost: The subtree rollover at the transition tiniE is feasible only if no existing
objects are affected, i.e. when the old subtree containdjexts. This condition is guar-
anteed by constraining the length of the time interval cegldry a subtre&’ to be at least
the maximum time interval between contiguous updates objecdl’,,,, as mentioned in
Section 4.2.1. In practice, some objects update very in&atly, resulting in a larg&,,
and a largd as well. As aforementioned, in query processing, théBsifee avoids false
negatives by query enlargement. The query performanceliadgpends on the query en-
largement, while the query enlargement is proportionghéovalue ofl’. With a largerT’,

a query is enlarged into a larger size, which incurs highergprocessing costs. In the
extreme case whefi — oo, the “multi-tree” index degrades to a single tree index. The
query enlargement keeps increasing as time elapses andehegprformance deteriorates
significantly with a largefl".

Objects Migration: Since the length of affects the query performance significantly, we
consider setting” as small as possible. However/Tifis set smaller than the maximum
update intervaly,,, at the point of transition, there may be some remainingabj@ the
older subtree. For the “multi-tree” technique to work cothg we have to migrate all these
un-updated objects to the younger subtree manually be&sigraing a new time interval
to the subtreé. In particular, objects are inserted into the younger sebiveh their lo-
cations at the corresponding reference time. This locasi@stimated from the location
and velocity stored in the older subtree. The migration efipdated objects incurs extra
update workload on the index. Furthermore, since the mardtappens at the transition
time, it causes a burst of updates. All the upcoming regubaiates are postponed until
the migration finishes and the older subtree is empty. Alifno@ query can be processed
as usual, the response time may be long due to lock contecdiased by those updates.
From this point of view,I" should be as large as possible so as to minimize the migration
cost. The smallefl” is, the larger portion of objects need to be migrated, andribee
frequent migration happens.

In brief, the value ofl" affects the query cost and the migration cost in oppositesway
We will discuss the effect df’ on both the query and update theoretically in Section 7.2.

5.2 Eager Update

As discussed above, a largé€rleads to a higher in query cost, while a smallemay
introduce extra migration cost. In order to avoid migratemmuch as possible while
keepingT relatively small, we now introduce an eager update tecteniqu

The principle of eager update is to update as many objecissasitjpe without increasing
the number of 1/0O accesses. Algorithm 5.1 shows the steps ehger update. Consider
an update in the form abid, @', @), whereoid is the identity of the objecty’, v are the
current location and velocity of the object.

The update procedure first finds the record of ohjeét oldkey is the current indexing
key of oid and L is the leaf node that contains the record (lines 1-2). If thgect is
already indexed in the younger subtree (line 4), the updatiéircues in a normal way as

2An alternative way of dealing with these un-updated objexcts discard them from the database, simply assum-
ing that those objects have left the system (e.g., parkidg)migration is required in this case. The older subtree
is treated as empty. All the active objects are indexed bypther subtree and kept unaffected by the tuning. We
do not consider this situation here.

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

16 . S. Chen et al.

Algorithm 5.1 EagerUpdate(d, =, 7))
1. L = search(oid);

2: oldkey = key of the existing record afid in L;
3! KEYiime = |oldkey/SPANtime|;

4: if KEY ime = t/T mod 2 then

5. continue with Updatetd, =, v);

6: else

70 Trey = [t)T] =T,

8 T =T +V*(Trey —1);

9: key = computeKey(Z");
0. Q=10

11: for each record; = (key;, oid;, T4, v;) in the leaf node. do
12: T =2+ 0T,

13: key = computeKey(T");

14: if key == key’ then

15: Q = QU (key, oid;, ', 0');

16: deleter; from L;

17: L' = search(key);

18: for eachr; € Q do

19: insertr; into L;

in Algorithm 4.2 (line 5). Otherwise, if the update needs tova the object from the
older subtree to the younger one, the eager update chedke atther objects in the same
leaf nodeL (line 11), and computes their estimated locations in theregfce time of the
younger subtree (line 12). If the object will be indexed by Hame key as the objeeid
(line 14), this record is inserted into a quedé€line 15) and then is deleted from the current
leaf nodeL (line 16).Q maintains objects to be updated in an eager manner. Subgbgue
the update procedure finds the leaf ndden the younger subtree which objegtd is to

be inserted into (line 17). Finally, all objectsdnare inserted intd./, since they have the
same indexing key as objeeid (lines 18-19).

Benefits of Eager Update:

As we can see, an eager update accesses the same tree nodsgiéer apdate. There-
fore, additional 1/Os are incurred only when the eager updalises node splitting or
merging while the regular update does not. With eager up@ategular update moves
more than one object to the younger tree. As a resulf; time (supposing’ is smaller
than the maximal update time interval), more objects aratgqutito the younger tree than
usual. Fewer objects are left in the older subtree and theatiig cost decreases. An-
other benefit of eager update is that it saves the cost ofaegptiate as well. If an object
has been updated into the younger subtree eagerly, the pdataiof the object affects
the younger subtree only, i.e., both deletion and insettimppen in the younger subtree.
Considering that objects move continuously in the spadslikely that the deletion and
insertion access the same leaf node. The insertion andatetd#tan update work along
the same path. The number of 1/Os could decrease, with an WRdrpeven if it is small
in volume. On the contrary, if eager update is not suppottetideletion operation would
delete an entry in the older subtree and the insertion dparabuld insert an entry in the
younger subtree. In this case, even if the object does noeraball, different set of nodes
will be visited during these two steps of the update. We el the effect of migrations

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

Continuous Online Index Tuning in Moving Object Databases . 17

and costs of different updates in Section 9.3.

Varying Degree of Eagerness:

In Algorithm 5.1, all objects, which have the same key as e eipdating object in
the younger subtree, are updated eagerly. Here, we intecaliiening knob, denoted as
D., to more aggressively migrate objects from the older sehimethe younger subtree.
Essentially, all objects whose indexing keys in the yoursgibtree differ no more thal,
are migrated from that of the core updating object. The fimihere is that objects with
similar indexing key values are likely to be geographicallyse together. However, since
objects move continuously in space, there is no guaranteghene those objects will be
(in the younger subtree) afté@f time. As such, a®. increases, the 1/0 overhead will
also increase. Moreover, since objects with key valueslemidlanD, may be found in
other nodes, accessing these nodes will further increadéQitost. To handle the second
problem, we restrict the migration to only those objects$ #na in the same leaf node as the
core updating objects. In this wak,agerUpdate corresponds to the case whByp = 0.
On the other extreme, with. = oo, all objects within the leaf node will be migrated. A
moderate value dP. will result in migrating only subset of the objects withirethode.

6. GRID GRANULARITY

As discussed in Section 4.1, data density and grid gramylaré important factors that
affect the performance of any index based on grid partitignirhus, grid granularity is a
core parameter to be tuned for the?8Ttree and any other space partitioning indexes. To
find the optimal granularity, we now analyze the effects éfedéent grid granularity on the
overall performance of an index.

For ease of analysis, we assume that objects are uniforsthjtaited in the entire space
and the space is partitioned using a single grid. Withoutiguity, the result is directly ap-
plicable to each grid in the SB-tree with local uniform assumption around each reference
point.

The notations used are listed in Table 6.1. We start our aisdby giving a definition of
the grid order\.

DErFINITION 6.1. The grid order) is defined as the resolution of the space filling curve
used for mapping grid cells intodlvalues. A grid of ordei partitions the data space into
2% x 27 cells.

Suppose that the entire space is a unit space which is pagdiby a grid of ordek.
Then the side length of each cellds*. The following Lemma 6.2 estimates the number
of leaf I/Os [Yiu et al. 2008].

LEMMA 6.2. The number of leaf node accesses of a square-sized ranggiguer
I0L = NL[L + Ly 4+ V - [tg — Trey|]*. (6.1)

Ny, is the number of leaf nodes. Léf;, = 2%, wherei is an integer no larger than
\. Then, each leaf node cove?¥*—% cells on average, which forms a square with side
lengthL = 2=% = (1/Np)"/2.

Let Lo = Ly +V - |t — Tref|. Lg is the side length of the enlarged query region.
(L+ Lg)? is the probability that the enlarged query range interseittsthe spatial region
covered by a leaf node. The number of leaf nodes to be accbgseduery is therefore
Np, [L + LQ]Q.

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

18 . S. Chen et al.

Table 6.1. Notations for Analyzing Grid Granularity

Symbol | Description

N number of objects

A resolution of space filling curve

10y, number of leaf node 1/10

Ny, number of leaf nodes

No average number of overflow nodes per leaf ndde
Cr, capacity of leaf nodes

Co capacity of overflow nodes

f average fan-out of tree nodes

h height of the tree

\%4 velocity used in query enlargement

L side length of square covered by a leaf node
L, side length of a square-sized range query

tq time of the query

Tref reference time of objects stored in the index
Ny number of H range queries

Ny number of internal node accesses

However, Equation 6.1 in Lemma 6.2 is valid only when theeerar overflow pages in
the tree, which means that there are very few objects hahiegame key. Considering
the uniform distribution of objectsz% <1 (X > 3log, N) is a necessary condition of
Lemma 6.2.

LEMMA 6.3. If A > 1log, N, 10, does not change whenincreases.
PrROOF If A > %logQ N, each cell contains at most 1 object and duplicate keys are
rare. Ny = % andf = 69% - Cr, where 69% is a typical fill factor of the Btree.
2 1 2
101 = Ni.(L + L) = Ny, ((1/NL)2 + LQ)

N 1 2
=5 (UM} + Lo)
Thus,IOy, isindependentok. O
LEMMA 6.4. If A < logy N — 1log, Cy, 10, increases when decreases.

PROOF If A < 1log, N — Llog, Cy (£5 > C1), the number of objects contained in
a cell is larger than the capacity of a leaf node. Each leaéras only one key; therefore
N =22 i =). Suppose each leaf node hasoverflow nodes, then:

101 = N(1 + no) ((1/NL)% + LQ)2

LetCr = Co,
No = 2% — = N__ 1
Co 222 Co
10, = (i) 2 + Lo)®.
Co

Clearly, IOy, increases a& decreases.[]

Lemma 6.4 can be explained as follows. All objects containetthe boundary cells,
which partially intersect with the query range, need to beckld. As) decreases, the

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

Continuous Online Index Tuning in Moving Object Databases . 19

extent of a grid cell grows exponentially, bringing in moa¢sk positives. Access to these
false positives incurs additional 1/0Os.

COROLLARY 6.5. The grid order that minimized Oy, is in range(1 log, N —1 log, C, § log, N].

PROOF This can be easily deduced from Lemma 6.3-64;, keeps unchanged when
A is larger thar% logs N (Lemma 6.3), and increases wheiis smaller thar% logo N —
1log, Cr, (Lemma 6.4). O

Accordingto Corollary 6.5, in order to minimize the numbé&leaf node accesses during
a query, the space filling curve with resolutigriog, N — 1log, C, < A < 1log, N
should be used.

While Corollary 6.5 focuses on the 1/O overhead of the leadesy) we now consider
the overhead of internal node accesses. The problem witbrdiionality reduction is that
a multidimensional range query is split into severélrange queries. The number of 1
range queries has a significant impact on internal node seses

LEMMA 6.6. The number of d range queriesV, and internal node accesség; in-
creases Wwith\.

PROOF As proven in [Moon et al. 2001], the number of fange queries is about half
the perimeter of the query range. Therefore, we hdlye= 2 - L /2~ *. Suppose we
do not modify the query algorithm of the'Btree. Each d range query starts from the
root and searches for the lower boundary of the range. Themumber of internal node
accesses is:

Ny =Ng-h=Ng-logs N =2"log; N - Lq.
The height of the treé is relatively stable whetV;, varies. N; is mainly determined by

Ng4. As Xincreases)N, increases, and so doss. Therefore, a larger value afindicates
a heavier overhead on internal nodes]

To evaluate the query performance of a tree-index, the nuwfieaf I/O Ny, is usu-
ally the main concern. However, as we shall see in Sectiont®e2number of 1/O varies
slightly with a wide range of grid order (in betweghlog, N — 1 log, Cy, 1 log, N)).
Consequently, the number of accesses to internal nodeqdteriquery performance in
terms of query time. In addition, the effect of internal n@deesses becomes even more
important in a concurrent environment. When queries andigsdarrive simultaneously,
each access to the internal node requires locking the natlp@stponing concurrent up-
dates accessing the same node. Therefore, according to déh@hrand Corollary 6.5,
[1log, N — $log, O] is the best value fok that minimizes the query costs.

We also need to consider the effect of grid granularity orati@dost. An update consists
of deleting the old record and inserting the new record. Td fire old record] + %no
nodes are searched on average, apart from the cost for ndéefloa. The old record is
deleted and the node is written back. Despite the sporadie averflow, inserting the new
record incurg1 + n,) + 1 leaf and overflow node I/O. The insertion follows the overflow
chain to obtain the last overflow node into which the new rdi®to be inserted. Writing
it back contributes another I/O. The update cost increasesthe average number of
overflow pages. The cell size increases with smalland so does the number of overflow
pages.

In summary, a smallex within the range indicated in Corollary 6.5 leads to bettezny
performance; nevertheless it incurs higher update costsveshall see in Section 9.1, the

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

20 . S. Chen et al.

Table 7.1. Notations for Analyzing Time-related Paranteter
Symbol | Description

N; number of objects iBT;

Tup maximum update time interval

T length of the time interval covers a subtree
Trefi reference time of subtreBT;

Ty lower boundary ofBT;’s time range

Twi upper boundary oBT;’s time range

tr offset betweel¥',.. ¢; 10 Tj; (Treps — T15)

CQavg | average cost of a query
CUqvg | average cost of an update

CUy average cost of an update involving only one subtfee
CUs average cost of an update involving both subtrees|
CUpn, average cost of migrating an object

costs of query and update achieve the best trade-off when
1 1
A= [§ log, N — 3 log, CL]. (6.2)

In the analysis in this section, we have an implicit uniforss@mption on query dis-
tribution. The performance of an index is sensitive to quaisgributions as well. Here,
we simplify our cost model to uniform queries for the easeralgsis. We will show the
impact of query distribution experimentally in Section 9.

7. TIME RELATED PARAMETERS

In this section, we will discuss the selection of two parareof the STB-tree: the refer-
ence timel’..; and the length of the time interval covered by a subtree in the P-tree
currently. Both are critical parameters for the “multigtestructure, having significant
impact on the overall index performance. Table 7.1 showsttations we use in the
following analysis in addition to the notations in Table.6.1

7.1 Reference Time of a Subtree: T)..r

In Section 4, as shown in Equation 4.1, we simply set the eefeg timel’..; to be the
upper boundary of the time interval of a subtree. In fact,réference time of a subtree
does affect query performance. Since a query is enlargedjat using maximum object
velocity max,, Tr.y andmaz, have a joint effect on query enlargememiaz,, is a data-
related parameter, over which the system has no contrdewhi, is a system parameter.
In the following, we try to find an “optimalT’.. ; which minimizes the average query cost
CQavg. SinceT .y only affects query performance of the indexand has no etfe¢he
update performance, update cost is not our concern here.

Since each subtree covers a temporal range of lefgthe query cost exhibits a periodic
variation. Therefore, we investigate the average query €64.., in [1},T,), whereT;
and T, are the lower and upper boundary of the time interval covénethe younger
subtree. Assuming that queries arrive evenly in time,

1 Tu .
CQavg = T), CQt)dt, i=1,2,.. (7.1)

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

Continuous Online Index Tuning in Moving Object Databases . 21

BT, BT,
[T+At % !
—At— Y
T-T Trefo T t Tref1 T+T
[ty — T-t—

Fig. 7.1. Graphic Representations for Notations

whereCQ(t) is the cost of a query at time GivenT as the length of the time interval,

1 T +T
CQavg = —/ CQ(t)dt, i=1,2,...
T Jg,

In Section 6, the number of leaf I/O for a query is estimatefi@s = N, [L + Lg]? =
% (L) +Lg)? = 1+2(%)%LQ+NL§2. The costis dominated by Lg,. To simplify the
analysis, we now estimate the query cost usﬁh@é, i.e., the number of objects contained
in the enlarged query.g. The experimental results in Section 9 empirically confirma t
fact that the query cost is proportional to the number of ciisjén the enlarged query.
Consider a square-sized range query with side lehgtbnlarged with speet along each
side,

CQ(t) = No(Lq + V|t = Treso))® + N1(Lg + VIt — Trepy)2, (7.2
where N; represents the number of objects in the correspondingeriBtY; at timet.
(Lq + V|t — Treyr,])? is the enlarged query range of subttB&;. The cost of a query

consists of two parts, i.e., the cost of processing the gathquery over each subtree.
Combining Equations 7.1 and 7.2,

Ty+T
CQuig =7 [[t VIE=TrepsNo+ (Ly + VIE = Trops PV .
1

Without loss of generality, we assume ttif;, is older thanBT; in the current STB-
tree. Figure 7.1 illustrates the meaning of the notationst #;, the query region is
enlarged byAt, whereAt is the time difference betwe€h.. s, to the query time, i.e.,
At =t—Tey,. SINCEL e f1 = Trepo+ T, the query region is enlarged @+ At for BT
JthenAt +T =t — Ty, Lettr = Th.cp, — T, which is the offset between the reference
time to the lower boundary aB73’s time range. When the query timievaries fromT; to
T, + T, At varies from—tr to T — tr. Then,CQ..4 Can be alternatively represented by
the following equation:

1 T—tr
CQavg = 7 /t‘ [No(Lg + V[At + T|)? + Ni(Lg + V|At])?] dAt.

(1) The case when T' < T,,:

Here, T, is the maximum update time and is the total number of objects. Suppose
that object updates are uniformly distributediip, time. If 7' < T, the numbers of
objects inBT, and BT are:

{No =N - ZIN

t—T,
Ny = LN
1= T,

T < Top. (7.3)

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

22 . S. Chen et al.

At the last transition timd;, BT} is empty whileBT, contains allV objects. Till times-
tampt, %N objects have been updated®y; and N — %N objects remain in the
older sutheeBTo. '

According to Equation 7.3, we have

N T—tr
CQavg = = / . [(Lq + VIAt+ T2 (Tup — At — tr) + (Lq + V|AL)2 (At + tr)] dAL.
up J —tr

LEMMA 7.1. WhenT < T,,;,, CQqvg iS minimized at

tr =T + Ty, — \J0?T2, +aT? — aT,,T € [T,2T), wherea = 1 + VT/2L,.

PrROOFR
N T —tr 5 5
CQavg = [(Lq + V|At+ T|)*(Tup — At — tr) + (Lq + V|AL])? (AL + tr)] dAE
TTup —tr
N N
= Fi+ 2LQV7E2,
TTup TTup
where

T—tr
By = / [L2Tup + V2 [TupAt® + (T2 + 2T AL)(Tup — At — tr)]] dAt,

—tr

T—tr T—tr
Ey = / (At + tr)|At])dAt +/ (Tup — At — tr)|At + T|dAt,
—tr

—tr

By = L2TypT + V2 [TupTtr? + T3tr — 3Ty T?tr + gTu,,T3 - gT‘*].

By is minimized attr = T + Z22=27, which is betweerl” and27'.
up
—3(T = Tup)T? + Tup(T — tr)T + $tr® if tr < T,
Ey = ¢ (T — tr)3 + Tup(T — tr)2 + Tup(T — tr)T + §(Tup — T + 2tr)T2 — 273 if T < tr < 2T,
LT — Tup)T? — Tup(T — tr)T if tr > 27

Whentr < T, E, is minimized attr = T, where
1 1
min(Ep) = E(Tup - gT)TQ.
Whentr > 2T, E5 is minimized attr = 27T, where
min(Es) = %(Tw +T)T2.
Therefore E> should be minimized whetr € [T, 2T].
CombiningE; andEy, if T' < T, CQavg should be minimized whetr € [T, 2T).

7

min(CQavg) = €T4)]

7
[L2TupT + V(TupTtr® + T3tr — 3TupT?tr + —~TupT? —
TTup 3

+ 2L,V N
7T,

1 1 2
[g(T —t1)3 4 Tup(T — tr)? + Tup(T — tr)T + i(Tup — T+ 2tr)T? — §T3},
up

which is minimized whentr = T + aT,, — \/oﬂTgp +aT? — aT,,T, wherea =
1+VT/2L,. O

From Lemma 7.1, we see th@t),., is minimized when the reference tiriié. , is some-
time betweerd; + 7' = T, and1; + 27 = T,, + T. The “optimal” reference time varies

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

Continuous Online Index Tuning in Moving Object Databases . 23

with different queries, i.e., differet, andV'. To simplify the problem, we consider the
case thafl" is equal tol’,,.

COROLLARY 7.2. If T' =Ty, all objects have been updated to the younger subtree in
T time. CQqvq is Minimized whew = T'. T,..y, is settol; + T = T,, which is the upper
boundary of its time range, the same as shown in Equation 4.1.

ProoE Derive from Lemma 7.1. 1

Object migration can be reduced, or even avoided, by usiag#ger updates as in-
troduced in Section 5. Since update cost is not our concea® e can assume that all
objects are eagerly updated to the younger subt€e within 7" time. As a result, al-
thoughT’ is actually smaller thaff,,, Corollary 7.2 also holds. The average query cost is
minimized wherll.. is set to the upper boundary of the time range of a subtrekistha
whentr = T, we have:

o T

& T . L,V
2 2 _ 2 q 2 _
CQavg =N {Lq + 55 (7% =27 —up) + i (617 — 2T —up) (7.4)

(2) The case when T' > T,,,: If T' > T, the numbers of objects iB1, and BT} are:

Tup Tup (7 i 5)

No=N-ZLNandN, = ZAN if Ty < t < Tj + Top,
NoZOEinlezN iftle‘i’Tup.

BeforeT; + Tyyp, i.e.,t < 1) + Typ, No and N; are the same with Equation 7.3. After
T+ Tup, i.€., Ty, < t > T; 4+ T, all objects are moved to the younger subtig and
BT, is empty. According to Equation 7.5, we have

N Typ—tr
CQung = —— / [(Lg + VAL + T2 (Tup — At — tr) + (Lq + VA2 (AL + tr)] dAt

TTup J—tr
N T —tr

+ = [(Lq + V]At)?] dAt.
T Typ—tr

LEMMA 7.3. f T > Ty, CQaug is minimized whertr = (T + Typ). Trep, =
Ty + (T + Typ) and
V2

CQavg = N {Li + E(T2 +T2,) +

L,V
6T

(3T°+ T3] . (7.6)
PrROOF

CQavg -

Tup—tr
T / ! [(Lg + VIAL + T (Tup — At — tr) + (Lq + V|AL)? (At + tr)] dAE
up J—tr

N T—tr
+ —/ [(Lq + V|At)?] dAt
T Typ—tr

N g yor,v Y
= 1
TTup T TTup

2 T 3

Tup—tr
Bl = / ! [L2Tup + V2 [TupAt® + (T2 + 2T At)(Tup — At — tr)]] dAt,
—tr

Typ—tr Tup—tr
Ey = / (At + tr)|At])dAt + / (Tup — At — tr)|At + T|dAt,

—tr J—tr

T—tr
Es = / [(Lq + V|At])?] dAt.
Typ—tr

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

24 . S. Chen et al.

E, is minimized whentr = (T + T,,,) and,

V2

min(E1) = L2T2, + ET@, (T2, — 2TupT + 3T7].

E, is minimized whertr is any time in[T,,,, < T7,
min(Fs) = 6T2 (3T — Tup).
E3 is minimized whentr = (T + T,,,)
min(E3) = L2(T — Tup) + ‘1/—22(T — Tup)® + 2qui(T — Tup)?.
ThereforeC'Qq.4 is minimized, whertr = %(T +T,p) and

Min(CQung) = NIL? + (12 +72) + 22 (372 4 72,))
avg B up 6T up/l:

O

In summary, for the purpose of minimizing the average quest,onve set the reference
time of a subtree as follows:

{Tl+T if T < Tup,
Tref -

L) (7.7)
T4 5(T+Tup) T > Tup.

Note that wher?” < T,,,, Equation 7.7 is the same as Equation 4.1.

7.2 The Length of the Time Interval of a Subtree: T

While the reference tim&.., affects the query performance only, the length of the time
interval T has an impact on both the queries and updates as discussections.1.

Effect of T on Queries: Given that7..; is determined according to Equation 7.7, the
average query cost is as follows:

N[L2 + Y(T* + T2,)+ 1V (372 + T2,)] it T > Toyp.

N[L; + T V2 (4T? — 2T)+ 2V (672 — 2772 71~)] T < T,
CQaug =

The average query cost() ., always increases with largét. In order to minimize the
query costI’ should be as small as possible.

Effect of " on Updates: Now let us consider the update, concerning the average tost o
each “real” update, i.e., update issued by the object dgtive

LEMMA 7.4. WhenT < T,,, the average cost of an update is:

Tup—T
CUavg =CU; + pTCUm-

PROOF. Suppose that objects update evenlyjp time. ﬁN objects update at each
timestamp. Just before the transition, a total numbeﬁgw objects have been deleted

from the older subtree and inserted into the younger subtfde remainingN-%pN
objects need to be migrated. The average cost of a “real"tepsla
CUavg = [CUs = N+Z==CU,, N/ 7= N , WhichisCUp,y = CUp+=4—=CU,, O

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

Continuous Online Index Tuning in Moving Object Databases . 25

LEMMA 7.5. WhenT" > T, the average cost of an update is:
T —Typ

T,
CUsvg = = CUs + CU;.

ProoF Till ¢ = Ty, all objects have been updated to the younger subtree lyciind
the total cost iU, N. After T, and before the transition, all subsequent updates operate
on the younger subtree only. In the remainifig- T, time, there are a total number of

T;—UT:”N updates and the cost &U, T;—TP”N As a result, the average update cost is
CUaug = [CUN+CULTF2 N 7= N, which isCUpyy = S CU»+I=22CUy O

T

Combining Lemma 7.4 and 7.5,

CUa'Ug = {

The three types of updates incur different costs, as we adliis Section 9.3. In essence,
CU;, > CUy > CU,,. It T < T, the average update cost is minimized when no
migration happens & = T,,. Otherwise, ifl" > T,,, it is better to maximize the
percentage of single tree updates, heéfichould be as large as possible.

The length of subtree time interval has an opposite effect on query and update costs.
In Section 9.5, we will investigate the effect @f with respect to various query/update
ratios via empirical studies.

CUz + 220U, if T < Tup,

T—Tuyp

Tw o, + T2 cU, i T > Ty

8. SELF-TUNING OF THE ST?B-TREE

As discussed in Section 4, the multi-tree design makes ti8-$Ee feasible for tuning.
Sections 6 and 7 provide guidelines for choosing optimalesfor the various parameters
used in the SiB-tree. We now introduce how self-tuning is realized on tiéBstree.

Figure 8.1 shows the tuning framework of the?8ftree. The tuning framework adds
four components on top of the underlying DBMS: timelex Profile, the Key-Gen, the
Statistics and theOnline Tuning.

8.1 Index Profile

Index Profile maintains the current settings of the 2BFtree. As shown in Figure 8.1,
for each subtre®T;, the global profile contains three parameters: the timevat®f the
subtree(T;,, T,,,] and the reference timg,.;,. If we do not want to tund'—the length
of the time interval covering a subtree—there is no need timtaia 7;,, 7,,, andT..y,.
WhenT is fixed, T;, andT,,, can be derived from the current time, afidy, is known
according to Equation 4.1.

Besides global parametertsdex Profile keeps a reference table for the reference points
in each subtree. Each reference pdi®; has an entry in the reference table, including
its position, size of its grid~; and granularity of its grid\;. If eager updates are allowed,
Index Profile also keeps the degree of eagerr@ssurrently used by the index.

8.2 Key-Gen

TheKey-Gen module works as an interface between thé&Tree and the underlying 8
tree. On receiving an object update, it reads the indexhgstfrom thendex Profile that
are necessary for computidgEYs72, including the reference time and reference points
of the younger subtree. It then calculaté®'Yy72 according to Equation 4.4. Finally, the

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

26 . S. Chen et al.

Statistics Online Tuning
Time-Related| Space Partitioning
_ T Reference Points
2d Histogram
‘ Trer ‘ ‘ Grid Granularity ‘

b

Index Profile
Kev-Gen —
BT, BT,
update Global Parameters | Global Parameters
‘ Tio, Tuo, Treto ‘ ‘ Tit, Tut, Trent
Reference Table | Reference Table
RPqy RPgy
B*-tree RPy RPy
RPuo RPo

Fig. 8.1. Online Tuning Framework

update is performed over the'Btree with K EYgr- and new location and velocity of the
object.

8.3 Statistics

The purpose of tuning is to make the index adaptive to the lwatk TheStatistics
module maintains statistics about the workload in the curtiene interval, i.e., the time
interval of the younger subtree. The statistics will be usetline the index at the next
transition time. While dealing with an object update, thatistics is updated accordingly.
Right after the tuning process finishes, the statisticsaareld for the next time interval.

Generally, two kinds of statistics are maintained. The glahatistics contains statistics
about all objects and queries in the entire space. In ordenthe length of subtree time
interval T as discussed in Section 7.2, the following statistics agaired: 1) the total
number of objectsV, 2) maximum update tim&,,, 3) three types of update coSt/;,
CUs andCU,, as defined in Table 7.1, 4) update/query rafipand 5) average query
side length, andmax,, for query enlarging. In addition, if the eager update tegbaiis
applied, the global statistics maintains one more field tidadhe number of object®’,,,
that are migrated at the last transition time.

Besides the global statistics, we usedah#zstogram to maintain regional statistics. The
2d histogram consists ai x n buckets, each of which maintains the statistics of a cell
in the space. Specifically, the entire space is partitiorvethly inton x n square sized
cells (different from the cells used for indexing in Secti2). In the histogram, the
bucket of cellc;;, wherei and;j denote the row and column number of the cell, is a tuple
hij = (7ij,ni;), wheren;; is the estimated number of objects in that cell anfis the
centroid of objects in the cell. The statistics maintaingdhe histogram summarizes the
distribution in difference regions (cells) all over the epawhich is necessary for the tuning
purpose.

Histogram Maintenance:

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

Continuous Online Index Tuning in Moving Object Databases . 27

Suppose the current time interval [i§;, T,,] and the reference time for the younger
subtree isl’..;. The next transition time should 3&,, when the online tuning process
starts. The tuning process aims to find the best space paitigj for the next time interval
[T, T, + T7. During that time, all objects will be indexed at a new referetime?; ..
Therefore, objects are estimated and counted at the tirt@nices of7, _, in the histogram.

Specifically, given an updaté @', v') att,,,, the histogram is updated as follows:

(1) Estimateo’s position at the time instancg/, ;:
T =T+ T Ty —tup) =T+ T (Treg +T — tuyp).

Since the optimal length of the next time interv&alis determined only when the

tuning process completes, we simply assumethaill not change for the next time

interval while maintaining the histograrﬁ“,’_ef can be determined accordingly, where
vef = Trer +T. Then,

T =T+ (Tref + T — tup).

Note that if the update affects only the youngest subtresplithrecord is deleted from
the youngest subtree. The statistic should be updated imeaseemanner first, i.e.,
re-computing the centroid by subtracting old position &f tibject and decreasing the
number of objects.

(2) h; of the cell thatz’” belongs to is updated

— =
F My Ty + 0.
LV)
ni; + 1

Nij = N4j + 1.

Thus,z;; is always the centroid of all objects estimated to be in celatT) ..

N5 "
— _ 2ak=1Tk
Tij = .
Nij

8.4 Online Tuning

TheOnline Tuning module is responsible for executing the tuning process.aéhéran-
sition time, i.e., the upper boundary of current time inggrtheTimer triggers theDnline
Tuning module to start the tuning procedure. Based on the statistaintained, it deter-
mines new parameters for the %Brtree. At the end of the tuning procedure, parameters
in the Index Profile are updated accordingly.

As shown in Figure 8.1, the tuning can be applied in two aspé2h the one hand, we
can tune the length of the subtree time interval and theeatertime. On the other hand,
we can improve the space partitioning by adjusting the seefeirence points and their
grid granularity.

8.4.1 T andT.s

As shown in Section 7.2, the value ‘Bfaffects update and query performance in oppo-
site ways. In order to get the best tradeoff, we can also tumealue ofl” with respect to
the latest query and update loads. With the global staistiaintained by th&tatistics
Module, theOnline Tuning module can estimate the average query and update costs. In
order to improve query performance, the system can tune diogvralue of7’; in order
to minimize the average update cost, the system can tuneeupatbe of7". The final

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

28 . S. Chen et al.

2(1]14|3[4]|5
6 4 33 4
5/3[of1]0
6830|4(1[3]4]|3
5135|134 |3]10]5
4(3(0f3|4(5]|9(11]6]|7
3|8 |9[14|15/18] 7
4 3|7 [22/15(28(23 /18
0|2|6|14]16|24|15|16
3|4|3|8|16/14]12] 3)
(a) Old Reference Points (b) Region Growing (c) New Reference Points

Fig. 8.2. Finding Reference Points

decision is made depending on the main concern of the sysidmr query response time
or supporting more updates/objects.

Given thatTy,, is maintained as a global statistics in theatistics module, oncel” is
determined, we can get tHg..; that minimizes average query cost according to Equa-
tion 7.7.

8.4.2 Reference Points and Grid Granularity

The STB-tree can dynamically adjust to different space partitign However, since
the data is highly dynamic, it is difficult to find an optimalrpgoning. Even if such an
optimal partitioning exists, it is costly to discover it; neover, its optimality is bound to
be short-lived because of the dynamics of the system. Ttverefve aim to rapidly find a
moderate set of reference points that roughly, but effeltipartitions the space based on
density differences, so that the tuning procedure can be doline without deferring any
other operations.

Finding Reference Points via Region Growing:

The tuning procedure is triggered by the timer at each triansiime. With the his-
togram, e.g., Figure 8.2(b), we identify dense and spagsens by region growing. Recall
that theStatistic module maintains a histogram withx n buckets, each of which stores
information about a cell in the space. Note here these cktlsechistogram are detached
from the cells which are used by the reference points for thipgse of indexing. The cells
of the histogram are over all the space simply to have an ifidargsity distribution.

Region growing is a technique widely used in image segmientér finding adjacent
similar pixels. In image processing, similarity of pixetsdefined over color, brightness,
etc. For us, each cell in the histogram acts as a pixel. Twe aet said to be similar if they
have a similar number of objects. Algorithm 8.1 shows theedure of region growing.

First, we take the previous reference points as the seedgdaing’. Since the dis-
tribution and density of moving objects change gradualig, positions of the reference
points should move slightly. Starting from cell we examine its neighboring cells. If
a neighboring celt’ does not belong to any existing region afig=fimazal ¢ angd

R.avgn
len—Rmina| ¢ is added into the regioR of c. R.max,, R.min,, R.avg, are the

R.avgn

maximum, minimum and average number of objects of cell® icurrently. e is a prede-

3At the very beginning, reference points are obtained frostonical data. In the absence of historical data,
reference points are randomly picked during the initidicraand will quickly fit the data after a few rounds of
tuning.

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

Continuous Online Index Tuning in Moving Object Databases . 29

Algorithm 8.1 Region Growing
Output: a set of region§R}
1: RS =0;
2: for each previous reference poims;;, do
3: ¢ =the cell that contain® Py
if cis unmarkedhen
Add c to a new regionk; markc;
Growing(c, R); Add R to RS;
whilethere isc that is unmarkedlo
Add c to a new regionk; markc;
9: Growing(, R); Add Rto RS
10: return RS,
Function Growing(, R)
1: for each neighbor cel’ of c do
2: if ¢ is unmarked and%gjm <e and% < ethen
3: Add ¢’ to R; marke;
4: Growing(’, R);

o NG R

fined threshold that defines similarity. The growing procedarminates when all the cells
belong to some region.

The output of the region growing algorithm is a set of regitiret have similar object
density. The centers of the resultant regions are marketeaseference points. More
specifically, a resultant regioR consists of several adjacent cells. The centeRpf.e.,
the reference poink P, is calculated as:

cij€R T * Tij

RPZ =
D er s

The object density foRP is

where|R| is the number of cells itR.

Figure 8.2 shows a running example of finding reference pdiyt Algorithm 8.1.
Region-growing starts with four previous reference poagshown in Figure 8.2(a). Fig-
ure 8.2(b) shows the resultant regioas< 1) filled with different patterns and enclosed by
thick lines. Then all regions that contain no more than 3aale pruned. Finally, we get 6
regions (shaded regions). As shown in Figure 8.2(c), thisnegrowing method roughly
identifies 6 reference points, which further partition tpace into disjoint Voronoi cells.
We use the cells iR (with a similar number of objects) for estimating density foP, ig-
noring the other cells which are noted as noises. When teearte points are determined,
the grid granularity for eacR P, can be computed according to Equation 6.2.

Alternative Methods:

Intuitively, we can also apply density-based clusteringhuds to partition the space.
Examples of density based spatial clustering methodsdedRBSCAN [Ester et al. 1996]
and OPTICS [Ankerst et al. 1999]. However, none of thesetiagisnethods facilitates
online tuning. First, they can only find dense areas; spag®ms may be completely
disregarded. Second, density-based clustering methedsnae-consuming. DBSCAN

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

30 . S. Chen et al.

takes seconds to cluster a few thousand data points, eviea présence of a spatial index.
While the tuning procedure is running, all updates have teuspended. An update costs

a few milliseconds over aB-tree on average, which means that thousands of updates may
need to be postponed during the tuning procedure. This iaauaptable for online tuning

of an index meant to support high update load.

Yet another practical approach to select reference paidsdonsider the characteristics
of real world moving objects, e.g., city traffic. In realityptspots remain hotspots, no
matter how many objects there are. Prominent landmarkh,asimajor road junctions and
commercial centers, always attract more vehicles thanttier places. These hotspots can
be used as reference points most of the time. On the other hanchn also discover that
real traffic often exhibits seasonal patterns, either daigekly or monthly. For example,
many vehicles move toward the downtown area of a city betwdeém 9am and travel
back to the residential suburbs at around 5 to 6pm every vegekBased on the above
observations, reference points can also be computednaffeliased on historical data. We
can compute and preserve the reference points for each tioeetlsat the data shows
similar patterns regularly. An online tuning module cannttihoose the set of preset
reference points of the right slice of time as the tree rollsravith time. However, this
method is only acceptable for a fairly stable environmeihte preset settings may not be
suitable once the environments changes for a non-triviawarnof time. For instance,
road construction may last long enough to disrupt the systessponsiveness but not long
enough to warrant changes to the indexes. It is a better eliibe tuning process can
select the reference points and other parameters basee tatekt workload at real-time
and incurring imperceptible overhead.

8.4.3 Degree of Eagerness,

Last but not least, if eager update is employed, we can alsathva degree of eagerness
D, according to the number of objects being migratéd last time. IfN,,, < &, we may
increaseD,. by one; otherwise decreag®. Here,¢ is a user defined threshold, which
depends on the latency that the system can afford to waitdj@comigration.

9. PERFORMANCE EVALUATION
9.1 Experiment Setup

In order to evaluate the SB-tree and the self-tuning framework we used the most repre-
sentative moving object indexes: thé-Bee [Jensen et al. 2004], thé'B!-tree [Yiu et al.
2008], the TPR*-tree [Tao et al. 2003] and STRIPES [Patel.e2@4], which are also
based on different underlying structures. We use the imgigations of the four indexes
provided in [Chen et al. 2008b]. The &B-tree is built on top of the same'Btree used by
the B’-tree and the B**!-tree for fairness. The $B-tree adopts the same optimal query
enlargement algorithm [Jensen et al. 2006] as thdrBe.

[Chen et al. 2008b] provides a benchmark for evaluating angparing the performance
of moving objects. Our experiments follow the standard @atbn procedure introduced
by that benchmark. Using the data generator included in #melimark, we generate
two kinds of workload, uniform and Gaussian datasets. Galyethe uniform datasets
are used for evaluating the benefits of tuning time-relai@cmpeters, the eagerness of
eager update strategy, etc. Since we intend to investigaténtbalance and changes in
the workloads, we use Gaussian workloads to test the impatiteodensity-based space

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

Continuous Online Index Tuning in Moving Object Databases . 31

Table 9.1. Workload Settings

| Parameter | Setting
Space domain 100,000 100,000m?
Data size 100K, ..., 1M
Maximum object speed 10mits, ...100m/ts
Maximum update interval’,, 120ts
Range query size 1,000x 1,000m?, ...,10,006< 10,000n%
Number of neighbors; 10, ..., 100
Query Predictive Time Ots, 10ts, ...60ts, ..., 120ts
Time duration 240ts, 1200ts
Buffer size (number of pages) 50
Disk page size (KB) 4
Number of hotspots 10
Query/Update ratio 100:1, ...1:100, ..., 1:10,000
Number of threads 1,2,4,..,12810
Length of subtree time interval | 0.17%p, 0.2lup, ..., 0.9 up, Tup
Offset of reference tim&,.. ¢-T; 0,0.2r,04r,..T,1.2T, ..., 2I"
Degree of eagerned3. 0,1,2,4,8,32, 64

partitioning scheme of the SB-tree. Specifically, the data generator randomly selects
some points in the space as hotspots. Each hotspot uses sigadistribution to generate
objects around it. The queries can be either uniformly ithisted or not; in the case of
non-uniform queries they follow the same distribution as tibjects. The details about
how the workloads are generated can be found in [Chen et @880

Table 9.1 summarizes the settings of workload used in thererpnts, where default
values of variable parameters are shown in bold. ts is shotirhestamp. Parameters are
shown in groups based on their meanings. The experimente@isame range and default
settings as the benchmark. In order to evaluate the tuniiegtefve vary the tunable
parameters such &, T,..r, D.. Parametet for region growing is fixed at 1 in all the
experiments. The execution time for region growing incesagith the number of cells in
the 2d-histogram. In our experiments, we use 000 cells in the 2d-histogram to keep
the tuning time to be lower than 5ms, so that the system willbeostalled by the tuning
process.

All the indexes are implemented in C++. All experiments apaducted on a IBM
ThinkPad with Pentium M 1.86GHz processor, 1.0GB RAM and G#GA Disk, running
Windows XP. All the results are the average for 10 runs. Asathihors in [Jensen et al.
2004; Tao et al. 2003; Tao and Xiao 2008; Chen et al. 2008ah dioei experiments, we
also use a block file with 4KB blocks to simulate a disk with 4K8ges. A LRU buffer
with 50 pages is used. We use a tablpalys® EVEREST, to test the random I/O speed
on disk and memory respectively. The speeds of read and offd&B clusters on disk
are ~20MB/s and~12MB/s respectively. The speeds of memory reads and writes a
~3356MB/s and~2770MB/s. The simulating experiments count the exact /@8 aur
experimental settings. However, since we cannot protibitiperating system from using
the physical memory, the results actually shows the timerfemory I/Os. Since all the
indexes are implemented with the same disk manager, we didr daferal comparison
between all indexes by simulation.

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

32 . S. Chen et al.

35 1000
& 100K % 70 100K ¥ 150 100K K _
1000K 1000K £ 1000K -

pd

100
R
o o}

0 =

Update /0
&
Query 10 (100K)
»
8
Query 10 (1000K)

Query Time (ms)

. i
04 30 g 110 e i £
= * Beeg 1 *

* E] 20 B 100 Ko ge

5 Koo R Ry Koo st sk
10 90
0 3 4 5 6 7 8 9 10 11 3 4 5 6 7 8 9 10 11 ot 3 4 5 6 7 8 9 10 11
Grid Order A Grid Order A Grid Orde.v A
(a) Update I/O (b) Query 1/0 (c) Query Time

Fig. 9.1. Grid Granularity
9.2 Tunable Parameters

Before comparing with other moving object indexes, we fingestigate the effect of the
tunable parameters discussed in Sections 6 and 7. In thid egperiments, we use uni-
form datasets to get a clearer understanding of the effabest parameters.

Effect of Grid Granularity:

We first study the effect of grid granularity empirically terify the analysis in Section 6
and to determine the optimal grid order. We test on two unifevorkloads, including
100K and 1M moving objects. Since the objects are uniforniggrithuted, the object
density in the whole space is the same. ThéBTree will have only one reference point
at the center of the space. The query workload consists ofiadorm range queries with
default settings.

Figure 9.1 illustrates the overall performance with grider\ varying from 3 to 11.
We make the following observations:

(1) The update I/O increases significantly whetr %(ZOQQN —log2C1,) (about 7 for 1M
objects) and hardly changes with finer partitioning.

(2) When\ < %(loggN—logQCL), the query 1/O increases with smaller value\oHow-
ever, with larger\, the number of average query I/O hardly changes. In Figurg}.
the query I/O of the 1M dataset is labeled with the right ysaxith different values,
because we do not intend to compare the 1/0 of 100K and 1M elathst to show the
trend of I/O changes with grid ordet

(3) The query processing time increases dramatically witirger A due to increasing
number of key retrievals. Notice that the query processimg tincreases when
becomes smaller. This can be explained by the fact that witkssively large grid
cells, very few number of d searches are required. However, the 1/O cost increases
significantly, which contributes more to the processingetimin addition, it incurs
more time to prune away a large number of false positives wihegrid cells are too
large.

Based on the observation in Figure 9.1 and the analysis itidBe@, we set the grid
granularityA to [£ (logo N —log2C1,)] as in Equation 6.2, which results in the best tradeoff
between update and query performance. In the following rxats, this rule is applied
to the selection of global space partitioning for the-Bee, while for the STB-tree, it
guides the selection of grid granularity of each refereraietp

Effect of Reference Time:

We now see the effect of the reference time. As discusseddtioBer.1, the reference
time only affects the query performance. Therefore, westigate the query time and 1/0
with respect to different choices of reference time. We thgyvalue ofl’..; — 1; from 0

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

Continuous Online Index Tuning in Moving Object Databases . 33

@

£

o o]

£ >

S g

§ &

[e4

Tret= Ty
(a) Query Time (ms)

,g 10

£ 9
o I

£ Y

= 2 7

z 5 s

= w 4

& 2 3y

2 g 2

= N

3

« 0

0
(c) Relative Error in Query Time (ms) (d) Relative Error in Query 1/0

Fig. 9.2. Reference Time-relative

35 T T T T T T T T T 35

3l X 3 *‘*x******%%%*x
- *
Z 25 Koy o 25 *
(] R =
E 2 * o ., %
< #K 5 ‘
g 15 g 15 ¥
g E
s 1r ¥ = 1
05 | ‘%*%%% 05
0 ks S S 0 ¥
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
Ty, Ty,
(a) Migration Time (b) Migration 1/0

Fig. 9.3. T vs. Migration Cost

to 240ts (2Ty,), i.€., the offset from the reference time to the lower baurgaf the time
interval of the subtree. The maximum update tifg is fixed at the default value of 120ts.
Figure 9.2 shows the average cost when the length of theesutine intervall” is set to
0.5Tp, Tup, 1.5T0p and 2y,

As shown, wherl’ = 0.5T%,, the query cost is minimized whefi..; — 1} = 60,
which be equal t&". WhenT > T, i.e.,T = T,,,1.5T,, and2T,,,, the query cost is
minimized wherl}..; — T} = 120¢ts, 140ts, 200ts respectively. The results in Figure 9.2
verify the analysis in Section 7.1. The optimal referenoeetis selected as Equation 7.7.
While T,y deviates from the optimal value, the query cost increasesioaically.

Effect of the Length of Subtree Time Interval T

In this experiment, we investigate the problem caused byabbjigration during rollover.
The length of the subtree time interv&laries from 0.1, to T, (if T"is larger tharly,y,
no migration occurs). In order to see the pure effect of dhjegration, eager update is
disabled.

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

34 S. Chen et al.
0.12 45
up; —X—Up, ¥ mg & Upy X Upy 3K mg 3
S e e S A S Y K
01 X s Lok g
- oo T X ;Q* % 35
g X > 3 3
£ % o x
s 008 ° s P A
) 2 2
£ oos E
§' [&) s
B
004(f— & g o 1
0.5
ol—Efl—][e

0.02
0.1 02 03 04 05 06 07 08
T/Tup

(a) Update Time (ms)

0.9

«

01 02 03 04 05 06 07 08 09
T/Tup

(b) Update 1/10

L

Fig. 9.4. T vs. Update Cost
22 * 70 %
2 1
18 ; 60 |
% 16 50
E 14 * o
g a2 s
5 1 * g % *
[L
g
(o4

20

x,}é
*
%X

0.4 x XK

10
0.2 K3 K

o o>< KKK
1 2 3 4 5 6 7 8 9 1152 1 2 3 4
T/Tup

(a) Query Time (ms)

*
5 6 7 8 9 1 15
T/Tup

(b) Query /O

Fig. 9.5. T vs. Update Cost

Figure 9.3 shows the total running time and number of I/Osr& migration. As ex-
pected, the total migration time is proportional to the nembf un-updated objects left
in the old subtree, which decreases with largleWhenT is only 10% of the maximum
update timer’,,,, there is a delay of more than 3s to finish the migratiorf” Ihcreases to
about0.97,,,, the migration time is reduced to around 0.5s. Note that tigeation 1/Os is
less affected wheffi' is smaller thar).97;,,,. This is because migration is done by deleting
objects from the older subtree and inserting them into theger subtree in a batch mode,
which saves a number of 1/0s, especially with the help of tR&Jbuffer.

Figure 9.4 illustrates the corresponding costs for difietgpes of updates, where “up
represents updates that involve only one subtree,™gpresents updates that affect both
subtrees and “mg” denotes the amortized cost of migratirgalsject. The amortized
migration cost is the minimum, i.e., around 0.04ms and noentioan 0.1 I/O access. A
single-subtree update (Upncurs about 2/3 1/0s of an update involving both subtrees.

Although the total migration time seems to be not very longly{@ few seconds), it is
still not acceptable in a continuous running MOD. As showrrigure 9.4, the average
update time is only about 0.1 millisecond. During the miignatime, the MOD is capable
of handling tens of thousands of updates.

Figure 9.5 shows the effect @f on query performance. As expected, the query cost,
including the CPU time and the number of I/O accesses inenah 7'

9.3 Effect of Eager Updates

Now we proceed to investigate the effect of eager updaféss set to be half of the
maximum update time, i.e0.5T,,. In this set of experiments, we vary the degrees of
eagernes®, from 0 to 64. The corresponding benefits on migration costexpense

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

Continuous Online Index Tuning in Moving Object Databases 35
1400 3500
1200°F 30007
2 1000 2500
o o
E 800 S 2000
£ 2
c g
s 600 5 1500
< =
(=3
2 400 1000
200 500 X
B = 0 . SR
noea 0 1 2 4 8 16 32 64 noea 0 1 2 4 8 16 32 64
De: degree of eagerness De: degree of eagerness
(a) Migration Time (ms) (b) Migration I/O
Fig. 9.6. Degree of Eagerness vs. Migration Cost
14 T g — . . . * X 14 T p—— . . . —x
12 | ealup, é e 12 | ealup, é e
o mg * B mg .
M * .
< o8 X o , x
E : Ko K g ¥
o 06 B st *
< ; = *
5 o4t 4F
B S SR S S
02 e I VS VIR o Honn 2T =
0% é (B o o ol 2 R g g8

noea 0 1 2 4 8 16 32 64
De: degree of eagerness

(b) Update 1/10

= £]
noea 0 1 2 4 8 16 32 64
De: degree of eagerness

(a) Update Time (ms)

Fig. 9.7. Degree of Eagerness vs. Update Cost

on update cost are shown in Figure 9.6 and Figure 9.7 respictiThe leftmost point
(marked as “no ea”) in both Figures represents the correipgmesult of the case where
eager update is disabled.

First Figure 9.6 shows the benefits of eager updates in tefrtotabtime and 1/0 cost of
an migration. If there are no eager updates, it requirestab8seconds for migrating ob-
jects during rollover. However, when eager update is emialie migration cost decreases
dramatically. Specifically, whe®, = 0, which means the smallest degree of eagerness,
the migration time is reduced to about 50ms. WHitn= 4, the migration time is around
5ms only, which is much more acceptable considering themaity of a MOD.

Eager update technique undoubtedly relaxes the constrairif’ by reducing the mi-
gration cost, but at the expense of an increase in updatekigste 9.7 shows the average
update cost. As shown, the migrating cost (“mg”) is still #mallest. The cost of single
tree update (“ug’) is more or less the same as that in Figure 9.4, since eagkateis
only applicable to updates involving two subtrees as deedrin Algorithm 5.1. There is
a significant increase on the average cost of updates’{f'ufnen eager update is applied.
WhenD, = 0, the update is about 7 times slower than normal update (teenarked
with “no mig”), while the increase in the number of I/Os is n@ma than 1. Intuitively,
whenD, = 0, the update cost should not increase since the deletiomaedion access
the same tree nodes as a normal update. In practice, byrdpdetd inserting more records
from a leaf may cause leaf merge or split, which incurs addéi 1/0s. With largeD., the
I/O cost increases more significantly, since the insertioag happen in leaf nodes other
than the leaf node where the core object, i.e., the objesessne eager update, is inserted.

Figure 9.8 shows the number of updates of different typesh Wgher degree of eager-
ness, i.e., largep., not only the number of objects to be migrated decreases|bothe

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

36 . S. Chen et al.

350 12
wlh {
2 11
300 mg 1

250 P A N A A

200
150 |/

100

Number of Updates (K)
Update Throughput (K)

50 * *

B

X
2 4 8 16 32 64 noea 0 1 2 4 8 16 32 64
e

0
no ea 1
De: degree of eagerness De: degree of eagerness

Fig. 9.8. Number of Updates Fig. 9.9. (Active)Update Thitouugt

Fig. 9.10. Distribution of Default Gaussian Workload (1Qdpmts)

number of updates involving both subtrees. Through eagsatimy, a number of updates
are avoided and reduced into single subtree updates. Dinerak we can see, the number
of single tree updates (“yp) increases withD...

Finally, Figure 9.9 shows the effect &f, on the total update throughput, i.e., the total
number of active updates processed in unit time. Updatesedally migration are not
counted here since they are additional workload introdibgettie design constraints of the
system. When there is no eager update, the throughput is lgjgih since the update cost
is the lowest as shown in Figure 9.7. With eager updategyadnthe throughput becomes
much smaller, the system will not be paused for object migmatrom Figure 9.8, we can
observe that the percentage of single tree updates insredselargerD.. Since single
tree updates are less costly, the total update throughgretiaes whep, increases. When
D, is larger than 8, the throughput starts to drop. This is beeatherD, is large enough,
the percentage of single tree updates does not increadastidity, while the cost of eager
updates does increase.

In summary, regarding the migration cost, the benefit of eagdating is already sig-
nificant whenD, is as small as 0 or 1. With largé., the further improvement is minor.
Considering the migration time and the update cost, we\retigat settind>,. to 0 or 1 is
sufficient enough for the tuning purpose.

9.4 Spatial Diversity

We now investigate the effectiveness of the?’BTree with regard to the spatial diversity
of moving objects. We use a Gaussian workload generated Mitrandomly selected
hotspots as default. Figure 9.10 shows a sample of the wamtklised (some hotspots are
close to others and cannot be clearly seen). In order to exathe effect of data skew
only, we keep the distribution and cardinality of workloatthanged with time in this set
of experiments. For the same purpose, eager updating islellsand!” is fixed toT},, so

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

Continuous Online Index Tuning in Moving Object Databases . 37

100
90
80
70
60
50
40
30
20
102

sT’B ——
dual

STRIPES —&—
TPR —6—

sT’B ——
dual

STRIPES —5—
TPR —6—

w

Update Time (ms)
Update I/0

of8 B 5
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Number of Objects (K) Number of Objects (K)

(a) Update Cost

45

700

sT’B —— sT’B ——
40 B 1 600 a 1
__ 35 [STRIPES —F— 7 STRIPES —H—
2 3 TPR —6— 500 TPR —6—
= o
2 =
2 25 = 400
=
2 20 S 300
5 &
S 15
o 200
10
100%
SE &
0 0
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Number of Objects (K) Number of Objects (K)

(b) Query Cost

Fig. 9.11. Object Cardinality

as to guarantee that there is no object migration. The irlexeup to 27, (240ts). The
qguery workload consists of 100 queries. The queries areiated every 12 timestamps
and the average costs are record.

Scalability Test:

First, Figure 9.11 shows the effect of the data size on querfppmance. The number of
objects varies from 100K to 1M, with an increment of 100K. Tasults of all the indexes
(except the SB-tree) conform to the findings in [Chen et al. 2008b]. Spealfy, as
shown in Figure 9.11(a), the TPR*-tree incurs a high updastin both 1/0 and time. This
is because of the overlap between MBRs that results in the*-Tiee having to search
multiple paths in an update. The MBR adjustment during anatgo@peration further
degrades the update time. The update time of the TPR*-tia@®oist 7 and 14 times higher
than that of the S3B-tree with 100K and 1M objects respectively. Theé-Bee has fast
update, but the number of update 1/Os is higher than the otherept the TPR*-tree. The
number of update I/Os of the"Btree is affected by the granularity of space partitioning
with regard to the data distribution. Since the workloadkisged, a uniform grid leads to
some densely populated cells which break the balance of thgd® by introducing many
overflow pages. Consequently, the update 1/O cost incre&&mg to the data-adaptive
space partitioning, the SB-tree has both fairly constant update time, i.e., abouing,2
and number of 1/0s, which is around 4. STRIPES and th¢Btree, although having
smaller number of update 1/Os than th&-Bee, take longer time to process a query.

Figure 9.11(b) shows the average query cost with respebetatmber of objects. As
expected, for all indexes, the query cost increases lipegith the data size. This is
because more objects need to be retrieved in a given qudonriey a larger dataset. The
ST?B-tree, the B-tree and the TPR*-tree incur similar number of 1/0s. Thetcdshe
ST?B-tree and the B-tree are mainly determined by the number of objects coathin

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

38 . S. Chen et al.

ST?8 —o— sT?B —o—
B &
d ual
- 250
STRIPES h BTRIPES ——
TPR —O—

w S vl o ~ ©
Query /0

Query Time (ms)
N
a
% m
. - |

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Range Query Side Length (km) Range Query Side Length (km)

Fig. 9.12. Range Query Side Length

the enlarged query region, while the TPR*-tree has beerifapaly designed to reduce its
I/O cost over the original TPR-tree. The'B!-tree incurs a larger number of 1/0Os. This
is partially because the partitioning in the velocity dirsiems makes some nearby objects
of different velocities distributed into different leaf des, while in the S3B-tree and B-
tree, nearby objects are clustered together. Among allntiexes, STRIPES is the most
expensive regarding the 1/0 cost due to the unbalancingtsireiand low utilization space
of the quad-tree.

Regarding the query processing time, tHetBee is not able to handle hotspots well due
to its use of one single grid granularity, and causes marse fpbsitives to be retrieved
and examined, and therefore incurs higher I/0Os. Th&BStfee is most efficient in terms
of query time due to its adaptive use of appropriate grid glianity when it rolls forward
with time.

In Figure 9.11, the B-tree consistently outperforms the'B'-tree. This is somewhat
surprising, since it does not conform to the findings in [Yilak 2008], where the B'%!-
tree is expected to beat the Bree in terms of the number of I/Os. We find the following
reasons for this inconsistency. In [Yiu et al. 2008], thekgiage is only 1K bytes and no
buffer is used. Query processing of th&-Bee incurs larger number of 1/Os, since it has
to revisit upper-level tree nodes several times. Howewewpir experiments, a small LRU
buffer is used and intermediate nodes are kept in memory afitise time. The buffering
effect brings a considerable decrease on the number ofipggysocessing 1/0s. As for the
guery processing time, [Yiu et al. 2008] does not providerasylt on the query processing
time of the B"““!-tree. In our experiments, we find that the decompositionmmedlapping
testing of the MORs in th&?“*!-tree are both time-consuming tasks. Therefore, the query
processing time of the B*!-tree is consistently higher than all the other indexes.

Size of Query:

Figure 9.12 shows the average cost of processing rangeeguedil the indexes are
tested with square-sized range queries with side lengtyingfrom 1km to 10km. As
expected, the query cost of each index increases with ardsitrg query window size.
Larger windows contain more objects and therefore lead temode accesses. In general,
Figure 9.12 shows the same relative order between the cas/gsFigure 9.11(b). The
TPR*-tree, the B-tree and the SB-tree have the similar number of I/Os. With the default
100K Gaussian workload, the’Bree spends twice the query processing time of the TPR*-
tree. As discussed in Section 2, the TPR*-tree is a datatipaitig index, which is less
affected by the data distribution comparing with the-tBee. The S¥B-tree shortens the
processing time of the®Btree by about 30% for queries with 10km side length. ThéBT
tree improves the Btree with more adaptive space partitioning. As a resudt gffiect of

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

Continuous Online Index Tuning in Moving Object Databases . 39

180

ST’ —o— sT?B —o—
16 B —+—

X

goal ¢ 160 BduBa\ ¢ 1

STRIPES —8— 1 BTRIPES

TPR 140 1

12 q
i; W
6 —t
5—5

[
kN

120

Query /0

100

ol W,
R e s

0 40
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
k: number of neighbors k: number of neighbors

Query Time (ms)

Fig. 9.13. kNN Query k

data skew is mitigated. The’B* -tree takes the longest processing time and incurs twice
number of I/Os than the TPR*-tree, th& Bee and the SAB-tree. As for STRIPES, the
processing time increases the fastest among all indexesibeof the significant increase
in the number of 1/Os.

Figure 9.13 examines the performancéNN queries further, with the number of neigh-
borsk varying from 10 to 100. As fokNN queries, all indexes have a slight increase in
I/O cost and query processing time. The I/O cost of (& queries, which depends on
the number of objects in the expanded query region, is lessitae tok for the B*-tree
and the STB-tree. In terms of the number of I/Os, the*BFtree surpasses the? Bree by
a greater margin fokNN queries than for range queries. THEN queries in both B-tree
and the S¥B-tree are conducted as incremental range queries withitied search region
estimated from the objects density. The cost depends jaogethe accuracy of the esti-
mated search radius. The&Bree makes such estimation using global object density. As
a result, in dense regions, thé Bee starts thé& NN search with an oversized search re-
gion; in sparse regions, the’Bree starts with a small search region, but has to expand the
region for many times to find theNNs. Both affect the query processing time and I/Os.
The STB-tree, on the other hand, starts the search with a more atectadius according
to the object density around the reference points. Owingdoeraccurate search region,
the performance of the SB-tree onkNN queries is less affected by the data skew. The
TPR*-tree incurs fewer 1/Os because of its branch-and-d&nN search algorithm. The
ENN query performance of STRIPES and th&B-tree are similar to their performance
on range queries, contributing the highest number of I/@ktha highest processing time
respectively.

9.5 Temporal Diversity

Next, we examine the effectiveness of the?Bftree’s self-tuning to adapt to the time-
dependent changes in data cardinality. All the object®follhe same distribution used
in the previous experiments (Figure 9.10). We build the xaden the first round and run
them for another 9 rounds of time. Each round is 120s. In eaghd, each object updates
once and the whole index will be refreshed after the rouna: fiimber of queries is 1%
of the number of updates each round. This is to simulate tieapmlications where many
moving objects will keep on updating their positions, areltlimber of positional updates
significantly outnumbers the number of queries. We studytelted time of processing

the updates and queries in each round as a measure of thdl peei@mance. Then we

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

40 . S. Chen et al.

Non-Uniform Query s - Non-Uniform Query
35 | Uniform Query =—= 4 35 Uniform Query =—=

25 25

Speedup
)
Speedup
N

15

1 — 1 —
0.5 [I 9 0.5

0 0
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Time Round Time Round

(a) Range Query (b) kNN Query

15 r

Fig. 9.14. Increasing Data Cardinality
compute the speedup introduced by the self-tuning feafitfteedcSTB-tree, defined as:

total processing time of the Btree
total processing time of the $B-tree

The granularity of the B-tree is selected using the initial number of objects, whike
space partitioning of the SB-tree is dynamically tuned in accordance to the workload.
When the data is uniformly distributed, the performancéef$TB-tree degrades to that
of the B*-tree with only one reference point at the center of the spdtcether words,
the B-tree is a static version of the 8B-tree which completely ignores the distribution
and changes of objects. Hence we compare thiBSiee with the static B-tree to show
the effectiveness of the self-tuning features. The runtiing of the self-tuning process is
included in the total processing time of the?BFtree.

First, we start with 100K objects and add another 100K eaaghdoFigure 9.14 shows
the speedup brought by self-tuning in each round of time. §peedup introduced by
self-tuning grows with time, when the hotspots and dataitligion change with time.

Initially, the B*-tree selects the granularity of space partitioning witdK @bjects. It
then uses a grid with large cells (about 36@D0O0NT). With the increasing number of
objects in the following rounds, the update performanceatigs, because the increase
in the number of overflow pages affects the balance of thernlyidg B™-tree. On the
other hand, since the 8B-tree partitions and indexes objects according to theibligton
and density, the update cost remains at about 0.2ms allrtiee tSince the B-tree uses
a large cell, it saves on query processing time accordingitdindings in Section 9.2.
However, with carefully chosen granularity of space piartit the query processing time
of the STB-tree is higher than the Btree only in the dense regions. In those sparse
regions, the SB-tree might use even larger grid cells, which would reduue dquery
processing time. Therefore, combining all these factsptrerall speedup introduced by
the self-tuning of the SB-tree over static B-tree, especially when there are more updates
than queries, are obvious and significant.

Figure 9.15 shows the results of a reverse process. Stariihd M objects, the number
of objects being indexed decreases by 100K per round. Thee® now uses a fine grid
with smaller cells (about 200200n?) to partition the entire space. As we can see, the
speedup introduced by the self-tuning to the system is jligtleahigher with non-uniform
gueries. That is because the cost of tHetie is also near optimal with such a fine grid.
Non-uniform queries follow the same distribution as olgeand therefore queries are con-
centrated at those dense regions. Now, in those dense setfierS TB-tree also employs
fine grid. Therefore, the system speedup introduced by tusitess significant. However,

Speedup=

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

Continuous Online Index Tuning in Moving Object Databases . 41

Non-Uniform Query

Non-Uniform Query
Uniform Query =—=

Uniform Query =—=—

15

05

Speedup
[
Speedup
o - N W S (4 o ~N
|

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Time Round Time Round
(a) Range Query (b) ENN Query

Fig. 9.15. Decreasing Data Cardinality

(a) Round 5 (b) Round 9
Fig. 9.16. Distribution of Workload in Spatio-Temporal Tes

Non-Uniform s Non-Uniform s
Uniform &=—= Uniform &—=—=
25
4
2
2 23
§ 157 g
a o
) o 2
1
05 1
0 0
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Time Round Time Round
(a) Range Query (b) kNN Query

Fig. 9.17. Change of Data Distribution with Time

for the uniform queries, the SB-tree gains more by tuning with the data workload. The

ST?B-tree reduces the processing time of queries in the spagsens by using larger grid
cells. The overall performance gain is much more signifitiaaut for non-uniform queries.

9.6 Spatio-Temporal Diversity

Now we further investigate the performance of the selfiigrphase of the $B-tree with
regard to the changes of objects distribution with time. Weegate a set of workloads
in which the skewness of objects increases with time. In dodinwe build the indexes
with 1M uniformly distributed objects. Next, in round 1, thbjects are generated with
10 hotspots. Subsequently, the number of hotspots is rdduc# each round. Finally, in
round 9, there is only one hotspot. Figure 9.16 shows theshrmap of objects at round 5
(moderately skewed) and round 9 (highly skewed). The quedate ratio is still 1:100.
Figure 9.17 shows the changes of system speedup with timexgected, the gain of the

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

42 . S. Chen et al.

self-tuning STB-tree over the static Btree increases when the data become even more
skewed with time. During round 1, the %3-tree is comparable to the*Rree. Since

the objects are uniformly distributed, the region-growdhgorithm will result in only one
reference point and hence the?BFtree degenerates to & Bree with only one reference
point. However, with skewed objects joining in the subsedqueunds, the STB-tree grad-
ually outperforms the Btree owing to the self-tuning phases, which are equipped wi
adaptive space partitioning and granularity of indexingy. fange queries (Figure 9.17(a)),
the STB-tree outperforms the Btree by about 2 times in round 9 for both uniform and
non-uniform query workloads. F&NN queries (Figure 9.17(b)), the performance gain is
much higher, which is about 4 times.

9.7 Throughput Test

Finally, we evaluate all indexes in a multiple-user enviremt. We use a multi-thread
program to simulate the real multiple-user environmente Bti-tree adopts the B-link
concurrency control mechanism as presented in [Lehman andl981]. The R-tree (for
TPR*-tree) employs the R-link technique [Ng and Kameda 1984 implement a native
concurrency control of the quad-tree for STRIPES. Spedfica search operation holds
a read lock on each node on its current searching path whilesantion/deletion holds
a write lock on the current node. The write lock is release@miocks on its children
are granted and split/merge will not happen to the curredeéradter the insertion/deletion.
The default 1M dataset as shown in Figure 9.10 is used. Theyquerkload consists
of range queries with default settings, following the sanstridbution of the data objects.
Updates and queries arrive evenly in time and are loadedhitatsk pool and then randomly
distributed to each free working thread. The performanamesisured by two metrics:
throughput and response time. The throughput is definedesavitrage number of tasks
finished in a unit time. The results are the average of 10 réiasrulation.

Figure 9.18 shows the throughput and response time withubeyeupdate ratio varying
from 100:1 to 1:1000 using 10 working threads. In real mowvihgect applications, the
update load caused by the changes in object locations anthgspeed is much higher
than the query load, and the query-update ratio is to simlath scenario. As expected,
the throughput of the indexes increases significantly witrerupdates and the response
time decreases. The queries, which hold shared lock on ttie being accessed, do not
prevent the other queries. However, although queries atithver read operations, they
block the update operations, and by design of the experittentipdates contribute more
to the throughput. The updates access only a few nodes imdlex iand can finish very
quickly. The (range) queries, on the other hand, have tetsg/multiple paths and read
many leaf nodes (data nodes); hence they take longer tharptiaes. Since the through-
put is defined as the number of operations completed by thexé@slevery second, the
updates contribute more to it. Therefore, when the pergentdupdates in the workload
increases, the throughput increases and the responsedoreades accordingly.

Figure 9.19 shows the effect of the number of threads undeklaad whose query-
update ratio is 1:100. The number of threads varies from 28 The throughput reduces
with increasing number of threads for all indexes, and tepaase time increases with the
number of threads being used. An update locks exclusivelyntide being accessed and
all the concurrent requests for reading/writing the noaesarspended. As the workload
includes more updates than queries, the indexes are frigieing write-locked. The
throughput decreases with more threads and each threaiforaét longer time for its turn

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

Continuous Online Index Tuning in Moving Object Databases . 43

4000

ST’B —o—
3500]

dual
3000 STRIPES —H—
TPR —O— |
2500
2000
1500
1000

500
[

Throughput
Response Time (ms)

o :
0.01 0.1 1 10 100 1000 10000
Update/Query Ratio Update/Query Ratio

(a) Throughput (b) Response Time
Fig. 9.18. Query-Update Ratio

4500 900

ST —o— ST —o—
4000 B —+— 800 B
dual X dual X
3500 | STRIPES —3—] 7 700 r STRIPES —H—
5 3000 TPR = 600 TPR =5
£ 25000 E 500
=1 Q
S 2000] 3 400
= =}
= 1500 1| S 300
1000 N 200
500 7 100 o g
0 —a—
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Number of Threads Number of Threads
(a) Throughput (b) Response Time
Fig. 9.19. Number of Threads: Query-Update Ratio=1:100
800 4000
ST —o—
700 B 3500
B —X—
600 STRIPES —3— | 3000
TPR —O—
500 | 2500
400"} Bl 2000

Throughput

300 1500

2000 e e 1000

wt—6—6—6—06—6—06__] 500

Response Time (ms)

0
1 2 4 8 16 32 64 128

Number of Threads Number of Threads

(a) Throughput (b) Response Time

Fig. 9.20. Number of Threads: Query-Update Ratio=1:1

to access the tree.

However, with more queries, the throughput first increasesthen reduces with in-
creasing number of threads. As shown in Figure 9.20, whemtir&load consists of
50% queries and 50% updates, the throughput reaches thenitsa&bout 2 threads or
4 threads for both indexes. As more threads are introdubeg,dtart to compete for re-
sources and the throughput reduces as a result. Becausedtiestold a shared lock on
the node being accessed, it will not suspend the other qyemations. Therefore, the de-
gree of concurrency becomes higher with more queries. Wittemueries, the throughput
reaches the peak with more threads. For example, when aipeigte ratio is 10:1, the
peak of the throughputis 4 threads or so. However, in the M@i2se are typically more
short updates than queries, so we omit the results for sudkileanl composition.

As can be observed from Figures 9.19 and 9.20, the indexekrhihing point after
the number of threads increases to a certain point and thises the throughput starts to
decrease after hitting the peak. We note that the througdmmlithe response time can be
improved by implementing some admission controls to thedkte amount of work being

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

44 . S. Chen et al.

performed concurrently. However, the admission contrimbiuces another dimension of
effect to the performance, which has not been taken intowatdtere.

10. CONCLUSION

In this paper, we have re-examined the problem of indexingingoobject databases
(MODs). We identified several forms of data diversity (naynspace, time, and spatial-
temporal diversities) in MODs that existing static inde&es unable to handle effectively.
We then proposed the 8B-tree, an online self-tunable'Btree index that continuously
adapt to the changes in object locations and distributidbosadapt to space diversity, the
ST?B-tree partitions the data space using a set of referencgspdeach reference point
uses its own individual grid to partition its Voronoi cellh@& grid granularity is determined
by object density around a reference point. By monitoring distribution and density
of objects continuously, the $B-tree dynamically determines a different set of refer-
ence points, and adaptively adjusts the granularity ofespactitioning. We also proposed
methods to choose the reference points, and provide a quedah the optimal choice of
granularity. To deal with the time diversity, the @3-Tree employs a “multi-tree” ap-
proach, where two subtrees are used to index objects reggidir last update time. The
basic idea is to rebuild the subtrees periodically and @iy, during which the newly
identified reference points and granularity are used. We laéso proposed a novel ea-
ger update mechanism to facilitate object migration frora subtree to another. We have
conducted an extensive performance evaluation of ti@SITee against several state-of-
the-art techniques. The experimental results showed heriguity of the SEB-Tree over
these methods, confirming that the?BFtree is efficient, robust and scalable with respect
to data distribution, volume and concurrent operationsreMmportantly, equipped with
the self-tuning capability, the SB-tree is also adaptive to changes in workload with time.

ACKNOWLEDGMENTS

Su Chen and Beng Chin Ooi were supported by Singapore NRR 8¢a62-000-376-279.
Mario A. Nascimento was supported by a NSERC Canada Disg@vent.

REFERENCES
ANKERST, M., BREUNIG, M. M., KRIEGEL, H.-P.,AND SANDER, J. 1999. Optics: Ordering points to identify
the clustering structure. IRroc. ACM SIGMOD49-60.

BECKMANN, N., KRIEGEL, H. P., R.£HNEIDER, AND B.SEEGER 1990. The R*-tree: An efficient and robust
access method for points and rectanglesProc. ACM SIGMOD322-331.

CHAUDHURI, S.AND NARASAYYA, V. R. 1997. An efficient cost-driven index selection toot Microsoft
SQL server. IrProc. VLDB 146-155.

CHEN, N., SHou, L.-D., CHEN, G.,AND DONG, J.-X. 2008a. Adaptive indexing of moving objects with High
variable update frequencie30URNAL OF COMPUTER SCIENCE AND TECHNOLOGY®&@\ov.), 998—
1014.

CHEN, S., ENSEN, C. S.,AND LIN, D. 2008b. A benchmark for evaluating moving objects indexe Proc.
VLDB. 1574-1585.

CHEN, S., QoI, B. C., TAN, K.-L., AND NASCIMENTO, M. A. 2008. The S¥B-tree: A self-tunable spatio-
temporal B -tree index for moving objects. IRroc. ACM SIGMOD29-42.

ESTER, M., KRIEGEL, H.-P., SANDER, J.,AND XU, X. 1996. A density-based algorithm for discovering
clusters in large spatial databases with noise?rsc. KDD. 226-231.

Guo, S., HUANG, Z., RGADISH, H. V., Ool, B. C.,AND ZHANG, Z. 2006. Relaxed space bounding for
moving objects: A case for the buddy tre&GMOD Record 354, 24—-29.

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

Continuous Online Index Tuning in Moving Object Databases . 45

GUTTMAN, A. 1984. R-trees: A dynamic index structure for spatiatcleiag. InProc. ACM SIGMOD47-57.

JAGADISH, H. V., Ool, B. C., TaN, K.-L., YU, C.,AND ZHANG, R. 2005. iDistance: An adaptive'Btree
based indexing method for nearest neighbor seak€M Trans. Database Syst 38,364—397.

JENSEN, C. S., LN, D., AND Ool, B. C. 2004. Query and update efficient Bree based indexing of moving
objects. InProc. VLDB 768-779.

JENSEN, C. S., TESYTE, D., AND TRADISAUSKAS, N. 2006. Robust B-tree-based indexing of moving
objects. InProc. MDM. 12.

KALASHNIKOV, D. V., PRABHAKAR, S.,AND HAMBRUSCH, S. E. 2004. Main memory evaluation of moni-
toring queries over moving objectBistrib. Parallel Databases 1%, 117-135.

KoLLios, G., GUNOPULOS, D., AND TSOTRAS, V. 1999. On indexing mobile objects. Froc. ACM PODS
261-272.

KoLLios, G., lpADOPOULOS D., AND GUNOPULOS V. 2005. Indexing mobile objects using dual transfor-
mations.The VLDB Journal 142, 238—-256.

KwoN, D., LEE, S.,AND LEE, S. 2002. Indexing the current positions of moving objesiagithe lazy update.
In Proc. MDM. 113-120.

LEE, M. L., Hsu, W., EENSEN, C. S., QJI, B.,AND TEO, K. L. 2003. Supporting frequent updates in R-trees:
A bottom-up approach. IRroc. VLDB 608-619.

LEHMAN, P. L. AND YAO, S. B. 1981. Efficient locking for concurrent operations ofré&s. ACM Trans.
Database Syst. @}, 650-670.

MOKBEL, M. F., XIONG, X., AND AREF, W. G. 2004. Sina: Scalable incremental processing of coatis
queries in spatio-temporal databasesPtac. ACM SIGMOD623-634.

MOON, B., AGADISH, H. V., FALouTsOsS, C.,AND SALTZ, J. H. 2001. Analysis of the clustering properties
of the hilbert space-filling curveTKDE 13,1, 124-141.

MOURATIDIS, K., PAPADIAS, D., AND HADJIELEFTHERIOU, M. 2005. Conceptual partitioning: An efficient
method for continuous nearest neighbor monitoringPioc. ACM SIGMOD 634—645.

NG, V. AND KAMEDA, T. 1994. The R-link tree: A recoverable index structuresfoatial data. IfiProc. DEXA
163-172.

PATEL, J. M., CHEN, Y., AND CHAKKA, V. P. 2004. Stripes: An efficient index for predicted trégees. In
Proc. ACM SIGMOD637-646.

Procoriug C. M., AGARWAL, P. K.,AND HAR-PELED, S. 2002. Star-tree: An efficient self-adjusting index
for moving objects. IMALENEX 178-193.

SALTENIS, S. AND JENSEN, C. S. 2002. Indexing of moving objects for location-basedvises. InProc.
ICDE. 463-472.

SALTENIS, S., S.ENSEN, C., LEUTENEGGER S. T.,AND LOPEZ M. A. 2000. Indexing the positions of
continuously moving objects. IRroc. ACM SIGMOD 331-342.

TAO, Y., PAPADIAS, D., AND SuN, J. 2003. The TPR*-tree: An optimized spatio-temporal ssaaethod for
predictive queries. IfProc. VLDB 790-801.

TAO, Y. AND XI1AO, X. 2008. Primal or dual: which promises faster spatioterapsearch?The VLDB Jour-
nal 17,5, 1253-1270.

TAO, Y., ZHANG, J., RAPADIAS, D., AND MAMOULIS, N. 2004. An efficient cost model for optimization of
nearest neighbor search in low and medium dimensional spa®E 16,10, 1169-1184.

XIONG, X. AND AREF, W. G. 2006. R-trees with update memos Pliroc. ICDE 22.

XIONG, X., MOKBEL, M. F.,AND AREF, W. G. 2005. SEA-CNN: Scalable processing of continuousrest
neighbor queries in spatio-temporal database®rte. ICDE 643—-654.

Yiu, M. L., TAO, Y., AND MAMOULIS, N. 2008. The B““!-tree: indexing moving objects by space filling
curves in the dual spac@he VLDB Journal 173, 379-400.

Yu, C., Ool, B. C., TaN, K.-L., AND JAGADISH, H. V. 2001. Indexing the distance: an efficient method to
knn processing. IiProc. VLDB 421-430.

Received Month Year; revised Month Year; accepted Monthr Yea

ACM Transactions on Database Systems, Vol. V, No. N, Monffi\20

