
270

VeriTxn: Verifiable Transactions for Cloud-Native Databases
with Storage Disaggregation

ZHANHAO ZHAO∗, Renmin University of China, China

HEXIANG PAN, National University of Singapore, Singapore

GANG CHEN, Zhejiang University, China

XIAOYONG DU, Renmin University of China, China

WEI LU, Renmin University of China, China

BENG CHIN OOI, National University of Singapore, Singapore

Cloud-native databases become increasingly popular while exposing to greater data security and correctness

risks. Existing verifiable outsourced databases overlook either the correctness risk of transactions, or the

disaggregation architecture: a key design consideration of cloud-native databases for performance and elasticity,

or both. We present VeriTxn, a novel cloud-native database that efficiently provides verifiability of transaction

correctness. VeriTxn relies on the trusted hardware (i.e., Intel SGX) to enable verifiable transaction processing.

We build a page-structure cache in the trusted domain, where transactions can be verified with low, constant

overhead. VeriTxn further optimizes the read-only transactions by exploiting disaggregation to fit the read-

heavy workload in the cloud. We also integrate our proposal into MySQL, a popular open-source database. We

conduct extensive experiments to compare VeriTxn against state-of-the-art verifiable databases and evaluate

the performance of VeriTxn on MySQL. The results show that VeriTxn introduces tolerable performance

degradation for verifiable transactions, while achieving up to 7.03× and 7.93× higher throughput than Litmus

and LedgerDB, and its sustainable performance when integrated with MySQL.

CCS Concepts: • Information systems→ Database transaction processing; • Security and privacy→
Database and storage security.

Additional Key Words and Phrases: Cloud Database, Disaggregation, Verifiable Transaction

ACM Reference Format:
Zhanhao Zhao, Hexiang Pan, Gang Chen, Xiaoyong Du, Wei Lu, and Beng Chin Ooi. 2023. VeriTxn: Verifiable
Transactions for Cloud-Native Databases with Storage Disaggregation. Proc. ACM Manag. Data 1, 4 (SIGMOD),

Article 270 (December 2023), 27 pages. https://doi.org/10.1145/3626764

1 INTRODUCTION

In recent years, organizations such as banks [21, 49] and governments [9] are increasingly moving

their sensitive and critical data into cloud databases. Such outsourcing requires cloud databases to

guarantee data integrity and ensure the correctness and safety of each transaction. However, the

results returned from the cloud can be incorrect or without any evidence on their correctness. For

example, an attacker can intercept clients’ requests and pretend to be a cloud service provider by

∗ This work was done while this author was at National University of Singapore.

Authors’ addresses: Zhanhao Zhao, Renmin University of China, China, zhanhaozhao@ruc.edu.cn; Hexiang Pan, National

University of Singapore, Singapore, panh@u.nus.edu; Gang Chen, Zhejiang University, China, cg@zju.edu.cn; Xiaoyong Du,

Renmin University of China, China, duyong@ruc.edu.cn; Wei Lu, Renmin University of China, China, lu-wei@ruc.edu.cn;

Beng Chin Ooi, National University of Singapore, Singapore, ooibc@comp.nus.edu.sg.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).

2836-6573/2023/12-ART270

https://doi.org/10.1145/3626764

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

https://doi.org/10.1145/3626764
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626764

270:2 Zhanhao Zhao et al.

simply returning empty results for any requests. To this end, transactions in the cloud have to be

verifiable so that the correctness of any returned results is verifiable.

Cloud-native databases are databases specifically designed to exploit the elasticity, scale, re-

siliency, efficiency, and flexibility provided by the cloud. To achieve good efficiency and elasticity,

the database design has to feature a disaggregation architecture, where the computation and

storage are decoupled as two distinct components connected by the high-speed network [1]. A

number of cloud-native databases adopt such an architecture, including Azure SQL [4], Aurora [68],

Taurus [32], PolarDB [17], and Snowflake [27]. Various techniques have been proposed to speed

up these disaggregated databases, including customized storage management [16, 75], and query

processing with caching and pushdown [71, 74]. For verifiability, several approaches have been

proposed to ensure data integrity by encrypting queries and verifying their results [3, 5]. However,

such approaches cannot verify whether transactions execute correctly without compromising ACID

properties, and therefore, the problem of ensuring the verifiability of transactions in the cloud

remains open.

To support verifiable transactions, existing solutions either provide serializability checking

ability [2, 64], or heavily customize the transaction processing protocols [69] and data structures [42].

Consequently, they are not able to exploit the efficiency provided by disaggregation. On the one

hand, serializability checking relies on tracing dependencies among the transactions. Extracting

dependencies from logs is costly, especially in cloud-native databases where multiple nodes can

handle transactions individually, and hence may affect the database scalability. On the other hand,

customization-based approaches introduce certain constraints to the storage and transactions. For

example, Litmus [69] requires the data to be stored in memory to enable verification by the memory

integrity checker. Several classic approaches propose to organize the data using Merkle Hash

trees [50], where each update requires the reconstruction of the tree. However, the cloud storage

typically has its own implementation and cannot be modified easily, and hence the Merkle tree

reconstruction is hard to implement. All these constraints introduce complexity and performance

penalty when these techniques are directly employed in cloud-native databases.

Different from existing works, we turn to trusted execution environments (TEE) such as Intel SGX

(Software Guard Extensions) [24] to efficiently support verifiability for transactions. Among the

available hardware technologies that support TEE implementation, we shall use SGX as the default

hardware in this paper. Succinctly, SGX provides a protected execution environment, known as an

enclave, within potentially compromised nodes in the cloud, shielding data and attested programs

in the enclave from malicious manipulation. Due to its functionalities, various data management

systems including key-value stores [7] and outsourced databases [58, 60] are built with SGX for

security and data integrity. However, in the past years, TEE suffers from a limited memory capacity

of up to 256 MB and high overheads of performance. As a consequence, researchers proposed

various methods to overcome these limitations, e.g., by only putting required data in this restricted

environment [7, 58, 63, 78]. However, with the GB capacity of current SGX [34], these optimizations

become less effective. Besides, the earlier designs do not exploit the disaggregation architecture. In

agreement with the recent database self-assessment report [1], it is important to design a verifiable

transaction processing protocol for a disaggregation architecture that exploits TEE for efficiency.

In this paper, we propose VeriTxn, a cloud-native database that efficiently supports verifiable

transactions. We disaggregate the transaction layer and encapsulate it in SGX, i.e., transactions are

entirely executed in the enclave. To this end, we design a page-structure cache, called a verified

cache, which is maintained in the enclave. Each transaction only accesses the verified cache for

reading/writing the data items. We subsequently propose two techniques to ensure efficient and

verifiable transaction processing by exploiting the memory capacity of today SGX. First, we achieve

verifiability by introducing a server-side verification mechanism. We delegate the verification

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

VeriTxn: Verifiable Transactions for Cloud-Native Databases with Storage Disaggregation 270:3

to the attested code residing in the trusted domain, removing the need to ship large-size proofs

over the network between the server side and the client, as well as offloading the client’s burden

of verifying the proofs. This server-side verification is coarse-grained, i.e., we verify each data

page instead of each data item accessed by a transaction. Consequently, each transaction has

a bounded cost corresponding to the number of pages it accessed. Enabled by this page-level

verification mechanism, our proposed verifiable transaction protocol is generally applicable to

databases employing a page-structured storage model. Second, we design a double-layer cache

management, consisting of the verified cache in the enclave and the data cache in the untrusted

domain. The verified cache interacts with the data cache, while the data cache interacts with the

disaggregated cloud data storage. We employ a hybrid cache replacement policy, i.e., a lazy policy

for the verified cache, while an eager policy for the data cache. With this approach, we cache data

in the verified cache and ensure the freshness of the data cache as much as possible.

By disaggregating the storage and computation, we ensure the scalability for running verifi-

able read-only transactions. VeriTxn can add more individual compute nodes to handle read-only

transactions, which is well-suited for read-heavy workloads in the cloud. The main challenge is

then to ensure the verified cache coherence in these nodes, of which we address by leveraging an

asynchronous replication mechanism to periodically replicate the verified cache between compute

nodes, making a tradeoff between data freshness and transaction latency.

In summary, we make the following contributions:

• We present VeriTxn, a cloud-native database that guarantees verifiable transactions. VeriTxn
processes transactions in SGX with a disaggregation architecture for elasticity and efficiency.

• We propose the server-side verification mechanism to ensure efficient verification of transactions.

The key data structure is the SGX-bounded verified cache, which enables transactions to be

verified with low, bounded overhead.

• We introduce optimization strategies for read-only transactions while providing verifiability

guarantees. This enables VeriTxn to scale out linearly.

• We conduct extensive evaluations on two popular benchmarks, namely YCSB and TPC-C, and

compare VeriTxn against state-of-the-art verifiable databases. The results show that VeriTxn is

efficient, and it outperforms the baselines by up to 7.93×.
• We integrate VeriTxn into MySQL and the performance evaluation confirms its robustness in

MySQL variants.

The remainder of the paper is structured as follows. The next section provides relevant back-

ground on cloud-native databases and Intel SGX, and presents the problem statement. Section 3

describes the threat model and an overview of VeriTxn. Section 4 details the design of VeriTxn,
including the verifiable transaction processing, etc. Section 5 introduces the tampering recovery

technique and a comprehensive security analysis. Section 6 describes the system implementation,

and Section 7 presents the experimental results. Section 8 discusses the related works, and Section 9

concludes.

2 BACKGROUND AND PROBLEM DEFINITION
In this section, we describe cloud-native databases and Intel SGX, and state the problem of support-

ing verifiable transactions.

2.1 Cloud-Native Databases
Modern cloud-native databases decouple the computation from storage and manage them as two

separate layers of services [4, 17, 27, 32, 68]. Such disaggregation can reduce operational costs and

improve resource utilization because it allows computation and storage to scale and be charged

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

270:4 Zhanhao Zhao et al.

Network

Fig. 1. Cloud-Native Databases with Disaggregation

independently. Figure 1 illustrates the architecture of a cloud-native database, which consists of

two components: (1) a persistent storage layer hosts the actual data and write-ahead logs for

achieving fault tolerance; (2) a compute layer that is responsible for SQL execution, transaction

management, recovery daemon, etc. Unlike legacy databases, the compute layer must access the

storage layer through the network because of the disaggregation. In our design, we minimize inter-

layer communication through customizations in transaction processing and cache management,

which will be detailed in Section 4.

2.2 Intel SGX
Intel Software Guard Extensions (SGX) [24] is a hardware-based implementation of the trusted

execution environment (TEE), which enables the trusted processing of private data. SGX can be

used to protect the execution of applications and ensure data integrity in cloud environments

because of the following two key features: Isolation: SGX reserves several private memory regions

called enclave, which are isolated from the rest of the host. Both the code and the data in the enclave

are protected from being accessed by processes outside the enclave, even by the operating system

or hypervisor. SGX achieves this by locating the enclave memory in protected memory pages called

enclave page caches (EPC). Attestation: SGX enables a remote client to verify that the code is

executed as expected inside the enclave, which is called attestation. Upon successful attestation,

the remote client can bootstrap a secure communication channel with the enclave. As an example,

a client that initiates a transaction can use such a secure channel to guarantee the safe delivery of

the transaction to the enclave.

In the latest generation of SGX, the EPC capacity has increased from the previous 256 MB to

512 GB per socket, making the memory limitation, as reported in previous works [34, 63, 78],

no longer a major constraint. However, a critical limitation remains: interactions between host

processes and enclaves are still expensive. Hosts can only interact with the enclave via pre-defined

functions (ECalls/OCalls). That is, hosts call into the enclave via ECalls, while the enclave calls
the code outside (such as system calls) via OCalls. However, these functions are costly. As an

example, an ECall incurs about 8000 CPU cycles as reported in [56, 63]. Moreover, issues like

paging overhead occur when the EPC is exhausted [34]. Consequently, we design an SGX-friendly

transaction processing protocol to minimize costly intersections between the enclaves and hosts,

which will be presented in Section 4.2.

2.3 Verifiable Transactions
Broadly, a database is deemed supporting verifiable transactions when it meets these two require-

ments: (1) It guarantees the ACID properties [38], and (2) it ensures that these guarantees can be

verified. Due to our disaggregation architecture design, the verifiable durability is hence considered

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

VeriTxn: Verifiable Transactions for Cloud-Native Databases with Storage Disaggregation 270:5

a property guaranteed by the storage layer. In this section, we shall therefore focus on the formula-

tion of verifying isolation, atomicity, and consistency. It is well accepted that serializability is the

gold-standard isolation level [13, 14, 38], which enables each transaction to move the database from

one consistent state to another [38]. Further, atomicity means that each state is stable. Based on

these intuitions, we formulate the verifiable transaction scheme by specifying the state and state

transition.

Formally, we model a database state as S with respect to a set of versions for all the data items

(𝑥𝑖 represents the 𝑖-th version of the data item 𝑥) in the database. A transaction 𝑇𝑖 is a sequence

of operations, which are either read 𝑅𝑖 (𝑥 𝑗), write𝑊𝑖 (𝑥𝑖), commit 𝐶𝑖 or abort 𝐴𝑖 . We use 𝑅𝑖 (𝑥 𝑗) to
denote a 𝑇𝑖 ’s read that obtains the version 𝑥 𝑗 written by 𝑇𝑗 . We use R𝑇𝑖 (W𝑇𝑖) to denote the read set

(write set) of 𝑇𝑖 , which contains the versions read (wrote) by 𝑇𝑖 . Let us consider the database state

when a transaction 𝑇𝑖 starts as S, and a new state S+ is generated once 𝑇𝑖 commits. We model a

transaction𝑇𝑖 as the function shown in Equation 1, indicating that the new state S+ is identical to a
union set of the old state S and the write set of 𝑇𝑖 .

𝑇𝑖 : S→ S+ ≡ ∃ 𝑥𝑖 , 𝑥𝑖 ∈ S+ ∧ 𝑥𝑖 ∉ S⇒ 𝑥𝑖 ∈ W𝑇𝑖 (1)

Example 1. Consider a transaction𝑇1 with two operations 𝑅1 (𝑥0) and𝑊1 (𝑦1), S = {𝑥 : 𝑥0, 𝑦 : 𝑦0}.
It can be obtained that R𝑇1 = {𝑥0},W𝑇1 = {𝑦1}. After 𝑇1 commits, the new state is S+ = {𝑥 : 𝑥0, 𝑦 :

𝑦1}.

A verifiable transaction scheme consists of three main operations:

• D← Digest(S). Return a digest value that is computed over the database state S.
• (S+,D+,O𝑇𝑖 , 𝜋) ← Execute(S,𝑇𝑖). It takes as input the current state S and a transaction 𝑇𝑖 ,

executes 𝑇𝑖 , and returns the updated state S+, a digest value D+ computed over the new state, an

execution result O𝑇𝑖 = R𝑇𝑖 ∪W𝑇𝑖 , and a proof 𝜋 of correctness.

• {0, 1} ← VeriTxn(𝑇𝑖 ,O𝑇𝑖 , 𝜋,D,D+): Given a transaction 𝑇𝑖 , the execution result O𝑇𝑖 , the proof
𝜋 , and D (D+) that correspond to the state before (after) 𝑇𝑖 is executed. It checks the proof and

returns 1 if and only if the proof is valid.

Definition 1 (Verifiable Transaction). A transaction𝑇𝑖 can be verified to be correct if and only if it

ensures the following properties.

• State integrity. After executing 𝑇𝑖 , the database state S+ cannot be tampered without being

detected. More precisely, given a proof 𝜋 corresponding to S+ such that VeriTxn() returns 1, it is
infeasible to generate another proof 𝜋 ′ and state S′ such that VeriTxn() returns 1 and S+ ≠ S′.
• Serializability. The new state S+ can be verified to be identical to a union set of the old state S
and the write set of 𝑇𝑖 . Besides, the read set of 𝑇𝑖 is verified to be a subset of S.

{D+ = Digest(S ∪W𝑇𝑖)} ∧ {R𝑇𝑖 ∈ S} (2)

Example 2. Given current database state S0 = {𝑥 : 𝑥0, 𝑦 : 𝑦0}, and two transactions, including

𝑇1 with an operation sequence ⟨𝑅1 (𝑥0),𝑊1 (𝑦1)⟩, and 𝑇2 with operations ⟨𝑅2 (𝑦0),𝑊2 (𝑥2)⟩. Suppose
𝑇1 and 𝑇2 run concurrently, and 𝑅2 (𝑦0) executes before 𝑇1 commits, so R𝑇2 = {𝑦0}. After that, 𝑇1
commits first and makes a new state S1 = {𝑥 : 𝑥0, 𝑦 : 𝑦1}, where VeriTxn(𝑇1,O𝑇𝑖 , 𝜋1,D0,D1) = 1,

and D1 = Digest(S0 ∪W𝑇1 = {𝑦1}) ∧ R𝑇1 = {𝑥0} ∈ S0. Hence, 𝑇1 is said to have been verified.

Then,𝑇2 performs𝑊2 (𝑥2). Finally,𝑇2 commits and attempts to have a new state S2 = {𝑥 : 𝑥2, 𝑦 : 𝑦1}.
However, 𝑇2 is verified to be not serializable, because R𝑇2 = {𝑦0} ∉ S1.

3 SYSTEM OVERVIEW
In this section, we describe the threat model and then present the architecture overview of VeriTxn.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

270:6 Zhanhao Zhao et al.

Load Balancer

Primary RW Node

Transaction Layer

Storage
Layer

Data
Cache

Verifed Cache

SGX

Transactions

Transaction
Executor

Cloud Storage ServiceLog Replay
Thread

RW Transactions

Secondary RO Node

Data
Cache

Verifed Cache

SGX
Transaction

Executor

RO Transactions

Async ReplicationRedo Logs

Log
Manager

Fig. 2. System Architecture of VeriTxn

3.1 Threat Model
In a typical cloud database system, clients interact remotely for the services. All the client-side

components, such as SQL clients, are trusted. This is typically realized by hosting the client in

a trusted on-premises environment (e.g., behind user-controlled firewall) or in enclaves [6, 58].

In this paper, we focus on the threats to the data integrity and transaction serializability of the

database. Solutions [3, 63] that provide data confidentiality, through encryption and access control

for examples, may be layered on top of VeriTxn.
Servers hosting the database are typically untrusted, and consequently, the adversary may be able

to have complete control over the server. We consider the strong adversary, who can cause the server

to exhibit arbitrary adversarial behavior. For example, the adversary can tamper with the server’s

memory and disk, replicating and overwriting data pages of the host database. Based on the design

principles of TEE, an adversary cannot access the enclave provided by SGX. In particular, data and

computation inside an enclave are protected and attested to be correct. We require transactions to be

completely processed in the enclave, achieved by the SGX attestation. Like many other SGX-based

works [58, 63, 78], we exclude side-channel attacks from our scope. We note that several studies

attempt to counter side-channel attacks by eliminating record-level leakage [26, 29, 35, 52, 77].

However, these methods incur significant overhead due to the need to obscure specific read/write

operations in their custom software design. In our approach, we mitigate the issue of side-channel

attacks by preventing record-level access pattern leakage, which is achieved by loading data at the

page level, thereby hiding the precise records accessed by transactions. Although the page-level

side-channel attacks remain, we consider these attacks as implementation-specific and we can opt

for more secure TEEs or integrate the aforementioned methods if necessary.

3.2 Architecture
VeriTxn is designed as a disaggregated database, with the overview illustrated in Figure 2. In its

disaggregated architecture, VeriTxn consists of two layers: the transaction layer and the storage

layer. The transaction layer consists of multiple compute nodes, with each executing incoming

transactions and returning results to users. The storage layer is a shared storage that can be accessed

by every compute node. All the read-write (RW) transactions (transactions with read and write

operations) are sent to the primary RW node. In contrast, the secondary RO nodes handle read-only

(RO) transactions. Following modern cloud-native databases [17, 68], there is only one RW node,

but a number of RO nodes in VeriTxn.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

VeriTxn: Verifiable Transactions for Cloud-Native Databases with Storage Disaggregation 270:7

Transactions sent by clients are first forwarded through the load balancer to the RW node

or RO nodes. Note that the load balancer is running in an enclave. In this manner, connections

between the clients and the load balancer, and between the load balancer and RW/RO nodes, are

protected by the remote attestation provided by SGX. Either the RW node or RO node is equipped

with SGX, consisting of a trusted enclave and an untrusted data cache. The untrusted data cache is
used for fast data access. It interacts with the storage layer to temporally cache hot data on purpose.

We place the following three components in the enclave: The transaction executor is responsible
for handling transactions’ operations, including read 𝑅𝑖 (𝑥 𝑗), write𝑊𝑖 (𝑥𝑖), commit 𝐶𝑖 or abort 𝐴𝑖 ,

etc. Each read-write transaction generates redo logs before the commit. The log manager transfers
redo logs to the storage layer for persistency, which is only equipped in the RW node. The verified
cache is a pre-allocated EPC memory to cache data in the enclave. For verification purposes, it

organizes the data into pages and assigns each page a verified hash.

With the large memory capacity of the latest SGX, we execute transactions entirely in the

enclave through the collaboration of these components. However, achieving efficient and verifiable

transaction processing is challenging due to the necessary interaction between SGX and the

untrusted host. We address this challenge by introducing an SGX-friendly transaction processing

protocol to minimize the intersections between the transaction executor and other components.

We now discuss how our protocol efficiently executes transactions while ensuring the verifiability

of both serializability and data integrity.

For a read-write transaction, the transaction executor on the RW node receives the transaction

and follows the paradigm in the single-node databases to execute transactions. Specifically, the

transaction executor performs the read/write operations and employs a concurrency control

algorithm to ensure serializability. In VeriTxn, instead of decomposing a transaction 𝑇𝑖 into sub-

transactions to read/write data items from remote storage nodes,𝑇𝑖 directly reads/writes data items

from the local verified cache. By so doing, we eliminate the costly distributed transactions [40, 48, 66].

If the required data does not reside in the verified cache, we load it from the untrusted data

cache with a safe loading technique. During each data loading, we load and verify a data page

containing the required data, rather than loading and verifying each individual data item. To verify

integrity, we calculate the page hash and compare it with the corresponding hash in the verified

cache. This verification, conducted at the page level, is coarse-grained and serves to lessen the

communication overhead between SGX and the untrusted host. VeriTxn makes no assumptions

about the concurrency control algorithm. Common-used algorithms, such as OCC and 2PL, can be

applied to VeriTxn. For illustration purposes, we employ a customized OCC by default, which is

naturally combined with our proposed verification mechanism. By using OCC, any two conflict

transactions would be detected, and one must abort for serializability. We will elaborate on the

transaction processing with verification in Section 4.2.

We ensure that read-only transactions always retrieve consistent data with verifiable integrity,

by applying the proposed verification mechanism to RO nodes. To maintain the verified hash on

RO nodes, we introduce an asynchronous replication mechanism, which periodically transfers

the modifications of the verified cache on the RW node to RO nodes. Furthermore, we propose a

consistent reading technique to perform read-only transactions on a consistent snapshot, while

making a trade-off between data freshness and transaction latency. We will discuss the read-only

transaction optimization in detail in Section 4.4.

4 THE DESIGN OF VeriTxn
In this section, we present the design of VeriTxn, including its key data structure called the verified

cache, verification mechanism, and transaction processing protocol. We also introduce how VeriTxn
handles storage disaggregation and read-only transactions.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

270:8 Zhanhao Zhao et al.

Verifed
Hash

Hash
h1

Hash
h2

Hash
h3

Page p1

Page p2Index

Read (x)

Page
Cache

…

…

Verified Cache

Page p2

x

Data Cache

Lock

Safe
Loading

Page pn

…

Page p1

Fig. 3. Verified Cache Structure

4.1 Verified Cache
To facilitate verifiable transaction processing, we maintain a verified cache in the SGX enclave of

each node. The structure of the verified cache is shown in Figure 3, which consists of two parts: 1)

verified hash, including a set of hash corresponding with each data page; 2) page cache, containing

a number of verified data pages. The former is used to do verification, and the latter is responsible

for interacting with transactions’ operations.

In VeriTxn, we organize data into pages and index them with in-memory indexes. Our system

supports both hash indexes and B
+
-tree indexes. These indexing schemes can serve as either

primary or secondary indexes, depending on the application requirements. The structure of a page

resembles classic page design in conventional database systems [55, 57]. Each page 𝑝 contains a

page header, a set of metadata including the page ID (𝑝.𝑝𝑖𝑑), the page lock (𝑝.𝑙𝑜𝑐𝑘), the timestamp

(𝑝.𝑝𝑠), and the number of records on the page, etc. We use 𝑝.𝑝𝑠 to represent the commit timestamp

of the latest transaction that writes 𝑝 . The rest of the page 𝑝 is a list of data items. Each data item 𝑥

contains three fields: the primary key (𝑥 .𝑝𝑘), data (𝑥 .𝑣𝑎𝑙), and 𝑥 .𝑐𝑡𝑠 , the commit timestamp of the

latest transaction that writes 𝑥 .

For verifiability, each page is assigned a hash, calculated by the collision-resistant hash function

H . Only the RW node is responsible for updating the pages and their verified hashes. Note that we

do not assign each data item with a hash because doing this may cause high memory overhead

when the database is large. In contrast, we store the hash for each page separately in the verified

hash structure. Each hash item ℎ in the verified hash comprises: 1) ℎ.𝑝𝑖𝑑 , ID of the corresponding

page 𝑝; 2) the hash value ℎ.ℎ𝑎𝑠ℎ; 3) ℎ.𝑐𝑡𝑠 , the commit timestamp of the latest transaction that

updates ℎ. By putting it in SGX, we establish a synopsis of all data pages for integrity verification.

Specifically, we calculate 𝑝.ℎ𝑎𝑠ℎ usingH(𝑝) = ∑⊕
𝑥∈𝑝 𝑃𝑅𝐹 (𝑥), where 𝑝.ℎ𝑎𝑠ℎ is the xor sum of the

keyed pseudo-random functions of all data items in the page. Given two pages 𝑝 and 𝑝′, 𝑝 = 𝑝′

impliesH(𝑝) = H(𝑝′), andH(𝑝) = H(𝑝′) implies 𝑝 = 𝑝′ with high probability.

We propose a safe-loading technique to safely transfer pages from the data cache to the verified

cache. A page in the verified cache may be offloaded to the data cache when the verified cache is

full. By safe-loading, any tampering of the data that bypasses the enclave will cause inconsistent

synopsis and be detected.

Example 3. Let us refer to Figure 3, and consider an operation that reads the data item 𝑥 . To

fetch 𝑥 , it first accesses the index and locates a corresponding page 𝑝1. If 𝑝1 is not in the verified

cache, 𝑝1 will be loaded in if the examination ofH(𝑝′
1
) = ℎ1 passes. Otherwise, this page might

have been modified by malicious attackers.

4.2 Transaction Processing with Verification
We now detail how to run a verifiable transaction. As discussed, we run a transaction in the SGX

enclave with a server-side verification mechanism. In general, a transaction can be completed

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

VeriTxn: Verifiable Transactions for Cloud-Native Databases with Storage Disaggregation 270:9

Algorithm 1: Read/Write of a transaction 𝑇𝑖

1 Function Read(𝑇𝑖 , 𝑘𝑒𝑦):
2 if ∃ 𝑥𝑖 ∈ 𝑇𝑖 .𝑤𝑠 ∪𝑇𝑖 .𝑟𝑠, 𝑥𝑖 .𝑝𝑘 = 𝑘𝑒𝑦 then return 𝑥𝑖

3 Read the page 𝑝 𝑗 containing 𝑥 𝑗 , where 𝑥 𝑗 .𝑝𝑘 = 𝑘𝑒𝑦

4 Read the hash item ℎ 𝑗 , where ℎ 𝑗 .𝑝𝑖𝑑 = 𝑝 𝑗 .𝑝𝑖𝑑

5 𝑇𝑖 .𝑟𝑠 ← 𝑇𝑖 .𝑟𝑠 ∪ ⟨ℎ 𝑗 .ℎ𝑎𝑠ℎ, 𝑝 𝑗 ⟩
6 return 𝑥 𝑗

7 Function Write(𝑇𝑖 , 𝑥𝑖):
8 𝑇𝑖 .𝑤𝑠 ← 𝑇𝑖 .𝑤𝑠 ∪ 𝑥𝑖

Algorithm 2: Verification and commit of a transaction 𝑇𝑖

1 Function Verification(𝑇𝑖):
2 for 𝑥𝑖 ∈ 𝑇𝑖 .𝑤𝑠 do
3 Locate 𝑝𝑖 containing 𝑥𝑖

4 if 𝑝𝑖 .𝑙𝑜𝑐𝑘 ≠ 𝑇𝑖 .𝑡𝑖𝑑 and¬ CAS(𝑝𝑖 .𝑙𝑜𝑐𝑘, 0,𝑇𝑖 .𝑡𝑖𝑑) then
5 return false

6 for ⟨ℎ 𝑗 , 𝑝 𝑗 ⟩ ∈ 𝑇𝑖 .𝑟𝑠 do
7 if 𝑝 𝑗 .𝑙𝑜𝑐𝑘 ≠ 𝑇𝑖 .𝑡𝑖𝑑 and𝑝 𝑗 .𝑙𝑜𝑐𝑘 ≠ 0 then return false
8 𝑝′

𝑗
← Read the page 𝑝 𝑗

9 if H(𝑝′
𝑗
) ≠ ℎ 𝑗 .ℎ𝑎𝑠ℎ then return false

10 return true

11 Function Commit(𝑇𝑖):
12 𝑇𝑖 .𝑐𝑡𝑠 ← assign a commit timestamp

13 Send redo log to the storage layer

14 for 𝑥𝑖 ∈ 𝑇𝑖 .𝑤𝑠 do
15 Update 𝑥𝑖 into its corresponding page 𝑝𝑖

16 ℎ𝑖 .ℎ𝑎𝑠ℎ ←H(𝑝 𝑗)
17 𝑝𝑖 .𝑙𝑜𝑐𝑘 ← 0

through: 1) the read/write phase, where the transaction performs read/write operations by accessing

the verified cache and verifying the loaded data pages; 2) the commit phase, during which the

transaction update hashes and data, as well as transfer the redo log to the storage layer. VeriTxn
does not rely on a specific concurrency control algorithm and can function with most algorithms

such as OCC and 2PL. For illustration purposes, we introduce how we extend Silo [67], a centralized

OCC variant, to exemplify processing transactions with verification in SGX. We integrate the

verification phase with the validation of the read/write set for simplicity. Each transaction 𝑇𝑖 is

performed by a thread in the enclave, maintaining a read set (𝑇𝑖 .𝑟𝑠), a write set (𝑇𝑖 .𝑤𝑠), and a unique

transaction ID (𝑇𝑖 .𝑡𝑖𝑑). Given a transaction 𝑇𝑖 , it executes in three steps below:

• In the read/write phase, we process read/write operations of transaction 𝑇𝑖 . Algorithm 1 shows

the pseudo-code of Read() and Write() functions. Read() takes 𝑇𝑖 and a search key 𝑘𝑒𝑦 as

the input (line 1). We directly return 𝑥𝑖 (𝑥𝑖 .𝑝𝑘 = 𝑘𝑒𝑦) if it is already in 𝑇𝑖 .𝑤𝑠 or 𝑇𝑖 .𝑟𝑠 (lines 2).

Otherwise, we add the page 𝑝 𝑗 containing the data item 𝑥 𝑗 whose primary key is 𝑘𝑒𝑦, and 𝑝 𝑗 ’s

corresponding hash ℎ 𝑗 to 𝑇𝑖 .𝑟𝑠 (lines 3–5). Function Write() takes 𝑇𝑖 and a new data version 𝑥𝑖
to be written as the input (line 7), and adds 𝑥𝑖 into the write set 𝑇𝑖 .𝑤𝑠 directly (line 8).

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

270:10 Zhanhao Zhao et al.

Log (Txn T1)

W, <x0, x1>
Page pn

Log Replay
Thread

Log Replay
Thread

H, <h0, h1>

Cloud Storage Service

…

Log Queue

x1

Page p1

y2

Page p2 Page p3

Fig. 4. Disaggregated Storage Design

• We then verify 𝑇𝑖 by examining its read/write set in two steps. First, we lock all the pages

containing 𝑥𝑖 in the write set 𝑇𝑖 .𝑤𝑠 (line 2). In other words, for each data item 𝑥𝑖 ∈ 𝑇𝑖 .𝑤𝑠 and
𝑥𝑖 ∈ 𝑝𝑖 , we set the lock 𝑝𝑖 .𝑙𝑜𝑐𝑘 = 𝑇𝑖 to prevent other concurrent transactions from modifying it.

If the lock of 𝑝𝑖 is held by another transaction (𝑝𝑖 .𝑙𝑜𝑐𝑘 = 𝑇𝑗),𝑇𝑖 fails to acquire the lock and needs

to abort (lines 4–5). Second, we check data pages in the read set to ensure correctness (line 6). In

particular, for each data page 𝑝 𝑗 in the read set, we examine whether 𝑝 𝑗 is locked by another

transaction (line 7). If it is locked, the transaction needs to abort. Besides, we check whether

𝑝 𝑗 is modified by other transactions or is tampered, through re-reading the page 𝑝 𝑗 ∈ 𝑇𝑖 .𝑟𝑠 and
calculating its hash (lines 8–9). If all these examinations pass, we commit 𝑇𝑖 (line 11); otherwise,

𝑇𝑖 needs to abort.

• After passing the verification,𝑇𝑖 enters the commit phase (line 11). In this phase, we first allocate

a commit timestamp 𝑇𝑖 .𝑐𝑡𝑠 for the transaction 𝑇𝑖 (line 12). Then, redo logs are generated and sent

to the storage layer (line 13). Finally, we update all the hash and data pages written by 𝑇𝑖 , and

then release all the granted locks of the pages in 𝑇𝑖 .𝑤𝑠 (lines 14–17).

4.3 Disaggregated Storage
The storage layer of VeriTxn is constructed based on cloud storage services, such as Microsoft

Azure Storage [10], Amazon S3 [8], etc. Each read-write transaction sends its encrypted redo log

to the storage layer over the network, transferring data modified by it to the storage layer. For

performance, we introduce the double-layer cache management to ensure that the data is cached in

the verified cache as much as possible. To make the data cache in RO nodes fresh, we eagerly update

the data cache by retrieving the data from the cloud storage. Due to space constraints, more details

about VeriTxn’s storage design, such as handling page structure modification and data vacuum, can

be found in the extended version [76].

4.3.1 Redo Logging. We use redo log [54] to record the transaction’s modifications. In our design,

we additionally record the hash corresponding to the modified pages in the log. To ensure the

security of logs, we introduce a secure redo log storage mechanism by encrypting the log with a

signature-based mechanism. Specifically, each entry in the log is a pair <type, change>, where the

type field is either𝑊 or 𝐻 , indicating it is a data or hash log entity, respectively. The change field of

a data entry stores both the old and new values, and that of the hash entry stores the old and new

verified hash. Given an operation modifying the data item 𝑥 from 𝑥𝑖 to 𝑥 𝑗 , it produces a data entry

⟨𝑊, < 𝑥𝑖 , 𝑥 𝑗 >⟩, and a hash entry for the modified page 𝑝𝑖 , denoted as ⟨𝐻, < ℎ𝑖 , ℎ 𝑗 >⟩. Considering
the transaction𝑇1 in Example 1, its redo log consists of two entries ⟨𝑊, < 𝑥0, 𝑥1 >⟩, ⟨𝐻, < ℎ0, ℎ1 >⟩,
as shown in Figure 4. Moreover, we assign a unique log sequence number (LSN) [54] for each log

to maintain the sequential order of logs. We generate the redo log in the enclave. Each redo log is

assigned a signature to ensure it cannot be tampered by attackers without being detected. This

signature is a hash generated based on the log entries. After encrypting the log with a private key

stored in the enclave, the log manager then sends the log to the storage layer. Each transaction

ensures that its redo logs are persistent in the storage before committing. Note that the log can be

decrypted with the public key in the storage layer.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

VeriTxn: Verifiable Transactions for Cloud-Native Databases with Storage Disaggregation 270:11

…

x1

Page p1

y3

Page p2

x1

Page p1

RO Node

Data
Cache

Verified
Cache

y2

Page p2

y2

Page p2

y2

Page p2

x1

Page p1

RW Node

x1

Page p1

z0

Page p3Storage
Layer

Fig. 5. Double-layer Cache Management

We employ the storage layer to handle the log replay instead of the compute node. This approach

reduces network overhead as each transaction communicates with the storage layer only once.

For example, as shown in Figure 4, the redo log of 𝑇1 is generated in the RW node and sent to the

storage layer. There are multiple log replay threads in the storage layer that continuously replay

incoming logs to the cloud storage. Upon receiving a redo log in the storage layer, it is first stored

in a log queue. The log threads fetch the queue, and write to a cloud-shared disk or call the APIs

(i.e., Put()) provided by the cloud storage to replay logs. Note that we organize the cloud storage

into pages, the same as in the caches, to simplify data transferring. By replaying redo logs in their

determined serialization order indicated by LSN, we ensure the page structure is consistent with

that created within the enclave during the original transaction execution. Let us refer back to

Figure 4. The page 𝑝1 in the cloud storage is updated by the incoming log entry of 𝑇1, where the

data item 𝑥 is set to the new version 𝑥1. Further, this page 𝑝𝑖 is asynchronously transferred to the

RO nodes through gossiping or heartbeat to ensure data freshness of the RO node.

4.3.2 Double-layer Cache Management. For the best performance, since each transaction only

accesses the data in the verified cache, it is therefore best to put all the data in the verified cache to

avoid communicating with the cloud storage. However, this is infeasible because the database is

often much larger than the memory capacity of SGX. We therefore make use of the data cache and

design a hybrid caching policy to speed up instead. First, we store as much data as possible in the

verified cache, i.e., only offload data from the verified cache to the data cache when the verified

cache is full. Second, we eagerly refresh the data cache to ensure that the hot data can be fetched

from the data cache instead of the cloud storage.

Lazy offloading.When the verified cache is full, it triggers the data offloading, which retires

data pages into the data cache. The offloading is costly because it copies data from the enclave to the

untrusted domain. Therefore, we utilize the commonly used least-recently-used (LRU) policy for

cache replacement to avoid frequently loading and offloading the same data page. Other optimized

cache replacement policies [28, 43, 62] are also applicable in this case, which are however orthogonal

to this paper. Note that we do not offload data from the data cache to remote storage to reduce

network overhead. Instead, we rely on the log replay to update the remote storage asynchronously.

Eager refreshing.We regard the data cache as a secondary cache, which maintains the data

pages that are not stored in the verified cache. Consider a transaction 𝑇𝑖 requires a data page 𝑝𝑖 . 𝑇𝑖
first searches the verified cache, then the data cache, and finally the cloud storage. In this manner,

𝑇𝑖 can directly reach 𝑝𝑖 if 𝑝𝑖 is in the cache. Otherwise,𝑇𝑖 fetches the page 𝑝𝑖 from the cloud storage,

resulting in increased latency. To ensure the freshness of the data cache, we assign each page a

lease at the time it is stored in the data cache. The lease is a timestamp allocated by the wall clock

of the server. When the lease is expired, the corresponding node calls the Get() API to retrieve the

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

270:12 Zhanhao Zhao et al.

page from the cloud storage. We assign a larger lease if there is no update to reduce the network

overhead. In this way, we use the lease to eagerly refresh the data cache with minimal overhead.

We regard this page as only containing cold data if the lease exceeds a threshold. Therefore, we

discard such a page from the data cache because it is seldom accessed.

We use the following example to clarify the data workflow through the double-layer cache and

the cloud storage.

Example 4. In reference to Figure 5, let us consider the page 𝑝1 and 𝑝2. Suppose the verified cache

is full, the page 𝑝1 is offloaded to the data cache because there are no transactions that manipulate

𝑝1. In addition, suppose the lease of the page 𝑝2 expires in an RO node. The RO node sends a request

to the cloud storage and gets the page 𝑝2 with a fresher data item 𝑦2. Considering the page 𝑝2 has

been modified by some concurrent transactions in the RW node, the page 𝑝2 cached in the RO node

is still not up-to-date. If there is a transaction 𝑇2 that wants to read 𝑝2, it may keep waiting until it

gets the latest version of 𝑝2. Alternatively, we ensure to read a consistent state instead of the latest

to make a trade-off between performance and data freshness, which will be discussed in Section 4.4.

4.4 Read-Only Transactions
Many existing works [15, 23, 47] show that read-only transactions are one of the commonworkloads

in the cloud. When there are extensive read-only transactions, a widely used solution is to deploy

additional RO nodes to achieve scalability. VeriTxn extends such a design, and ensures that read-only
transactions always retrieve consistent data with verifiable integrity. As discussed in Section 3.2,

we first perform asynchronous replication of the verified hash to enable the proposed verification

mechanism on RO nodes. We then introduce a consistent reading technique to perform read-

only transactions on a consistent snapshot, while making a trade-off between data freshness and

transaction latency.

Replication of the verified hash.We also use the verified hash to support verifiable transactions

on the RO nodes. However, since the hash is generated in the RW node, we transfer it to RO

nodes through asynchronous replication. Specifically, we combine the hash updated by multiple

transactions into a batch, and then broadcast a batch to all the RO nodes. The RO node duly updates

its local hash with the incoming hash. We apply the Thomas write rule [65] to skip outdated hash.

That is, for each hash entry ℎ𝑖 , we check whether it is outdated by comparing its timestamp with the

timestamp of local hash ℎ′𝑖 . We skip the update if ℎ𝑖 .𝑡𝑠 < ℎ′𝑖 .𝑡𝑠 to avoid using a stale hash to update

a newer hash. We perform the hash replication via a secure communication channel, established

through remote attestation, as mentioned in Section 3.2. The RW node’s enclave encrypts both

the replication message and its hash before transmission to the RO node, thereby protecting the

message from unauthorized access. Upon receipt, the RO node decrypts the message, computes the

corresponding hash, and compares it with the received hash to verify integrity.

Read-only transaction processing.We propose a consistent reading technique for read-only

transactions to ensure correctness and efficiency. Each transaction is assigned with a read timestamp

𝑟𝑡𝑠 . We set 𝑟𝑡𝑠 to the replication checkpoint 𝜑 , a timestamp indicating all the verified hash written

before 𝜑 is already reserved in this RO node. We preform the visibility checking [13], examining 𝑟𝑡𝑠

with the timestamp on each accessed page and hash item, to ensure that read-only transactions are

able to obtain data and verify its integrity from a consistent state. Moreover, since hash replication

is asynchronous, this assignment allows the transaction to retrieve data from a consistent but not

necessarily the latest state. By adjusting the replication batch size, we realize the trade-off between

data freshness and transaction latency. Due to space constraints, the pseudo-code for the consistent

reading technique can be found in the extended verision [76].

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

VeriTxn: Verifiable Transactions for Cloud-Native Databases with Storage Disaggregation 270:13

5 RECOVERY AND SECURITY ANALYSIS
In this section, we first present the recovery mechanism of VeriTxn to handle both adversarial

errors and crash failures. We then conduct a thorough analysis of potential threats and demonstrate

the ability of VeriTxn to effectively manage these risks.

5.1 Tampering Recovery and Fault Tolerance
We now introduce our tampering recovery technique, which ensures the availability of VeriTxn in

the face of integrity attacks. As previously discussed, VeriTxn ensures the verifiability of transaction

results by executing transactions within the enclave and detecting any data tampering occurring

outside of SGX. However, as indicated in our threat model (Section 3.1), the cloud vendor cannot

fully prevent the risk of adversarial misbehavior, and hence, the potential for data tampering always

exists. To prevent the system from becoming inaccessible due to the impact of data tampering, we

perform online tampering recovery for transactions that encounter tampered data, which allows

them to continue executing after repairing this tampered data.

We conduct tampering recovery based on the durable secure redo log. As discussed in Section 4.3.1,

we sign and encrypt the secure redo log to ensure its integrity. Following the methodology presented

in [7], our basic idea is to reconstruct a correct data page by replaying all the operations on this

page stored in the log. However, the log required for replay could be redundant, potentially causing

lengthy replay times and blocking the system. To address this issue, we employ “anchor logs” for

efficient and online recovery. We extend the recorded hash log to create an anchor log after every

𝑛 modification to a page (𝑛 is a tunable parameter). The anchor log additionally captures the full

content of the updated page. For example, if a transaction 𝑇𝑖 modifies page 𝑝𝑖 to 𝑝
′
𝑖 , and this is the

𝑛-th modification on 𝑝𝑖 since the last anchor log is recorded, we register an anchor log with 𝑝′𝑖 .
These assignments allow us to quickly recover a correct page by applying subsequent operations

based on the page stored in the latest anchor log.

We use the information in the verified hash to efficiently locate the required log during recovery.

We introduce two additional attributes to each hash item ℎ𝑖 in the verified hash: 1) ℎ𝑖 .𝑎𝑛𝑐ℎ𝑜𝑟_𝑙𝑠𝑛,

denoting the LSN of the latest anchor log entry; 2) ℎ𝑖 .𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑠𝑛, representing the LSN of the most

recent transaction that updates the corresponding page. When a transaction 𝑇𝑗 loads a required

page 𝑝𝑖 into the enclave and detect it is compromised, 𝑇𝑗 initiates a recovery process within the

enclave to restore the page with the correct data through the following four steps: 1) We directly

fetch the anchor log based on ℎ𝑖 .𝑎𝑛𝑐ℎ𝑜𝑟_𝑙𝑠𝑛, because LSN can be converted into an exact position

in the log files [54]. 2) We parse the anchor log and examine the log hash to ensure its integrity;

3) Assuming that 𝑝′𝑖 is stored in the anchor log, we obtain subsequent modifications on 𝑝′𝑖 by
retrieving the redo log between the LSN of 𝑝′𝑖 and ℎ𝑖 .𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑠𝑛; 4) We reconstruct a correct page

by applying subsequent changes to 𝑝′𝑖 . Once the recovery process is completed, we load the repaired

page into the verified hash. To ensure the safety of this process, we block 𝑇𝑗 and any concurrent

transactions from accessing page 𝑝𝑖 until the recovery finishes. If the recovery process takes too

long, we abort these transactions based on the timeout to avoid deadlocks. After 𝑇𝑗 commits, we

utilize log replay to recover the page on the disk. Note that the log replay on the storage could be

further tampered with. Our recovery process can be invoked again to manage this scenario. If the

issue persists, we alert the user to review their security settings such as access control.

Fault Tolerance.We follow the standard mechanisms to handle RW and RO node crash failures

in cloud-native databases [54, 68]. The difference in VeriTxn is that it requires additional recovery

steps for verified hashes. When an RW node fails, we propagate an RO node to be the new RW

node for availability. During this process, we reconstruct the verified hash based on the secure

log. In case of an RO node failure, we synchronize the verified hash from another RO node, and

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

270:14 Zhanhao Zhao et al.

Table 1. Security Analysis of VeriTxn against Various Threats

Category Specific Threat Strategy Case ID

Attacks on

storage

Data tampering

Online verification

and recovery

1a

Log tampering

Encryption & signature

Duplication

1b

Attacks on

the network

Data loading/flushing attack

Online verification

and recovery

2a

Log flushing attack Encryption & signature 2b

Transaction request attack

Secure channel

2c

Hash replication attack 2d

Attack on

RW/RO nodes

Data cache tampering

Online verification

and recovery

3

therefore, RO nodes can recover independently without blocking the RW node. Note that all the

recovery process is performed within the enclave. Due to space constraints, we leave the detailed

crash recovery process in the extended version [76].

5.2 Security Analysis
As presented in Section 3.1, our threat model primarily concerns data integrity and transaction

serializability. Since the transaction processing component is entirely protected by the enclave for

serializability, we focus on comprehensively analyzing the guarantee of VeriTxn on data integrity.

Given the system architecture of VeriTxn, we identify three primary types of integrity threats:

attacks on storage, attacks on the network, and attacks on RW/RO nodes. As shown in Table 1, we

list all potential threats to VeriTxn based on these three categories. We now analyzing these cases

in detail to sketch the proof that VeriTxn provides the verifiability of integrity:

• We first consider data tampering (case 1a) and data cache tampering (case 3), where an attacker

directly alters data on the storage or memory outside the enclave. If such attacks occur, VeriTxn
detects the tampering when the compromised page is loaded into the enclave, as outlined in

Section 4.2. Subsequently, we initiate an online recovery to restore the tampered pages with the

correct data, following the technique described in Section 5.1. Thus, we ensure that VeriTxn can

ensure integrity and stay accessible during these threat occurrences. The same methodology

applies to handle data loading attacks (case 2a), where an adversary disrupts the data loading

process to compromise data pages.

• We next analyze the log tampering (case 1b) and log flushing attack (case 2b), where an attacker

attempts to directly alter logs on the storage or modify logs during their transfer to the storage.

As presented in Section 4.3.1, the secure redo log is signed and encrypted, making the adversary

cannot falsify and tamper with the log. However, given the adversary’s full control over the

server, arbitrary adversarial errors could occur, such as deleting all data and log files. In our

implementation, we mitigate this problem by maintaining multiple backups of the log. During

tampering recovery, we rely on the backups to obtain the correct log. More extreme cases, like

all backups being invalid, can be handled by implementing replication strategies focusing on

Byzantine fault tolerance [18], which is orthogonal to our paper.

• We finally address potential attacks on transaction requests (case 2c) and hash replication (case

2d). As indicated in Section 3.2 and Section 4.4, we establish a secure communication channel

based on SGX remote attestation to protect interactions between SGXs. Each message, whether a

transaction request or hash replication, is assigned a unique hash and encrypted. Upon receiving

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

VeriTxn: Verifiable Transactions for Cloud-Native Databases with Storage Disaggregation 270:15

Table 2. Comparison of VeriTxn with Existing Systems

Key Designs Integrity Serializability Verification

Enclage [63] Encryption

VeriDB [78] Consistent Memory N/A Offline

LedgerDB [70] Merkle Tree

(by auditing)

Offline

FastVer [6] Hybrid N/A Offline

Litmus [69]

Authenticated

Dictionary

Online

(in batches)

VeriTxn Verified Cache Online

a message, the enclave within the RW/RO node examines its hash to verify integrity. If tampering

is detected, the receiving node issues an error and requests the sender to resend the message.

We then discuss the security of VeriTxn and compare it against that of five state-of-the-art

systems on four aspects, as shown in Table 2. Enclage [63] is an encrypted storage engine de-

signed to support data confidentiality, which however cannot ensure integrity and serializability.

Confidentiality is outside the scope of VeriTxn and the other four systems. VeriDB [78] verifies

the data integrity based on the deferred memory verification [7], without explicitly considering

serializability verification [78]. Merkle-tree-based approaches, such as LedgerDB [70], in contrast,

achieve integrity through Merkle tree verification. Additionally, serializability verification can

be attained by auditing the database ledger. However, maintaining such a ledger for tracing the

transaction history is costly. FastVer [6] combines Merkle tree and deferred memory verification for

performance optimization. However, as a consequence, FastVer is unable to achieve online verifica-

tion. Litmus [69] is a state-of-the-art verifiable database using a software-based method to ensure

verifiable transactions. Litmus runs and verifies transactions in batches based on deterministic

reservation [66], ensuring enhanced security by supporting online verification. However, running

transactions in batches may result in higher transaction latency. In contrast, VeriTxn does not

require transactions to be executed in batches. By employing the proposed verifiable transaction

processing mechanism, VeriTxn achieves comparable security with Litmus, and ensures online

verification of integrity and serializability. Due to space constraints, the formal correctness proof

of VeriTxn is provided in our extended version [76].

Discussion on confidentiality. As outlined in Table 1, we prevent unauthorized access to logs

(case 1b, 2b), transaction requests (case 2c), and hashes (case 2d) as part of our efforts to ensure

data integrity and transaction serializability. While data confidentiality is not our primary concern,

we do not explicitly consider data encryption. We would like to clarify that if data encryption

is employed before data is transferred out of the SGX enclave, or if we utilize encrypted data

storage, VeriTxn could provide additional security against unauthorized access, thereby preserving

confidentiality.

6 IMPLEMENTATION
In this section, we present the implementation details of VeriTxn, and elaborate on how to extend

VeriTxn into MySQL.

6.1 Implementing VeriTxn
We implement VeriTxn based on the codebase of DBx1000 [72]. Our system is written in C++, and

is publicly available at [37].

In our implementation, each compute node can either serve as an RW node or an RO node. We

first employ the verified cache and use indexes to organize data in the enclave of each node. We

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

270:16 Zhanhao Zhao et al.

implement both hash indexes and B
+
-tree indexes, serving as either primary or secondary indexes

based on the application requirements. In the verified cache, we use a vector to store the verified

hashes, each linked to its corresponding page. We run multiple threads of three types on each

node: worker, messenger, and logger. A worker thread is responsible for executing transactions

with multiple operations, and for handling read/write requests. A messenger thread sends and

receives network messages such as hash replication messages. In the RW node, a logger thread

handles sending redo logs to the storage layer, while in the RO node, it updates the data cache

with data pages received from the storage layer. These threads are pre-allocated when the enclave

starts, and are managed by a specified stack called Thread Control Structure (TCS) in SGX. During

transaction execution, there are several OCall functions that can possibly be invoked. If the page is

not in the verified cache, we use the function safe_loading_ocall() to load required data pages

from the data cache, as discussed in Section 4.1. In addition, the function async_hash_ocall() is

used by the RW node to broadcast updated hashes to all RO nodes. The RW node does not wait

for acknowledgments from all RO nodes for asynchronous replication. Lazy offloading could be

implemented as an Ocall function. However, the memory inside SGX, being limited in size, can

be exhausted easily. Thus, we directly write the offloaded page to specific data cache positions to

reduce OCall invocations.
For the storage layer, we implement an individual log replay component to consume redo logs

produced by the RW node. It consists of several log replay threads, with each being pinned to a

virtual CPU for performance. We deploy the log replay component in several virtual machines with

limited CPUs to get costs under control, making it suitable for the pay-as-you-go charging policy

used by cloud vendors. We organize the cloud storage into pages and create two interfaces, called

Get() and Put(), to make the cloud storage services transparent to compute nodes and log replay

threads. That is, VeriTxn can run on various cloud storage through this abstraction. For example,

when replaying a log entry, a log replay thread first calls Get() to retrieve the corresponding data

page. Following which, this thread applies modifications, generates an updated page, and calls

Put() to write back.

6.2 Extending VeriTxn to MySQL
To confirm the feasibility and real-world applicability of VeriTxn, we implement our proposed

verification mechanism on MySQL. We choose MySQL as a representative of full-fledged open

sourced DBMS. We first implement the verified cache by extending the buffer pool of MySQL. We

introduce an additional hash table into the buffer pool management component, maintaining the

verified hash of every page accessed through the buffer pool, including data pages, index pages,

undo pages, etc. We rely on the inherent buffer management strategy to cache data in the verified

cache. Each item in the hash table contains four attributes: page_id, page hash, anchor_lsn, and

current_lsn. We adjust the page cleaner to insert/update the corresponding hash item when a dirty

page is flushed out to disk. We modify the function buf_read_page_low() to validate the integrity

of a page during its loading into the buffer. In terms of recovery, we introduce a new redo log type

for the verified hash. Each verified hash log entry contains the following information: 1) all the

attribute values recorded in the corresponding verified hash; 2) page data (only included if this

entry is an anchor log); 3) a hash of this log entry (signed with a private key). We record a hash

log when the page is flushed out to the disk, using the mtr interface provided by MySQL. We

integrate the tampering recovery technique outlined in Section 5.1 based on the modified redo log.

We modify the function recv_parse_log_rec() to recover hashes from the log into the verified cache

during crash recovery. We leverage the redo log encryption and redo log backup offered by MySQL

to ensure the log is encrypted and duplicated appropriately.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

VeriTxn: Verifiable Transactions for Cloud-Native Databases with Storage Disaggregation 270:17

We deploy our MySQL variant into SGX using the LibOS provided by Occlum [61], without

specific optimization in the MySQL codebase for the SGX environment. Our implementation of

the double-layer cache on MySQL is based on the interface provided by Occlum, which allows us

to mount a tmpfs serving as the double-layer cache. This arrangement enables that when data

is loaded into the enclave, it is first accessed through memory outside the enclave, and then the

swapfile on the disk. We would like to clarify that the focus of our implementation on MySQL is

to assess the real-world applicability of our proposed verification protocol. Therefore, we aim to

provide specific performance optimizations in future work, including a complete reconstruction of

the MySQL codebase for SGX and the development of a fully functional double-layer cache.

7 PERFORMANCE EVALUATION
In this section, we evaluate the performance of VeriTxn against five baselines. After introducing

the experimental setup, we evaluate VeriTxn in a range of settings to show its throughput.

7.1 Experiment Setup
We run the experiments in a cluster of up to 8 nodes running Ubuntu 20.04 on Microsoft Azure.

Each node is a standard DC16s v3 server, equipped with an Intel(R) Platinum 8370C CPU at 2.8GHz

(2 × 8 cores), with 128GB of DRAM. The EPC size is limited to 64GB.

7.1.1 Baselines. We compareVeriTxnwith five baselines, including a cloud-native database baseline
with disaggregation, a ledger database, two SGX-based storage engines, and a verifiable database.

VeriTxn w/o verification (VeriTxn (w/o)): A cloud-native database baseline excluding the ver-

ifiable ability of VeriTxn. VeriTxn (w/o) omits the use of SGX and removes all the verification

logic.

LedgerDB [70]: A state-of-the-art cloud ledger database that guarantees data integrity by main-

taining a database ledger using the Merkle tree. We use the open sourced implementation [30] of

LedgerDB, denoted as LedgerDB*, to conduct our experiments.

Enclage [63]: A state-of-the-art storage engine designed to support confidentiality. Since we cannot

obtain the source code of Enclage, for a fair comparison, we integrate its buffer structure into

our prototype system. Moreover, as our threat model emphasizes integrity and serializability, we

implement an optimized Merkle tree, as discussed in Enclage’s paper [63], to ensure integrity. We

refer to our implementation of Enclage as Enclage+.
FastVer [6]: A state-of-the-art storage engine supports integrity through hybrid verification, which

combines deferred verification with the Merkle tree, and employs caching to enhance performance.

Since FastVer is not open sourced, we implement its hybrid verification mechanism into our

codebase to exclusively compare its verification performance with that of VeriTxn. We configure

the deferred verification to be executed every 1 second.

Litmus [69]: A state-of-the-art verifiable database using a software-based method to ensure

verifiable transactions. We use the open-source implementation [36] of Litmus to conduct our

experiments.

To facilitate a systematic and fair comparison purely on transaction processing performance, all

the compared systems exclude the SQL layer (e.g., cursor) because it is orthogonal to transaction

processing. Since the concurrency control algorithm of VeriTxn is extended from Silo [67], we

configure VeriTxn (w/o), LedgerDB*, Enclage+, and FastVer to use the traditional Silo algorithm for a

fair comparison. Following Litmus’s paper [69], we set Litmus to use deterministic reservation [66]

for concurrency control to achieve its best performance. Except for Litmus, all these systems support

range queries with the use of B
+
-tree indexes. For the fact that range-based queries may potentially

introduce phantom reads and violate serializability, we therefore adopt the approach originally

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

270:18 Zhanhao Zhao et al.

proposed in Silo [67], which records the involved leaf node of the B
+
-tree index into the read set

for serializability validation. There are other alternative solutions to this problem, such as next-key

locking [53], range-locks [46], and Bw-Tree [45]. However, for the better focus of the paper and also

due to page length limit, we do not address orthogonal issues such as index level locking [46, 53]

and index optimization [45].

7.1.2 Workloads & Default Configuration. We evaluate VeriTxn and the baselines using the follow-

ing two widely known workloads.

YCSB [22, 33] generates synthetic workloads targeting large-scale Internet applications. Following

existing works [72, 73], we run workloads based on a table with 10 million (10M) rows, with each

row consuming 1KB. In total, the table hosts 10GB data if not stated otherwise. A parameter called

skew_factor is used to control the distribution of the accessed data items. A high skew_factor value,
for example, skew_factor=0.9, results in a high contention workload. By default, the skew_factor
is set to 0.5. A default transaction comprises 16 operations, with 8 reads and 8 writes, resulting in

an overall write ratio of 50%. For RO nodes, we execute read-only transactions containing 16 reads.

TPCC [25] generates OLTPworkloads that model those of a warehouse order processing application.

The workloads contain 9 relations per warehouse, with each warehouse being 350 MB in size. By

default, we use 16 warehouses. Consistent with [20, 39], our TPCC implementation includes all

the operational logics in the standard TPCC transactions. We use the standard TPCC by default,

which consists of 45% of NewOrder, 43% of Payment, and 4% for each of the remaining three types

of transactions. To compare with Litmus, we use a simple mix of 50% of NewOrder and 50% of

Payment transactions following Litmus’s paper [69].

We set the default verified cache size and data cache size to 4GB, and page size to 4KB. We set

the default batch size for hash replication to 16KB. We deploy the storage layer based on Microsoft

Azure Cloud Disk Storage [11]. Unless otherwise specified, by default, VeriTxn uses the B
+
-tree

index for both primary and secondary indexes to ensure a fair comparison.

7.2 Overall Performance of VeriTxn
In this set of experiments, we evaluate the overall performance and the cost of ensuring verifiable

transactions by comparing VeriTxn with VeriTxn (w/o) and LedgerDB*. By default, we deploy the

evaluated systems on 4 nodes (1 RW node + 3 RO nodes). Each node has 4 worker threads, 1

messenger thread, and 1 logger thread.

7.2.1 Experiments on the YCSB and TPCCWorkloads, with Varying Thread Counts. We first measure

the throughput with increasing thread counts. The results, shown in Figure 6a and Figure 6b, indicate

that VeriTxn achieves up to 7.93× higher throughput than LedgerDB*, and incurs up to 68.67%

throughput degradation compared with VeriTxn (w/o). It is widely acknowledged that there is

a concurrency bottleneck on the root hash of the Merkle tree [6, 63]. Compared to LedgerDB*,

which employs a Merkle tree with high verification costs, VeriTxn eliminates this bottleneck and

enables transactions without conflict to be verified in parallel. We also observe that the performance

degradation against the VeriTxn (w/o) increases when more threads are invoked. This is logical

because both VeriTxn require additional resources to perform verification and thus affect the peak

throughput when the resource is exhausted. As the conflicts between threads intensify (16 threads),

thread coordination overhead such as context switching, dominates system performance, causing a

throughput decline in both VeriTxn and VeriTxn (w/o), and consequently, the gap narrows. This

statement is also mentioned in various works [41, 72].

7.2.2 Experiments on the YCSB Workload, with Varying the Number of Nodes. We now study the

scalability of VeriTxn by increasing the number of nodes, and plot the throughput in Figure 6c.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

VeriTxn: Verifiable Transactions for Cloud-Native Databases with Storage Disaggregation 270:19

103

104

105

1 2 4 8 16

T
h
ro
u
g
h
p
u
t
(T
x
n
s
/s
)

of Threads

VeriTxn (w/o)
VeriTxn

LedgerDB*

(a) YCSB - Thread Counts

103

104

105

1 2 4 8 16

T
h
ro
u
g
h
p
u
t
(T
x
n
s
/s
)

of Threads

VeriTxn (w/o)
VeriTxn

LedgerDB*

(b) TPCC - Thread Counts

 10
 20
 30
 40
 50
 60
 70
 80
 90

2 3 4 5 6 7 8
of Nodes

T
h
ro
u
g
h
p
u
t
(1
0
3
 T
x
n
s
/s
)

VeriTxn (w/o)

 5

 10

 15

 20

 25

 30

 35

2 3 4 5 6 7 8

VeriTxn

(c) YCSB - Scalability

2

3

4

1 2 4 8 16 32
0

0.5

1

VeriTxn RO
VeriTxn RW

T
h
ro
u
g
h
p
u
t
(1
0
3
 T
x
n
s
/s
)

F
re
s
h
n
e
s
s
 S
c
o
re

 (
s
)

Batch Size (KB)

Freshness

(d) YCSB - Freshness

Fig. 6. Overall Performance of VeriTxn - The throughput is measured using YCSB and standard TPCC work-

loads.

We can observe that VeriTxn achieves linear scalability, with the throughput of VeriTxn (w/o) and

VeriTxn increasing by 3.67× and 3.02×, respectively, as the node count rises from 2 to 8. Since

VeriTxn is designed based on the disaggregation architecture, adding additional RO nodes increases

the number of read-only transactions that can be handled. Furthermore, the results demonstrate

that the proposed verification mechanism does not cause a bottleneck to scalability.

7.2.3 Experiments on the YCSB Workload, with Varying the Replication Batch Size. We evaluate the

data freshness on RO nodes by varying the frequency of verified hash replication. We measure the

data freshness using the freshness score, as defined in [51]. The smaller the score, the fresher the

system is. The results in Figure 6d illustrate a trade-off between performance and the freshness

scores. A higher replication frequency ensures that read-only transactions obtain fresher data, as

their read timestamps are more likely to be updated. On the contrary, a higher frequency also

increases replication overhead, and blocks transactions until the required versions are replayed in

the storage. Consequently, the throughput of both RW and RO nodes increases as the replication

frequency decreases.

7.3 Analysis on the Verified Cache
We then evaluate the performance of the verified cache in VeriTxn by comparing it against the two

related mechanisms used in Enclage and FastVer, respectively. In these experiments, we deploy

a single RW node with 4 worker threads to focus solely on evaluating the cache and verification

performance by analyzing the throughput across various cache sizes.

7.3.1 Experiments on the YCSB Workload, with Varying Cache Sizes, and 16 Data Item Access per
Transaction. To explore the performance of different verification mechanisms from a transaction

perspective, we first use the default setting of 16 data items accessed per transaction to conduct the

experiments. As shown in Figure 7a, the throughput of VeriTxn is at most 8.27% lower than FastVer

and up to 18.32% better than Enclage+. As cache size increases, the performance of all methods

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

270:20 Zhanhao Zhao et al.

1

2

3

4

5

0.5 1 2 4 8T
h
ro
u
g
h
p
u
t
(1
0
3
 T
x
n
s
/s
)

Cache Size (GB)

FastVer
Enclage+

VeriTxn

1.5K

2.5K

3.5K

(a) Cache Size - 16 recs/txn

104

105

0.5 1 2 4 8

T
h
ro
u
g
h
p
u
t
(T
x
n
s
/s
)

Cache Size (GB)

VeriTxn (w/o)
FastVer

Enclage+
VeriTxn

15K

20K

25K

(b) Cache Size - 1 rec/txn

Fig. 7. Verified Cache - Performance comparisons on YCSB with 10M data items as the verified cache size

changes.

converges, due to the utilization of caching mechanisms by each approach. The data residing

in the enclave’s memory does not require integrity verification, thus reducing the verification

overhead. Considering that a smaller cache size results in higher frequencies of cache replacement

and integrity verification, we mainly compare the verification overhead of these methods under

small cache size conditions. Enclave+ relies on a Merkle tree for verification when loading data

into the cache, which suffers from root hash contention as discussed earlier. Compared to Enclage+,

VeriTxn delivers higher throughput due to our efficient page-level verification, the overhead of

which is bounded by the number of accessed pages per transaction. FastVer performs better than

VeriTxn by incorporating deferred memory verification [7], which conducts verification in batches

to reduce the verification overhead of each transaction. However, unlike VeriTxn, FastVer cannot
support online verification and may not adapt well to the disaggregated architecture. FastVer

requires an entire write set of each epoch to perform verification. As the write set is exclusively

generated on the RW node, FastVer could be unsuitable for performing verification on RO nodes.

7.3.2 Experiments on the YCSB workload, with Varying Cache Sizes, and 1 Data Item Access per
Transaction. Considering that Enclage and FastVer are originally designed as non-transactional

storage systems, we then configure each transaction to access only one data item and rerun the

previous experiments. The results reported in Figure 7b demonstrate that, VeriTxn outperforms

Enclage+ and FastVer by up to 5.54% and 24.04%, respectively. Furthermore, when comparing with

the performance differential observed with 16 data items accessed per transaction, the performance

gap between VeriTxn and Enclage+ narrows, while the gap between VeriTxn and FastVer widens.

The reason is that the overhead of the Merkle-tree-based verification in Enclage+ and the page-level

verification in VeriTxn is affected by the number of data items accessed per transaction. In contrast,

FastVer is not affected by the number of data items accessed per transaction due to the use of

deferred verification. Under the current settings, each transaction only accesses 1 data item, leading

to lighter verification overhead for VeriTxn and Enclage+. However, FastVer requires a complete

table scan for each verification epoch, an overhead that can be non-negligible when each transaction

is small. We also provide the single-node performance of VeriTxn (w/o) in Figure 7b for reference.

Note that the throughput numbers of FastVer and Enclage reported in [6, 63] are higher due to the

fundamental differences in the codebase. The original FastVer and Enclage implementations are

based on purely key-value stores, such as Faster [19]. In comparison, our codebase, VeriTxn (w/o),

is designed for evaluating transaction performance, and includes additional codes to support

transactions. We have confirmed that the performance trends of FastVer and Enclage, and the

throughput degradation caused by implementing their verification mechanisms, are consistent

with those reported in [6, 63].

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

VeriTxn: Verifiable Transactions for Cloud-Native Databases with Storage Disaggregation 270:21

103

104

105

2 4 6 8 10

T
h
ro
u
g
h
p
u
t
(T
x
n
s
/s
)

of Threads

2PL
Litmus

OCC
VeriTxn

(a) YCSB - Thread Count

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 2 4 6 8 10

OCC VeriTxn

N
o
rm
.
R
u
n
tim

e

of Threads

Txn
Abort

Index
Veri

Others

(b) YCSB - Breakdown

103

104

105

0.3 0.6 0.9

Abort Rate

T
h
ro
u
g
h
p
u
t
(T
x
n
s
/s
)

Skew Factor

OCC
Litmus

VeriTxn

0.70%

0.30%

19.71%

15.20%

0.00% 0.00%

(c) YCSB - Skew Factor

102

103

104

105

2 4 8 2 4 8

4 Warehouses 16 Warehouses

T
h
ro
u
g
h
p
u
t
(T
x
n
s
/s
)

of Threads

OCC
VeriTxn

Litmus

(d) TPCC

Fig. 8. VeriTxn vs Litmus - The throughput and latency breakdown are measured on a single node with 4

worker threads. Both systems store data in memory.

7.4 VeriTxn vs Litmus
We then compare the performance of VeriTxn with Litmus. As Litmus is implemented as an in-

memory single-node database, we deploy VeriTxn on one node, and store all the data in the verified

cache. To ensure a fair comparison, we use the same hash index for VeriTxn as used in Litmus. We

set the verification batch size for Litmus to 10
4
, ensuring the performance of Litmus in our paper is

consistent with that presented in [69]. We also use two baselines without verification and SGX to

serve as performance upper bounds for Litmus and VeriTxn, respectively. The first baseline uses
2PL, similar to the one in [69]; and the second uses traditional Silo, denoted as OCC.

7.4.1 Experiments on the YCSB Workload, with Varying Thread Numbers. We measure the through-

put with increasing thread counts from 1 to 8, and plot the throughput in Figure 8a. We can observe

that VeriTxn achieves up to 6.32× performance gain over Litmus. VeriTxn’s higher throughput is
due to the proposed verification mechanism, which ensures efficient server-side verification. In

contrast, Litmus is based on an encryption-based verification framework, incurring high overhead

both on the client and server sides to perform the verification. As shown in Figure 8a, when the

thread number is set to 1, VeriTxn can verify transactions at the cost penalty of 26.69% performance

drop, while Litmus suffers 78.75% performance drop. It further indicates that the verification over-

head of VeriTxn is lower than that of Litmus. All methods cannot scale well with more threads

because of the increased contention among the transactions [72]. The time breakdown in Figure 8b

indicates that with a higher thread number, transactions in VeriTxn spend a larger amount of time

on concurrency control.

7.4.2 Experiments on the YCSB Workload, with Varying Contentions. We next investigate the

impact of contentions on the performance of VeriTxn, by varying the skew_factor. The results in
Figure 8c show that VeriTxn has up to 7.03× higher throughput than Litmus. When skew_factor
does not reach 0.8, the verification dominates the cost, and thus VeriTxn performs better with 57.28%

verification cost. Under high contention, transactions are more likely to abort due to concurrency

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

270:22 Zhanhao Zhao et al.

control, which is confirmed by the abort rates shown in Figure 8c. Litmus is not affected by

the contentions, mainly because it processes transactions in a deterministic manner. However,

deterministic transactions impose some other limitations, such as stored procedures requirement,

reduced processing flexibility, etc [59]. Overall, VeriTxn still achieves 5.66× speedup than Litmus

under extremely high contention (skew_factor=0.9).

7.4.3 Experiments with the TPCC Workload. We now evaluate the throughput with a different

number of threads and warehouses. The results in Figure 8d show that VeriTxn achieves up to 5.88×
higher throughput than Litmus. The performance of VeriTxn gains from its verification mechanism,

which is less costly than the cryptographic-based approach used in Litmus.

7.5 Evaluation on Extended MySQL
In this section, we study the scalability performance of our proposal on a popular database system

such as MySQL. We implement a MySQL variant, MySQL+VeriTxn, incorporating the verification
mechanism of VeriTxn into MySQL v8.0.31, as discussed in Section 6.2. We host both MySQL and

MySQL+VeriTxn in the enclave using the LibOS provided by Occlum v0.29.4 [61]. Unless otherwise

specified, we set the buffer pool size of MySQL and MySQL+VeriTxn to 16GB, and use 64 client

threads to obtain peak performance. By default, we set the anchor interval to 200, indicating that

an anchor log for a page is generated after every 200 modifications on this page. We configure the

isolation level of MySQL and MySQL+VeriTxn to serializable.

7.5.1 Experiments on the TPCC Workload. We first examine the overhead of our proposed ver-

ification mechanism by comparing the throughput of MySQL+VeriTxn with that of MySQL. In

our experiments, we run the TPCC workload provided by Sysbench-TPCC v2.2 [44] on 10 tables

with 50 data scales, occupying ~80GB of storage space. This setup enables us to better evaluate the

verification overhead of our proposal under realistic conditions, where the data volume surpasses

the cache capacity. We evaluate the throughput with increasing client thread counts from 16 to

128, and plot the throughput in Figure 9a. Comparing MySQL+VeriTxn with MySQL, we find that

MySQL+VeriTxn incurs up to a 4.99% performance penalty due to the verification. We then study

the throughput as we increase the buffer pool size. As shown in Figure 9a, the throughput of both

systems escalates, while the performance gap between MySQL+VeriTxn and MySQL shrinks from

20.21% to 3.40% as the buffer pool size expands from 8GB to 16GB. This can be attributed to the

fact that caching more data in the enclave reduces data verification overhead.

7.5.2 Experiments on the Sysbench-OLTP Workload. We then delve deeper into the verification

overhead of MySQL+VeriTxn and study the effectiveness of the double-layer cache (abbreviated as

DLC) by varying access contention and data size. We adopt the double-layer cache optimization

into MySQL and MySQL+VeriTxn, referring to these variants as MySQL (DLC) and MySQL+VeriTxn
(DLC), respectively. We set the data cache size to 16GB. Our experiments run the Sysbench-OLTP

workload [44], in which every transaction executes 8 SELECT and 8 UPDATE queries. We set the

skew_factor to 0.5 by default. Unless otherwise stated, we use 20 tables, each with 5M data items,

consuming ~50GB of storage space. We first evaluate the throughput under various skew_factor, and
plot the result in the left part of Figure 9b. As observed, the performance penalty of MySQL+VeriTxn
compared to MySQL narrows from 11.76% to 8.43% as the skew_factor increases. This trend can be

attributed to the fact that a higher skew_factor increases the likelihood of data being cached in the

enclave, hence lowering the verification overhead. To study the effectiveness of the double-layer

cache, we analyze the throughput of MySQL+VeriTxn (DLC), which shows an improvement of up to

24.85% over MySQL+VeriTxn, although this performance gain decreases as skew_factor increases.
This pattern is expected as a higher skew_factor lessens the need for data loading, thereby reducing

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

VeriTxn: Verifiable Transactions for Cloud-Native Databases with Storage Disaggregation 270:23

 100

 200

 300

 400

16 32 64 128

T
h
ro
u
g
h
p
u
t
(T
x
n
s
/s
)

of Threads

8 12 16
Buffer Size (GB)

MySQL
MySQL+VeriTxn

(a) TPCC

 100

 200

 300

 400

 500

 600

0 0.5 1

T
h
ro
u
g
h
p
u
t
(T
x
n
s
/s
)

Skew Factor

 300

 400

 500

 600

50 70 90

M
e
m
o
ry

 (
G
B
)

Data Size (GB)

 32

 33

MySQL (DLC)
MySQL+VeriTxn (DLC)

 16

 17

 0

(b) Sysbench-OLTP

 0

 100

 200

 300

 400

 500

0 8 16
 0

 1

 2

 3

 4

 5
Error Data

 = 10%

Error Data (%) Anchor Interval

T
h
ro
u
g
h
p
u
t
(T
x
n
s
/s
)

MySQL+VeriTxn

 0

 100

 200

 300

 400

 500

200 500 800
 0

 1

 2

 3

 4

 5

R
e
c
o
v
e
ry

 T
im
e

 (
m
s
)

Avg. Recovery Time

(c) TPCC - Data Tampering

 0

 100

 200

 300

 400

 500

0 50 100
 0

 1

 2

 3

 4

 5
16GB Buffer 8GB Buffer

Tampering Rate (%)

T
h
ro
u
g
h
p
u
t
(T
x
n
s
/s
)

MySQL+VeriTxn

 0

 30

 60

 90

 120

 150

0 50 100
 0

 2

 4

 6

 8

 10

R
e
c
o
v
e
ry

 T
im
e

 (
m
s
)

Avg. Recovery Time

(d) TPCC - Data Loading Attack

Fig. 9. VeriTxn on MySQL - Performance comparisons on the TPCC and Sysbench-OLTP workloads.

the overall benefit provided by the double-layer cache. We also observe a slight increase in the

throughput of all these systems until the skew_factor reaches 0.5. Before transaction conflicts

emerge as the primary bottleneck under higher contention, data loading overhead dominates

performance [31].

We then investigate the throughput with different data sizes. As shown in the right part of

Figure 9b, the performance degradation of MySQL+VeriTxn compared to MySQL (DLC) increases

from 8.44% to 14.43% as the data size expands from 50GB to 90GB. Handling larger data sizes requires

more disk loading, hence amplifying the impact of verification on throughput. The observed bounded

verification overhead strengthens the claim that our proposed verification mechanism is not a

bottleneck in various scenarios. In the right half of Figure 9b, we present the memory consumption

of these systems, which includes the buffer pool, the verified hash (if applicable), and the data cache

(if applicable). As depicted, while the memory usage of MySQL and MySQL (DLC) remains stable,

MySQL+VeriTxn and MySQL+VeriTxn (DLC) incurs higher memory consumption, increasing by

3.08% and 3.24% respectively as the data size rises. This increase is due to the maintenance of

verified hash. The memory usage of MySQL+VeriTxn (DLC) is higher than that of MySQL+VeriTxn,
owing to the addition of the data cache.

7.5.3 Experiments on the TPCC Workload with Attack. In these experiments, we evaluate system

performance and recovery time using the TPCC workload under two typical data integrity attack

scenarios: data tampering (case 1a) and data loading attack (case 2a). We define the recovery time

as the average time each transaction spends on both the process of tampering recovery and the

blocking caused by this recovery. To record this recovery time, we embed time markers throughout

the relevant code blocks.

We first conduct experiments in the face of data tampering, simulating scenarios where an

attacker periodically tampers with specific portions of data with a certain frequency (every 1s in

our experiments). We study the effect of varying the percentages of erroneous data, and plot the

results in Figure 9c. As shown in the left part of Figure 9c, the throughput of VeriTxn decreases

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

270:24 Zhanhao Zhao et al.

by 23.49% as the percentage of tampered data rises. We attribute this performance decline to the

increased chance of transactions encountering tampered pages, leading to an increase in recovery

time. This observation indicates the availability of VeriTxn in the event of data tampering. To

further understand the factors affecting recovery time, we also conduct experiments with varying

the anchor interval. As presented in the right part of Figure 9c, the throughput of VeriTxn decreases

by 69.3% with a higher anchor interval, because of the potentially larger volume of log replay. We

then run experiments under the data loading attack scenario, where we adjust the tampering rate

to control the proportion of tampered loading operations. Figure 9d shows that as the tampering

rate increases, the throughput of VeriTxn drops by up to 32.05% when the buffer pool size is 16GB.

When the buffer pool size is reduced to 8GB, the performance degradation rises to 40.5%, and the

recovery time extends by 2.74×. We attribute this to the fact that a smaller buffer pool size increases

the frequency of data loading, thereby magnifying the impact of blocking due to the recovery.

8 RELATEDWORKS
In this section, we shall review cloud databases and verifiable databases, which are related to

our work. Cloud databases are prevalent in recent years to provide cloud data service, i.e.,

database as a service (DBaaS). Recently, the new generation of cloud databases, known as cloud-

native databases [4, 17, 68], emerge and seek for higher elasticity and flexibility by employing the

disaggregation architecture. Verifiable databases are proposed to address the data integrity and

security problem of outsourced data [12]. With the current trend of outsourcing data management

to the cloud, the verifiability of databases becomes increasingly important. Generally, verifiable

databases can be divided into two categories: Software-based verifiable databases are typically

built with the implementation of various authenticated data structures, such as the Merkle hash

tree [50], etc. Hardware-based verifiable databases rely on trusted hardware for design simplification

and performance improvement. We have thoroughly evaluated the security and performance of

several state-of-the-art verifiable databases in Section 5.2 and Section 7. VeriTxn adopts the widely-

used compute-storage disaggregated architecture, and is constructed with an efficient verifiable

transaction processing protocol for a real cloud environment, which is distinctly different from

existing systems. Due to space constraints, a more detailed analysis of related work can be found

in the extended version [76].

9 CONCLUSIONS
In this paper, we introduce VeriTxn, a novel cloud-native database that efficiently supports veri-

fiable transactions. VeriTxn employs the trusted hardware, namely Intel SGX, to entirely handle

transaction processing. By designing the verified cache in the trusted domain, VeriTxn executes

verifiable transactions with bounded overhead. We propose various techniques, including double-

layer cache management, and read-only transaction optimization, to exploit the benefit of the

disaggregation architecture. We conducted extensive experimental evaluations using the YCSB and

TPC-C workloads. The result demonstrated that VeriTxn achieves up to 7.93× higher throughput

than state-of-the-art verifiable databases.

ACKNOWLEDGMENTS
We sincerely thank the reviewers and the shepherd for their valuable feedback. This research is

supported by Singapore Ministry of Education Academic Research Fund Tier 3 under MOE’s official

grant number MOE2017-T3-1-007. Wei Lu is supported by National Natural Science Foundation of

China under Grant 61972403.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

VeriTxn: Verifiable Transactions for Cloud-Native Databases with Storage Disaggregation 270:25

REFERENCES
[1] Daniel Abadi, Anastasia Ailamaki, David G. Andersen, Peter Bailis, Magdalena Balazinska, Philip A. Bernstein, Peter A.

Boncz, Surajit Chaudhuri, Alvin Cheung, AnHai Doan, Luna Dong, Michael J. Franklin, Juliana Freire, Alon Y. Halevy,

Joseph M. Hellerstein, Stratos Idreos, Donald Kossmann, Tim Kraska, Sailesh Krishnamurthy, Volker Markl, Sergey

Melnik, Tova Milo, C. Mohan, Thomas Neumann, Beng Chin Ooi, Fatma Ozcan, Jignesh M. Patel, Andrew Pavlo,

Raluca A. Popa, Raghu Ramakrishnan, Christopher Ré, Michael Stonebraker, and Dan Suciu. 2022. The Seattle report

on database research. Commun. ACM 65, 8 (2022), 72–79.

[2] Peter Alvaro and Kyle Kingsbury. 2020. Elle: Inferring Isolation Anomalies from Experimental Observations. Proc.
VLDB Endow. 14, 3 (2020), 268–280.

[3] Panagiotis Antonopoulos, Arvind Arasu, Kunal D. Singh, Ken Eguro, Nitish Gupta, Rajat Jain, Raghav Kaushik, Hanuma

Kodavalla, Donald Kossmann, Nikolas Ogg, Ravi Ramamurthy, Jakub Szymaszek, Jeffrey Trimmer, Kapil Vaswani,

Ramarathnam Venkatesan, and Mike Zwilling. 2020. Azure SQL Database Always Encrypted. In SIGMOD. ACM,

1511–1525.

[4] Panagiotis Antonopoulos, Alex Budovski, Cristian Diaconu, Alejandro Hernandez Saenz, Jack Hu, Hanuma Ko-

davalla, Donald Kossmann, Sandeep Lingam, Umar Farooq Minhas, Naveen Prakash, Vijendra Purohit, Hugh Qu,

Chaitanya Sreenivas Ravella, Krystyna Reisteter, Sheetal Shrotri, Dixin Tang, and Vikram Wakade. 2019. Socrates: The

New SQL Server in the Cloud. In SIGMOD. ACM, 1743–1756.

[5] Panagiotis Antonopoulos, Raghav Kaushik, Hanuma Kodavalla, Sergio Rosales Aceves, Reilly Wong, Jason Anderson,

and Jakub Szymaszek. 2021. SQL Ledger: Cryptographically Verifiable Data in Azure SQL Database. In SIGMOD. ACM,

2437–2449.

[6] Arvind Arasu, Badrish Chandramouli, Johannes Gehrke, Esha Ghosh, Donald Kossmann, Jonathan Protzenko, Ravi

Ramamurthy, Tahina Ramananandro, Aseem Rastogi, Srinath T. V. Setty, Nikhil Swamy, Alexander van Renen, and

Min Xu. 2021. FastVer: Making Data Integrity a Commodity. In SIGMOD. ACM, 89–101.

[7] Arvind Arasu, Ken Eguro, Raghav Kaushik, Donald Kossmann, Pingfan Meng, Vineet Pandey, and Ravi Ramamurthy.

2017. Concerto: A High Concurrency Key-Value Store with Integrity. In SIGMOD. ACM, 251–266.

[8] Amazon AWS. 2023. Amazon S3. https://aws.amazon.com/s3/aws/

[9] Amazon AWS. 2023. Cloud for State and Local Government. https://aws.amazon.com/stateandlocal/

[10] Microsoft Azure. 2023. Azure Blob Storage. https://azure.microsoft.com/services/storage/

[11] Microsoft Azure. 2023. Azure Cloud Disk. https://azure.microsoft.com/en-us/products/storage/disks/

[12] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. 2011. Verifiable Delegation of Computation over Large

Datasets. In CRYPTO (Lecture Notes in Computer Science, Vol. 6841). Springer, 111–131.
[13] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J. O’Neil, and Patrick E. O’Neil. 1995. A Critique of

ANSI SQL Isolation Levels. In SIGMOD. ACM Press, 1–10.

[14] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency Control and Recovery in Database
Systems. Addison-Wesley.

[15] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo,

Sachin Kulkarni, Harry C. Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkateshwaran

Venkataramani. 2013. TAO: Facebook’s Distributed Data Store for the Social Graph. In ATC. USENIX, 49–60.
[16] Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng Zhu, Song Zheng, Yuhui Wang, and Guoqing Ma. 2018. PolarFS:

An Ultra-low Latency and Failure Resilient Distributed File System for Shared Storage Cloud Database. Proc. VLDB
Endow. 11, 12 (2018), 1849–1862.

[17] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, Sheng Wang, Qingda Hu, Xuntao Cheng, Zongzhi Chen, Zhenjun

Liu, Jing Fang, Bo Wang, Yuhui Wang, Haiqing Sun, Ze Yang, Zhushi Cheng, Sen Chen, Jian Wu, Wei Hu, Jianwei Zhao,

Yusong Gao, Songlu Cai, Yunyang Zhang, and Jiawang Tong. 2021. PolarDB Serverless: A Cloud Native Database for

Disaggregated Data Centers. In SIGMOD. ACM, 2477–2489.

[18] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In OSDI. USENIX, 173–186.
[19] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin J. Levandoski, James Hunter, and Mike Barnett. 2018.

FASTER: A Concurrent Key-Value Store with In-Place Updates. In SIGMOD. ACM, 275–290.

[20] Youmin Chen, Xiangyao Yu, Paraschos Koutris, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Jiwu Shu.

2022. Plor: General Transactions with Predictable, Low Tail Latency. In SIGMOD. ACM, 19–33.

[21] Tencent Cloud. 2023. Webank on Tencent Cloud. https://www.tencentcloud.com/dynamic/news-details/100115/

[22] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmarking cloud

serving systems with YCSB. In SoCC. ACM, 143–154.

[23] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Furman, Sanjay Ghemawat,

Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,

Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito,

Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. 2012. Spanner: Google’s Globally-Distributed

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

https://aws.amazon.com/s3/aws/
https://aws.amazon.com/stateandlocal/
https://azure.microsoft.com/services/storage/
https://azure.microsoft.com/en-us/products/storage/disks/
https://www.tencentcloud.com/dynamic/news-details/100115/

270:26 Zhanhao Zhao et al.

Database. In OSDI. USENIX, 251–264.
[24] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptol. ePrint Arch. (2016), 86.
[25] The Transaction Processing Council. 2023. TPC Benchmark C. http://www.tpc.org/tpcc/

[26] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar Harel, Rachit Agarwal, and Lorenzo Alvisi. 2018. Obladi:

Oblivious Serializable Transactions in the Cloud. In OSDI. USENIX, 727–743.
[27] Benoît Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin Avanes, Jon Bock, Jonathan Claybaugh,

Daniel Engovatov, Martin Hentschel, Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven

Pelley, Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016. The Snowflake Elastic Data

Warehouse. In SIGMOD. ACM, 215–226.

[28] Shaul Dar, Michael J. Franklin, Björn Þór Jónsson, Divesh Srivastava, and Michael Tan. 1996. Semantic Data Caching

and Replacement. In VLDB. Morgan Kaufmann, 330–341.

[29] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Natacha Crooks, and Raluca Ada Popa. 2021. Snoopy: Surpassing

the Scalability Bottleneck of Oblivious Storage. In SOSP. ACM, 655–671.

[30] NUS DBSystem. 2023. LedgerDatabase Codebase. https://github.com/nusdbsystem/LedgerDatabase/

[31] Justin A. DeBrabant, Andrew Pavlo, Stephen Tu, Michael Stonebraker, and Stanley B. Zdonik. 2013. Anti-Caching: A

New Approach to Database Management System Architecture. Proc. VLDB Endow. 6, 14 (2013), 1942–1953.
[32] Alex Depoutovitch, Chong Chen, Jin Chen, Paul Larson, Shu Lin, Jack Ng, Wenlin Cui, Qiang Liu, Wei Huang, Yong

Xiao, and Yongjun He. 2020. Taurus Database: How to be Fast, Available, and Frugal in the Cloud. In SIGMOD. ACM,

1463–1478.

[33] Akon Dey, Alan D. Fekete, Raghunath Nambiar, and Uwe Röhm. 2014. YCSB+T: Benchmarking web-scale transactional

databases. In ICDE Workshops. IEEE, 223–230.
[34] Muhammad El-Hindi, Tobias Ziegler, Matthias Heinrich, Adrian Lutsch, Zheguang Zhao, and Carsten Binnig. 2022.

Benchmarking the Second Generation of Intel SGX Hardware. In DaMoN. ACM, 5:1–5:8.

[35] Saba Eskandarian and Matei Zaharia. 2019. ObliDB: Oblivious Query Processing for Secure Databases. Proc. VLDB
Endow. 13, 2 (2019), 169–183.

[36] Yu Xia et al. 2023. LitmusDB Codebase. https://github.com/yuxiamit/LitmusDB/

[37] Zhanhao Zhao et al. 2023. VeriTxn Codebase. https://github.com/zhanhaozhao/VeriTxn/

[38] Jim Gray and Andreas Reuter. 1993. Transaction Processing: Concepts and Techniques. Morgan Kaufmann.

[39] Zhihan Guo, Xinyu Zeng, Kan Wu, Wuh-Chwen Hwang, Ziwei Ren, Xiangyao Yu, Mahesh Balakrishnan, and Philip A.

Bernstein. 2022. Cornus: Atomic Commit for a Cloud DBMS with Storage Disaggregation. Proc. VLDB Endow. 16, 2
(2022), 379–392.

[40] Rachael Harding, Dana Van Aken, Andrew Pavlo, and Michael Stonebraker. 2017. An Evaluation of Distributed

Concurrency Control. Proc. VLDB Endow. 10, 5 (2017), 553–564.
[41] Yihe Huang, William Qian, Eddie Kohler, Barbara Liskov, and Liuba Shrira. 2022. Opportunities for optimism in

contended main-memory multicore transactions. VLDB J. 31, 6 (2022), 1239–1261.
[42] Rohit Jain and Sunil Prabhakar. 2013. Trustworthy data from untrusted databases. In ICDE. IEEE, 529–540.
[43] Song Jiang, Feng Chen, and Xiaodong Zhang. 2005. CLOCK-Pro: An Effective Improvement of the CLOCK Replacement.

In ATC. USENIX, 323–336.
[44] Alexy Kopytov. 2023. Sysbench. https://github.com/akopytov/sysbench/

[45] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree: A B-tree for new hardware platforms.

In ICDE. IEEE, 302–313.
[46] David B. Lomet. 1993. Key Range Locking Strategies for Improved Concurrency. In VLDB. Morgan Kaufmann, 655–664.

[47] Haonan Lu, Siddhartha Sen, and Wyatt Lloyd. 2020. Performance-Optimal Read-Only Transactions. In OSDI. USENIX,
333–349.

[48] Yi Lu, Xiangyao Yu, and Samuel Madden. 2019. STAR: Scaling Transactions through Asymmetric Replication. Proc.
VLDB Endow. 12, 11 (2019), 1316–1329.

[49] MariaDB. 2023. DBS migrates to MariaDB. https://mariadb.com/resources/customer-stories/dbs/

[50] Ralph C. Merkle. 1987. A Digital Signature Based on a Conventional Encryption Function. In CRYPTO (Lecture Notes in
Computer Science, Vol. 293). Springer, 369–378.

[51] Elena Milkai, Yannis Chronis, Kevin P. Gaffney, Zhihan Guo, Jignesh M. Patel, and Xiangyao Yu. 2022. How Good is

My HTAP System?. In SIGMOD. ACM, 1810–1824.

[52] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and Raluca Ada Popa. 2018. Oblix: An Efficient

Oblivious Search Index. In IEEE Symposium on Security and Privacy. IEEE, 279–296.
[53] C. Mohan. 1990. ARIES/KVL: A Key-Value Locking Method for Concurrency Control of Multiaction Transactions

Operating on B-Tree Indexes. In VLDB. Morgan Kaufmann, 392–405.

[54] C. Mohan, Don Haderle, Bruce G. Lindsay, Hamid Pirahesh, and Peter M. Schwarz. 1992. ARIES: A Transaction

Recovery Method Supporting Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead Logging. ACM Trans.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

http://www.tpc.org/tpcc/
https://github.com/nusdbsystem/LedgerDatabase/
https://github.com/yuxiamit/LitmusDB/
https://github.com/zhanhaozhao/VeriTxn/
https://github.com/akopytov/sysbench/
https://mariadb.com/resources/customer-stories/dbs/

VeriTxn: Verifiable Transactions for Cloud-Native Databases with Storage Disaggregation 270:27

Database Syst. 17, 1 (1992), 94–162.
[55] MySQL. 2023. MySQL Homepage. https://www.mysql.com/

[56] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein. 2017. Eleos: ExitLess OS Services for SGX

Enclaves. In EuroSys. ACM, 238–253.

[57] PostgreSQL. 2023. PostgreSQL Homepage. https://www.postgresql.org/

[58] Christian Priebe, Kapil Vaswani, andManuel Costa. 2018. EnclaveDB: A Secure Database Using SGX. In IEEE Symposium
on Security and Privacy. IEEE, 264–278.

[59] Kun Ren, Alexander Thomson, and Daniel J. Abadi. 2014. An Evaluation of the Advantages and Disadvantages of

Deterministic Database Systems. Proc. VLDB Endow. 7, 10 (2014), 821–832.
[60] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz, and Mark

Russinovich. 2015. VC3: Trustworthy Data Analytics in the Cloud Using SGX. In IEEE Symposium on Security and
Privacy. IEEE, 38–54.

[61] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu, Yubin Xia, and Shoumeng Yan. 2020. Occlum:

Secure and Efficient Multitasking Inside a Single Enclave of Intel SGX. In ASPLOS. ACM, 955–970.

[62] Zhan Shi, Xiangru Huang, Akanksha Jain, and Calvin Lin. 2019. Applying Deep Learning to the Cache Replacement

Problem. In MICRO. ACM, 413–425.

[63] Yuanyuan Sun, Sheng Wang, Huorong Li, and Feifei Li. 2021. Building Enclave-Native Storage Engines for Practical

Encrypted Databases. Proc. VLDB Endow. 14, 6 (2021), 1019–1032.
[64] Cheng Tan, Changgeng Zhao, Shuai Mu, and Michael Walfish. 2020. Cobra: Making Transactional Key-Value Stores

Verifiably Serializable. In OSDI. USENIX, 63–80.
[65] Robert H. Thomas. 1979. A Majority Consensus Approach to Concurrency Control for Multiple Copy Databases. ACM

Trans. Database Syst. 4, 2 (1979), 180–209.
[66] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao, and Daniel J. Abadi. 2012. Calvin:

fast distributed transactions for partitioned database systems. In SIGMOD. ACM, 1–12.

[67] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden. 2013. Speedy transactions in multicore

in-memory databases. In SOSP. ACM, 18–32.

[68] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam, Kamal Gupta, Raman Mittal, Sailesh

Krishnamurthy, Sandor Maurice, Tengiz Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considerations

for High Throughput Cloud-Native Relational Databases. In SIGMOD. ACM, 1041–1052.

[69] Yu Xia, Xiangyao Yu, Matthew Butrovich, Andrew Pavlo, and Srinivas Devadas. 2022. Litmus: Towards a Practical

Database Management System with Verifiable ACID Properties and Transaction Correctness. In SIGMOD. ACM,

1478–1492.

[70] Xinying Yang, Yuan Zhang, Sheng Wang, Benquan Yu, Feifei Li, Yize Li, and Wenyuan Yan. 2020. LedgerDB: A

Centralized Ledger Database for Universal Audit and Verification. Proc. VLDB Endow. 13, 12 (2020), 3138–3151.
[71] Yifei Yang, Matt Youill, Matthew E. Woicik, Yizhou Liu, Xiangyao Yu, Marco Serafini, Ashraf Aboulnaga, and Michael

Stonebraker. 2021. FlexPushdownDB: Hybrid Pushdown and Caching in a Cloud DBMS. Proc. VLDB Endow. 14, 11
(2021), 2101–2113.

[72] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael Stonebraker. 2014. Staring into the Abyss:

An Evaluation of Concurrency Control with One Thousand Cores. Proc. VLDB Endow. 8, 3 (2014), 209–220.
[73] Xiangyao Yu, Yu Xia, Andrew Pavlo, Daniel Sánchez, Larry Rudolph, and Srinivas Devadas. 2018. Sundial: Harmonizing

Concurrency Control and Caching in a Distributed OLTP Database Management System. Proc. VLDB Endow. 11, 10
(2018), 1289–1302.

[74] Xiangyao Yu, Matt Youill, Matthew E. Woicik, Abdurrahman Ghanem, Marco Serafini, Ashraf Aboulnaga, and Michael

Stonebraker. 2020. PushdownDB: Accelerating a DBMS Using S3 Computation. In ICDE. IEEE, 1802–1805.
[75] Yingqiang Zhang, Chaoyi Ruan, Cheng Li, Jimmy Yang, Wei Cao, Feifei Li, Bo Wang, Jing Fang, Yuhui Wang, Jingze

Huo, and Chao Bi. 2021. Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation.

Proc. VLDB Endow. 14, 10 (2021), 1900–1912.
[76] Zhanhao Zhao, Hexiang Pan, Gang Chen, Xiaoyong Du, Wei Lu, and Beng Chin Ooi. 2023. VeriTxn: Verifiable

Transactions for Cloud-Native Databases with Storage Disaggregation (Extended Version). https://storage.googleapis.

com/veritxn/veritxn-extended-version-sigmod24.pdf

[77] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E. Gonzalez, and Ion Stoica. 2017. Opaque:

An Oblivious and Encrypted Distributed Analytics Platform. In NSDI. USENIX, 283–298.
[78] Wenchao Zhou, Yifan Cai, Yanqing Peng, Sheng Wang, Ke Ma, and Feifei Li. 2021. VeriDB: An SGX-based Verifiable

Database. In SIGMOD. ACM, 2182–2194.

Received April 2023; revised July 2023; accepted September 2023

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 270. Publication date: December 2023.

https://www.mysql.com/
https://www.postgresql.org/
https://storage.googleapis.com/veritxn/veritxn-extended-version-sigmod24.pdf
https://storage.googleapis.com/veritxn/veritxn-extended-version-sigmod24.pdf

	Abstract
	1 Introduction
	2 Background and Problem Definition
	2.1 Cloud-Native Databases
	2.2 Intel SGX
	2.3 Verifiable Transactions

	3 System Overview
	3.1 Threat Model
	3.2 Architecture

	4 The Design of VeriTxn
	4.1 Verified Cache
	4.2 Transaction Processing with Verification
	4.3 Disaggregated Storage
	4.4 Read-Only Transactions

	5 Recovery and Security Analysis
	5.1 Tampering Recovery and Fault Tolerance
	5.2 blackSecurity Analysis

	6 Implementation
	6.1 Implementing VeriTxn
	6.2 Extending VeriTxn to MySQL

	7 Performance Evaluation
	7.1 Experiment Setup
	7.2 Overall Performance of VeriTxn
	7.3 Analysis on the Verified Cache
	7.4 VeriTxn vs Litmus
	7.5 blackEvaluation on Extended MySQL

	8 Related Works
	9 Conclusions
	Acknowledgments
	References

