
The VLDB Journal (2002) / Digital Object Identifier (DOI) 10.1007/s00778-004-0121-9

Querying high-dimensional data in single-dimensional space

Cui Yu1, Stéphane Bressan2, Beng Chin Ooi2, Kian-Lee Tan2

1 Department of Computer Science, Monmouth University, West Long Branch, NJ 07764, USA
e-mail: cyu@monmouth.edu

2 Department of Computer Science, National University of Singapore, 3 Science Drive 2, Singapore 117543
e-mail: {steph, tankl}@nus.edu.sg, ooibc@comp.nus.edu.sg

Edited by ♣. Received: ♣ / Revised version: ♣
Published online: ♣ 2004 – c© Springer-Verlag 2004

Abstract. In this paper, we propose a new tunable index
scheme, called iMinMax(θ), that maps points in high-
dimensional spaces to single-dimensional values determined
by their maximum or minimum values among all dimensions.
By varying the tuning “knob”, θ, we can obtain different
families of iMinMax structures that are optimized for different
distributions of data sets. The transformed data can then be
indexed using existing single-dimensional indexing structures
such as the B+-trees. Queries in the high-dimensional space
have to be transformed into queries in the single-dimensional
space and evaluated there. We present efficient algorithms
for evaluating window queries as range queries on the single-
dimensional space. We conducted an extensive performance
study to evaluate the effectiveness of the proposed schemes.
Our results show that iMinMax(θ) outperforms existing
techniques, including the Pyramid scheme and VA-file, by a
wide margin. We then describe how iMinMax could be used
in approximate K-nearest neighbor (KNN) search, and we
present a comparative study against the recently proposed
iDistance, a specialized KNN indexing method.

Keywords: High-dimensional data – Single-dimensional
space – Window and KNN queries – Edge – iMinMax(θ)

1 Introduction

With an increasing number of new database applications such
as multimedia-content-based retrieval and time series match-
ing that deal with high-dimensional databases, the design of
efficient indexing and query processing techniques over high-
dimensional data sets becomes an important research area.
Typical operations of high-dimensional applications include
window-based query retrieval, similarity range, and K-nearest
neighbor (KNN) searches. While similarity range and KNN
searches are frequently used in high-dimensional databases for
finding objects with similar properties, window query search
is required to sieve out interesting data for further analysis.
For example, in a scientific database application, the physi-
cist searches for interesting events of high-energy physics ex-
periments by specifying ranges over the attributes or similar

events based on a known result. Therefore, it is important for
high-dimensional databases to have indexes supporting both
window-based and similarity range and KNN searches. In this
paper, we shall concentrate on the indexing problem of high-
dimensional databases for window search while still support-
ing fast approximate KNN search.

Many multidimensional indexing structures have been
proposed in the literature [4,10]. However, it has been ob-
served that the performance of hierarchical tree index struc-
tures such as R-trees [8] and R∗-trees [1] deteriorates rapidly
with the increase in the dimensionality of data. This phe-
nomenon can be explained as follows. As the number of di-
mensions increases, the area covered by the query increases
tremendously. Consider a hypercube with a selectivity of 0.1%
of the domain space ([0,1],[0,1],. . .,[0,1]). This is a relatively
small query in two- to three-dimensional databases. However,
for a 40-dimensional space, the query width along each dimen-
sion works out to be 0.841, which causes the query to cover a
large area of the domain space. Consequently, many leaf nodes
of a hierarchical index have to be searched. The degradation
in performance can be so severe that a simple sequential scan
of the index keys becomes the preferred method [2,15]. How-
ever, sequential scanning is expensive as it requires the whole
database to be searched for any range queries, irrespective
of query sizes. Therefore, research efforts have aimed at de-
veloping techniques that can outperform sequential scanning.
Some of the notable techniques include the VA-file [15] and
the Pyramid scheme [2].

In this paper, we adopt a tranformational approach to re-
duce high-dimensional data to a single dimensional value. Our
scheme is motivated by two observations. First, data points in
high-dimensional space can be ordered based on the maximum
value of all dimensions.1 Second, it is possible to determine
a range of values such that data points whose index keys are
outside the range will not be in the answer set. The former
implies that we can represent high-dimensional data in single-
dimensional space and reuse existing single-dimensional in-
dexes. The latter provides a mechanism to prune the search
space.

1 Note that we have adopted the maximum value in our discussion;
similar observations can be made with the minimum value.



2 C. Yu et al.: Querying high-dimensional data in single-dimensional space

Our proposed new tunable indexing scheme, iMinMax(θ),
has several nice features. First, iMinMax(θ) adopts a simple
transformation function to map high-dimensional points to a
single-dimensional space. Let xmin and xmax be, respectively,
the smallest and largest values among all the d dimensions of
the data point (x1, x2, . . . , xd) 0 ≤ xj ≤ 1, 1 ≤ j ≤ d.
Let the corresponding dimensions for xmin and xmax be dmin

and dmax, respectively. The data point is mapped to y over a
single-dimensional space as follows:

y =
{

dmin × c + xmin if xmin + θ < 1 − xmax

dmax × c + xmax otherwise,

where c is a positive constant to stretch the range. We note
that the transformation actually partitions the data space into
different partitions based on the dimension that has the largest
value or smallest value and provides an ordering within each
partition. Second, the B+-tree is used to index the transformed
values. Thus, iMinMax(θ) can be implemented on existing
DBMSs without additional complexity, making it a practical
approach.

Third, in iMinMax(θ), queries on the original space need
to be transformed to queries on the transformed space. For a
given window query, the range of each dimension is used to
generate a range subquery on the dimension. The union of the
answers from all subqueries provides the candidate answer set
from which the query answers can be obtained. iMinMax(θ)’s
query mapping function facilitates effective range query pro-
cessing: (i) the search space on the transformed space con-
tains all answers from the original query, and it cannot be
further constrained without the risk of missing some answers;
(ii) the number of points within a search space is reduced; and
(iii) some of the subqueries can be pruned away without being
evaluated.

Fourth, by varying θ, we can obtain different families of
iMinMax(θ) structures.At the extremes, iMinMax(θ) maps all
high-dimensional points to the maximum (minimum) value
among all dimensions; alternatively, it can be tuned to map
some points to the maximum values and others to the minimum
values. Thus, iMinMax(θ) can be optimized for data sets with
different distributions.

Finally, the iMinMax can be used for approximate nearest-
neighbor searches. The index facilitates fast initial response
time by providing users with approximate answers that are
progressively refined till more accurate answers are obtained.
Experiments conducted reveal that the accuracy obtained by
the proposed scheme is very close to that obtained in an
optimal approach. This is significant as most multidimen-
sional indexes proposed for range and spatial queries are
not designed to efficiently support high-dimensional similar-
ity (range and nearest-neighbor) queries, and not all high-
dimensional metric-based indexes proposed for similarity
queries can be used to support range queries.

We implemented the iMinMax(θ) and evaluated its per-
formance against the more complex Pyramid technique and
the VA-file. We conducted an extensive performance study
on both uniform and skewed data sets. Our results show that
the proposed scheme is more efficient than both the Pyramid
technique and the VA-file. We also conducted experiments on
the accuracy and performance of the iMinMax in processing
approximate KNN searches. The results show that the pro-
posed method is able to return 90% of the actual answers

0.5

0.5 0
00

0.5
Pyramid slice

h 20h

0.5

h 3

h 1

0

Fig. 1. Index key assignment in the Pyramid technique

very quickly. Moreover, a comparative study against iDis-
tance[17] shows that iMinMax is a competitive structure for
KNN searches.

A preliminary version of this paper appeared in [12].
There, we presented the basic idea of iMinMax(θ). In this
paper, we make the following additional contributions. First,
we provide more detailed description of the iMinMax. Sec-
ond, we conducted a more comprehensive set of experiments
to demonstrate the effectiveness of iMinMax(θ). Third, we
extended the iMinMax for approximate KNN search and con-
ducted experiments on KNN accuracy and performance.

The rest of this paper is organized as follows. In the next
section, we describe related work. In Sect. 3, we present the
proposed iMinMax(θ) strategy. In Sect. 4, we present the op-
erations on iMinMax(θ), including point and range search
and update operations. Section 5 reports our experimental
study and findings, and Sect. 6 describes the extension of
iMinMax(θ) to KNN searches and its performance study. Fi-
nally, we conclude in Sect. 7 with directions for future work.

2 Related work

There is a considerable body of literature on high-dimensional
indexing [6]. In this section we shall review three recent in-
dexing structures that are related to our work and used in our
comparison studies, namely, the Pyramid technique [2], the
VA-file [15], and the iDistance [17].

The basic idea of the Pyramid technique is to transform
the d-dimensional data points into one-dimensional values and
then store and access the values using a conventional index
such as the B+-tree. It splits the data space into 2d pyramids
that share the center point of the data space as their top and have
(d − 1)-dimensional surface of the data space as their base.
All points located on the i-th (d−1)-dimensional surface (the
base of the pyramid) have a common property: either their
i-th coordinate is 0 or their (i − d)-th coordinate is 1. On the
other hand, all points ν located in the i-th pyramid pi have
the furthest distance from the top in the i-th dimension. The
dimension in which the point has the longest distance from
the top determines which pyramid the point lies in.

Another property of the Pyramid technique is that the lo-
cation of a point ν within its pyramid is indicated by a single
value, which is the distance from the point to the center point



C. Yu et al.: Querying high-dimensional data in single-dimensional space 3

according to dimension jmax (Fig. 1). The data on the same
slice in a pyramid have the same pyramid value. That is, any
objects falling on the slice will be represented by the same
pyramid value. As a result, many points will be indexed by
the same key in a skewed distribution. It has been suggested
[2] that the center point can be shifted to handle data skew-
ness. However, this incurs recalculation of all index values,
i.e., redistribution of the points among the pyramids, and re-
construction of the B+-tree. To retrieve a point q, the pyramid
value Pν of q is determined and used to search the B+-tree.
All points with Pν will be checked and retrieved. To perform
a range query, the pyramids that intersect the search region
are first obtained, and for each pyramid a subquery range is
worked out. Each subquery is then used to search the B+-tree.
For each range query, 2d subqueries may be required, one
against each pyramid. For window queries, the Pyramid tech-
nique has been shown to be more efficient than the X-tree [3]
and the Hilbert-R-tree [9]. The iMinMax(θ) differs from the
Pyramid technique in the following ways: (1) the distribution
of data points to d subspaces is done dynamically and hence
the index is more adaptive and dynamic, (2) at most d sub-
queries are required, (3) the computation of iMinMax value is
simpler.

TheVA-file (vector approximation file) [15] is based on the
idea of object approximation by mapping a coordinate to some
value that reduces the storage requirement. The basic idea is
to divide the data space into 2b hyperrectangular cells, where
b is the tunable number of bits used for representation. For
each dimension i, bi bits are used, and 2bi slices are generated
in such a way that all slices are equally full. The data space
consists of 2b hyperrectangular cells, each of which can be
represented by a unique bit string of length b. A data point
is then approximated by the bit string of the cell it falls into.
To perform a point or range query, the entire approximation
file must be sequentially scanned. Objects whose bit string
satisfies the query must be retrieved and checked. Typically,
the VA-file is much smaller than the vector file and hence is
far more efficient than a direct sequential scan of the data file
and the variants of the R-tree. However, the performance of
the VA-file is likely to be affected by data distributions and
hence the false drop rate, the number of dimensions, and the
volume of data.

The iDistance [17] was specifically designed for
K-nearest neighbor (KNN) search in a high-dimensional
space. The basic idea of iDistance is to partition the data points
and select a reference point for each partition. The data points
in each cluster are transformed into a single-dimensional space
based on their similarity with respect to the reference point.
This allows the data points to be indexed using a B+-tree struc-
ture and KNN search to be performed using one-dimensional
range search. The KNN search starts with a small query sphere.
For each data space defined by the reference point, if it in-
tersects the query sphere, a range query is performed. This
process is repeated with increasingly larger query spheres
until KNNs are retrieved. The choice of partition and ref-
erence point provides the iDistance technique with degrees
of freedom most other KNN techniques do not have. Perfor-
mance studies have shown that iDistance outperforms the re-
cent A-tree [14] and sequential scan significantly. iDistance
and iMinMax(θ) are similar only in their transformation and
their use of B+-tree as the base index. While iMinMax(θ) is

��

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

A(0.1,0.6)
B(0.6,0.9)

1

10
Fig. 2. Example of the edge concept in two-dimensional space

attribute based, iDistance is metric based, and therefore iDis-
tance cannot be used to support attribute-based retrieval.

3 Indexing on the edges

In a multidimensional range search, all values of all dimen-
sions must satisfy the query range along each dimension. If
any of them fails, the data point will not be in the answer set.
Based on this observation, a straightforward approach is to in-
dex on a small, but fixed, subset of the dimensions. However,
the effectiveness of such an approach depends on the data dis-
tribution of the selected dimensions. Our preliminary study on
indexing one single dimension showed that the approach can
perform worse than sequential scanning. This led us to exam-
ine novel techniques that index on the “edges”. An “edge” of
a data point refers to the maximum or minimum value among
all the dimensions of the point. The “edge” of a data point
is also the attribute that is closer to the data space edge than
other attributes. We shall refer to the edge with the maximum
value as the Max edge and the edge with the minimum value
as the Min edge. Figure 2 illustrates the edge concept in two-
dimensional space. Here, for point A (0.1, 0.6), its edge is
0.1 as 0.1 is closer to the x-axis than 0.6 is to the y-axis. On
the other hand, the edge of point B (0.6, 0.9) is 0.9. We note
that point A is mapped to the Min edge and point B to the
Max edge. We also note that a data point whose “edge” is not
included in a query range cannot be an answer of the query.

The basic idea of iMinMax(θ) is to use either the val-
ues of the Max edge or the values of the Min edge as the
representative index keys for the points. Because the trans-
formed values can be ordered and range queries performed on
the transformed (single-dimensional) space, we can employ
single-dimensional indexes to index the transformed values.
In our research, we employed the B+-tree structure since it
is supported by all commercial DBMSs. Thus, the iMinMax
method can be readily adopted for use.

In the following discussion, we consider a unit
d-dimensional space, i.e., points are in the space
([0,1],[0,1],. . . ,[0,1]). We denote an arbitrary data point
in the space as x = (x1, x2, . . . , xd). Let xmax = maxd

i=1 xi



4 C. Yu et al.: Querying high-dimensional data in single-dimensional space

and xmin = mind
i=1 xi be, respectively, the maximum value

and minimum value among the dimensions of the point.
Moreover, let dmax and dmin denote the dimensions at which
the maximum and minimum values occur. Let the range query
be q = ([x11, x12], [x21, x22], . . ., [xd1, xd2]). Let ans(q)
denote the answers produced by evaluating a query q.

3.1 Mapping high-dimensional data
to single-dimensional space

iMinMax(θ) adopts a simple mapping function that is compu-
tationally inexpensive. The data point x is mapped to a point
y over a single-dimensional space as follows:

y =
{

dmin × c + xmin if xmin + θ < 1 − xmax

dmax × c + xmax otherwise

where θ is a real number and c a positive constant.
First, we note that θ plays an important role in influencing

the number of points falling on each index hyperplane. In
fact, it is the tuning knob that affects the hyperplane an index
point should reside on. Take a data point (0.2, 0.75) in two-
dimensional space for example; with θ = 0.0, the index point
will reside on the Min edge. Setting θ to 0.1 will push the index
point to reside on the Max edge. The higher the value of θ ≥ 0,
the more the transformation function is biased toward the Max
edge. When θ = 0.1, the Max edge has a preference of about
10% more. Similarly, we can “favor” the transformation to the
Min edge with θ < 0. In fact, at one extreme, when θ ≥ 1.0,
the transformation maps all points to their Max edge; and by
setting θ ≤ −1.0, we always pick the value at the Min edge
as the index key. For simplicity, we shall denote the former
extreme as iMax, the latter extreme as iMin, and any other
variation as iMinMax (dropping θ unless its value is critical).

Second, we note that the transformation function actually
comprises two components: the dimension and the value of
the dimension. The first component is used to split the (single-
dimensional) data space into different partitions based on the
dimension with the largest value or smallest value. This is done
to scatter points with the same edge values (but from different
edges) to minimize false drops. In our case, the Max or Min
edge serves the purpose. The second component provides an
ordering within each partition. Thus, the overall effect on the
data points is that all points whose edge is in dimension i will
be mapped into the range [i×c, i×c+1]. Note that c is used to
keep the partitions apart to minimize their overlaps. To avoid
any overlap, c should be larger than 1. If c is less than or equal
to 1, the correctness of iMinMax is not affected; however,
iMinMax’s efficiency may suffer as a result of excessive false
drops. For ease of presentation, in the rest of this paper we
shall assume c = 1 and exclude c from the formulas.

Finally, the unique tunable feature facilitates the adapta-
tion of iMinMax(θ) to data sets of different distributions (uni-
form or skewed). In cases where data points are skewed toward
certain edges, we may “scatter” these points to other edges
to evenly distribute them by making a choice between dmin

and dmax. Statistical information such as the number of in-
dex points can be used for such a purpose. Alternatively, one
can use either the information regarding data distribution or
information collected to categorically adjust the partitioning.

3.2 Mapping range queries

Range queries on the original d-dimensional space have to be
transformed to the single-dimensional space for evaluation. In
iMinMax(θ), the original query on the d-dimensional space is
mapped into d subqueries – one for each dimension. Let us
denote the subqueries as q1, q2, . . ., qd, where qi = [xi1, yi2]
1 ≤ i ≤ d. For the j-th query subrange in q, [xj1, xj2], we
have

qj =




[j + maxd
i=1 xi1, j + xj2] if mind

i=1 xi1
+θ ≥ 1 − maxd

i=1 xi1

[j + xj1, j + mind
i=1 xi2] if mind

i=1 xi2
+θ < 1 − maxd

i=1 xi2
[j + xj1, j + xj2] otherwise.

The union of the answers from all subqueries provides the
candidate answer set from which the query answers can be
obtained, i.e., ans(q) ⊆ ∪d

i=1ans(qi). We shall now prove
some interesting results.

Theorem 1. Under the iMinMax(θ) scheme, ans(q) ⊆
∪d

i=1ans(qi). Moreover, there does not exist q′
i = [x′

i1, x
′
i2],

where x′
i1 > xi1 or x′

i2 < xi2, for which ans(q) ⊆
∪d

i=1ans(q′
i) always holds. In other words, qi is “optimal”

and narrowing its range may miss some of q’s answers.

Proof. For the first part, we need to show that any point x that
satisfies q will be retrieved by some qi, 1 ≤ i ≤ d. For the sec-
ond part, we only need to show that some points that satisfy q
may be missed. The proof comprises three parts corresponding
to the three cases in the range query mapping function.

Case 1: mind
i=1 xi1 + θ ≥ 1 − maxd

i=1 xi1

In this case, all the answer points that satisfy the query q
have been mapped to the Max edge, i.e., a point x that sat-
isfies q is mapped to xmax, and would have been mapped to
the dmax-th dimension, and has index key of dmax + xmax.
The subquery range for the dmax-th dimension is [dmax +
maxd

i=1 xi1, dmax + xdmax2]. Since x satisfies q, we have
xi ∈ [xi1, xi2], ∀i, 1 ≤ i ≤ d. Moreover, we have xmax ≥ xi1
∀i, 1 ≤ i ≤ d. This implies that xmax ≥ maxd

i=1 xi1
∀i, 1 ≤ i ≤ d. We also have xmax ≤ xdmax2. Therefore, we
have xmax ∈ [maxd

i=1 xi1, xdmax2], i.e., x can be retrieved
using the dmax-th subquery. Thus, ans(q) ⊆ ∪d

i=1ans(qi).
Now, let q′

i = [l′i + εl, h
′
i − εh] for some εl > 0 and

εh > 0. Consider a point z = (z1, z2, . . . , zd) that satisfies
q. We note that if li < zmax < li + εl, then we will miss z if
q′
i has been used. Similarly, if hi − εh < zmax < maxd

i=1 xi2,
then we will also miss z if q′

i has been used. Therefore, no q′
i

provides the tightest bound that guarantees that no points will
be missed.

Case 2: mind
i=1 xi2 + θ < 1 − maxd

i=1 xi2

This case is the inverse of case 1, i.e., all points in the query
range belong to the Min edge. As such, we can apply similar
logic. We shall not show the proof here. We refer the interested
reader to [16].



C. Yu et al.: Querying high-dimensional data in single-dimensional space 5

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

1

1 1

100

0.13 0.13

0.60.6

0.26 0.75

0.26 0.75
y

x x

y

(b) iMin(a) iMax

A

B

B

A (0.2, 0.5)

(0.87, 0,25)

Fig. 3. Sample search space for two-
dimensional space

Case 3

In case 3, the answers of q may be found in both the Min
edge and the Max edge. Given a point x that satisfies q, we
have xi ∈ [xi1, xi2], ∀i, 1 ≤ i ≤ d. We have two cases to
consider. In the first case, x is mapped to the Min edge, its
index key is dmin + xmin, and it is indexed on the dmin-th
dimension. To retrieve x, we need to examine the dmin-th
subquery, [dmin + xdmin1, dmin + xdmin2]. Now, we have
xmin ∈ [xdmin1, xdmin2] (since x is in the answer) and hence
the dmin-th subquery will be able to retrieve x. The second
case, which involves mapping x onto the Max edge, can be
similarly derived. Thus, ans(q) ⊆ ∪d

i=1ans(qi).
Now, let q′

i = [l′i + εl, h
′
i − εh] for some εl > 0 and

εh > 0. Consider a point z = (z1, z2, . . . , zd) that satisfies
q. We note that if li < zmax < li +εl, then we will miss z if q′

i
has been used. Similarly, if hi−εh < zmax < h′

i, then we will
also miss z if q′

i has been used. Therefore, no q′
i provides the

tightest bound that guarantees that no points will be missed.
�.

We would like to point out that in an actual implemen-
tation, the leaf nodes of the B+-tree will contain the high-
dimensional point, i.e., even though the index key on the B+-
tree is only single-dimensional, the leaf node entries contain
the triple (xkey, x, ptr), where xkey is the single-dimensional
index key of point x and ptr is the pointer to the data page
containing other information that may be related to the high-
dimensional point. Therefore, the false drop of Theorem 1 af-
fects only the vectors used as index keys rather than the actual
data themselves.

Theorem 2. Given a query q and the subqueries
q1, q2, . . . , qd, qi need not be evaluated if any of the
followings holds:

(i)
d

min
j=1

xj1 + θ ≥ 1 − d
max
j=1

xj1 and hi <
d

max
j=1

xj1.

(ii)
d

min
j=1

xj2 + θ < 1 − d
max
j=1

xj2 and li >
d

min
j=1

xj2.

Proof. Consider the first case: mind
j=1 xj1 + θ ≥ 1 −

maxd
j=1 xj1 and hi < maxd

j=1 xj1. The first expression im-
plies that all the answers for q can only be found in the
Max edge. We note that the point with the smallest maxi-
mum value that satisfies q is maxd

j=1 xj1. This implies that if

hi < maxd
j=1 xj1, then the answer set for qi will be an empty

set. Thus, qi need not be evaluated.
The second expression means that all the answers for q are

located in the Min edge. The point with the largest minimum
value that satisfies q is mind

j=1 xj2. This implies that if li >

mind
j=1 xj2, then the answer set for qi will be empty. Thus, qi

need not be evaluated. �

Example 1. Let θ = 0.5. Consider the range query ([0.2,0.3],
[0.4,0.6]) in two-dimensional space. Since 0.2 + 0.5 > 1 −
0.4 = 0.6, we know that all points that satisfy the query fall
on the Max edge. This means that the lower bound for the
subqueries should be 0.4, i.e., the two subqueries are, respec-
tively, [0.4,0.3] and [0.4,0.6]. Clearly, the first subquery range
is not valid as the derived lower bound is larger than the upper
bound. Thus, it need not be evaluated because no points will
satisfy the query.

As a consequence of the mapping strategy, where a
d-dimensional space is partitioned into k-dimensional sub-
spaces, we need to search at most d subspaces, and hence
the number of subqueries is bounded by d, as formally stated
below.

Theorem 3. Given a query q and the subqueries
q1, q2, . . . , qd, at most d subqueries need to be evalu-
ated.

Proof. The proof is straightforward and follows from Theo-
rem 2. �

From Theorems 2 and 3 we have a glimpse of the effec-
tiveness of iMinMax(θ). In fact, for very high-dimensional
spaces, we can expect significant savings from the pruning of
subqueries.

Example 2. In this example, we illustrate how iMinMax can
keep out points from the search space. Figure 3 shows an
example. Here we have two pointsA(0.2,0.5) and B(0.87,0.25)
in two-dimensional space. If we employ either iMax or iMin,
at least one false drop will occur. On the other hand, using
iMinMax(0.5) effectively keeps both points out of the search
space.

4 Operations on iMinMax(θ)

In our implementation of iMinMax(θ), we have adopted the
B+-tree [13] as the underlying single-dimensional index struc-



6 C. Yu et al.: Querying high-dimensional data in single-dimensional space

Algorithm PointSearch

Input: point p, θ, root of the B+-tree R
Output: tuples matching p

1. xp ← transform(p, θ)
2. l← traverse(xp, R)
3. if xp is not found in l
4. return (NULL)
5. else
6. S ← ∅
7. for every entry (xv, v, ptr) in l with key xv == xp

8. if v == p
9. tuple← access(ptr)
10. S ← S∪ tuple
11. if l’s last entry contains key xp

12. l← l’s right sibling
13. goto 7
14. return (S)

Fig. 4. Point search algorithm

ture. However, for greater efficiency, leaf nodes also store the
high-dimensional vector, i.e., leaf node entries are of the form
(key, v, ptr), where key is the single-dimensional key, v is
the high-dimensional vector whose transformed value is key,
and ptr is the pointer to the data page containing informa-
tion related to v. Keeping v at the leaf nodes can minimize
page accesses to nonmatching points. We note that multiple
high-dimensional keys may be mapped to a single key value.

The search, insert, and delete algorithms are similar to
the B+-tree algorithms. The additional complexity arises
as we have to deal with multiple subqueries in the single-
dimensional space and the additional high-dimensional key
(besides the single-dimensional key value). As such, we shall
just present the search algorithms and omit the algorithmic
descriptions for insert and delete operations.

4.1 Point search algorithm

In point search, a point p is issued and all matching tuples
are to be retrieved. Clearly, by the transformation only one
partition needs to be searched – the partition that corresponds
to either the maximum attribute value (Max edge) or minimum
value (Min edge), depending on the value of θ. However, if θ
was tuned during the life span of the index for performance
purposes, both the maximum and minimum attribute values
of p have to be used for searching.

The algorithm is summarized in Fig. 4. Based on θ, the
search algorithm first maps p to the single-dimensional key,
xp, using the function transform(point, θ) (line 1). For each
query, the B+-tree is traversed (line 2) to the leaf node where
xp may be stored. If the point does not exist, then a NULL
value is returned (lines 3-4). Otherwise, for every matching xp

value, the high-dimensional key of the data entry is compared
with p for a match. Those that match are accessed using the
pointer value (lines 7–13); otherwise, they are ignored. We
note that it is possible for a sequence of leaf nodes to contain
matching key values, and hence they all have to be examined.
The final answers are then returned (line 14).

Algorithm RangeSearch

Input: range query q = ([x11, x12], [x21, x22], . . .), root of the
B+-tree R
Output: answer tuples to the range query

1. S ← ∅
2. for (i = 1 to d)
3. qi ← transform(r, i)
4. if NOT(pruneSubquery(qi, q))
5. l← traverse(xi1, R)
6. for every entry (xv, v, ptr) in l with key xv ∈ [xi1, xi2]
7. if v ∈ q
8. tuple← access(ptr)
9. S ← S∪ tuple
10. if l’s last entry contains key x < xi2

11. l← l’s right sibling
12. goto 6
13. return (S)

Fig. 5. Range search algorithm

4.2 Range search algorithm

Range queries are slightly more complicated than point search.
Figure 5 shows the algorithm. Unlike point queries, a d-
dimensional range query r is transformed into d subqueries
(lines 2,3). The i-th subquery is denoted as qi = [xi1, xi2].
Next, routine pruneSubquery is invoked to check if qi can be
pruned (line 4). This is based on Theorem 2. If it can be, then
it is ignored. Otherwise, the subquery is evaluated as follows
(lines 5–12). The B+-tree is traversed using the lower bound
of the subquery to the appropriate leaf node. If there are no
points in the range of qi, then the subquery stops. Otherwise,
for every x ∈ [xi1, xi2], the high-dimensional key of the data
is checked against q to see if it is contained by q. Those that
fall within the range are accessed using the pointer value. As
in point search, multiple leaf pages may have to be examined.
Once all subqueries have been evaluated, the final answers are
then returned (line 13).

5 A performance study

In this section, we shall present an extensive performance
study to evaluate the effectiveness of iMinMax(θ). The ob-
jectives of the study are threefold:

1. To verify the correctness of the iMinMax(θ) and to study
the effect of θ.

2. To study the effect of external factors such as buffering
and different data/query distributions on the index.

3. To make an empirical comparison with existing methods;
in particular, we have compared iMinMax(θ) with the VA-
file (vector-approximation scheme) [15] and the Pyramid
scheme [2], as well as the simple sequential scan strategy.

5.1 Experiment setup

We implemented iMinMax(θ), the VA-file, and the Pyramid
technique in C on a SUN Sparc Workstation and used the



C. Yu et al.: Querying high-dimensional data in single-dimensional space 7

Table 1. Parameters and their values

Parameter Default values Variations
System parameters

Page size 4K page
Index node size 4K page
Buffer size 128 pages 64, 256, 512

Database parameters
No. of tuples 500,000 100,000–500,000
No. of dimensions 32 8–128
Domain of dimensions [0..1]
Data distribution Uniform Exponential, normal

Query parameters
Range query selectivity 0.1% 1%,5%,10%
No. of queries 500
Query distribution Uniform Exponential, normal

B+-tree as the single-dimensional base index structure for the
Pyramid and iMinMax(θ) methods. For the VA-file, we used
bit strings of length b = 4, as recommended by the inventors.

Each index page is 4 KB. We also implemented a known
priority-based buffer replacement strategy for hierarchical in-
dexes [7] to manage buffer space. The replacement strategy
assigns priority to each node as it traverses, and as it backtracks
in the tree traversal the priority is reassigned as the node is no
longer useful or its likelihood of being rereferenced is not high.
Such a strategy has been shown to work well for hierarchical
tree traversal.

To study the efficiency of iMinMax(θ), experiments on
various data sets, especially nonuniformly distributed and
clustered data sets, are necessary. In our experiments, apart
from the uniform data set, we also generate skewed data sets
that follow normal and exponential distributions. Table 1 sum-
marizes the parameters and default values used in the experi-
ments.

Similarly, to test the performance of the indexes against
queries, various types of range queries are used. We, however,
assume that the range queries follow the same distribution
as that of the targeted data set. The default range queries con-
ducted on uniformly distributed data sets are queries with fixed
selectivity of 0.1% whose centers are randomly picked from
within the data space. The default range queries conducted on
normally distributed data sets are queries with range side =
0.4 and whose centers are picked following a normal distri-
bution. The default range queries conducted on exponentially
distributed data sets are queries with range side = 0.4 whose
centers are selected based on an exponential distribution.

We conducted extensive experiments. In each experi-
ment, we ran 500 range queries. Each query is a hypercube
and has a default selectivity of 0.1% of the domain space
([0,1],[0,1],. . .,[0,1]). The query width is the d-th root of
the selectivity: d

√
0.001. As an indication of how large the

width of a fairly low selectivity can be, the query width for
40-dimensional space is 0.841, which is much larger than half
of the extension of the data space along each dimension. Dif-
ferent query sizes will be used for nonuniform distributions.
The default number of dimensions used is 30. Each I/O corre-
sponds to the retrieval of a 4-KB page. The average I/O cost
of the queries is used as the performance metrics. For the ex-
periments where we did not want to have the buffering effect

0

1000

2000

3000

4000

5000

6000

7000

5 10 15 20 25 30 35 40 45 50 55

A
ve

ra
ge

 P
ag

e 
A

cc
es

s 
C

os
t

Dimension

MAX
iMAX

VA-file
Pyramid

iMinMax
Seq-Scan

Fig. 6. Effect of dimensionality on uniformly distributed data set

on the page I/O, we turned off the buffer. In such cases, every
page touched incurs an I/O.

5.2 Effect of the number of dimensions

In the first set of experiments, we vary the number of dimen-
sions from 8 to 50. The data set is uniformly distributed over
the domain space. There are a total of 100K points.

In the first experiment, besides the Pyramid technique and
VA-file, we also compare iMinMax(θ) with the Max scheme
and the sequential scan (seq-scan) technique. The Max scheme
is a simple scheme that maps each point to its maximum value.
However, the transformed space is not partitioned. Moreover,
two variations of iMinMax(θ) are used, namely, iMax (i.e., θ =
1) and iMinMax(θ = 0.0) (denoted as iMinMax). Figure 6
shows the results. First, we note that both the Max and seq-
scan techniques perform poorly, and their I/O costs increase
with increasing dimensionality. Max performs slightly worse
because of the additional internal nodes to be accessed and the
high number of false drops.

Second, while the number of I/Os for iMinMax, iMax,
Pyramid, andVA-file also increases with an increasing number
of dimensions, it grows at a much slower rate. Third, we see
that iMinMax performs the best, with Pyramid and VA-file
following closely, and iMax performing mostly worse than
Pyramid and VA-file. iMinMax outperforms iMax, Pyramid,
and VA-file since its search space touches fewer points and
some of the range subqueries can be pruned.

In a typical application, apart from the index attributes,
there are many more large attributes that make sequential scan
of an entire file non-cost-effective. Instead, a feature file that
consists of vectors of index attribute values is used to filter
out objects (records) that do not match the search condition.
However, we note that for queries that entail retrieval of a
large proportion of objects, direct sequential scan may still
be cost effective. The data file of the iMinMax technique can
be clustered based on the leaf nodes of its B+-tree to reduce
random reads. The clusters can be formed in such a way that
they allow easy insertion of objects and expansion of their
extent. Other optimizations such as those at the physical level
can make the B+-tree behave like an index sequential file.



8 C. Yu et al.: Querying high-dimensional data in single-dimensional space

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50 60 70 80

A
ve

ra
ge

 P
ag

e 
A

cc
es

s 
C

os
t

Dimension

VA-file
Pyramid

iMinMax

Fig. 7. Comparing VA-file, iMinMax, and Pyramid schemes

Based on the above arguments and the experimental results,
we expect iMinMax, the Pyramid technique, and VA-file to
be competitive. Thus, for subsequent experiments, we shall
restrict our study to these techniques only.

We further evaluated Pyramid, VA-file, and iMinMax, and
the results are shown in Fig. 7. We observe that iMinMax
remains superior and can outperform Pyramid by up to 25%
and VA-file by up to 250%.

5.3 Effect of data size and query selectivity

In this set of experiments, we study the effect of data set size
and the query selectivity. For both studies, we fix the number
of dimensions at 30. Figure 8 shows the results when we vary
the data set sizes from 100K to 500K points. Figure 9 shows
the results when we vary the query selectivities from 0.01%
to 10%.

As expected, iMinMax, Pyramid, and VA-file all incurred
higher I/O costs with increasing data set sizes as well as query
selectivities.As before, iMinMax remains superior to the Pyra-
mid scheme andVA-file scheme. It is interesting to note that the
relative difference between iMinMax and the Pyramid scheme
seems to be unaffected by data set size and query selectivity.
Due to the uniform distributions, data points are evenly dis-
tributed among partitions for both methods. Although the iM-
inMax has only d partitions, the points are distributed along
the Max and Min edges. The improvement of iMinMax stems
from its reduced number of subqueries compared to the Pyra-
mid scheme. The performance of VA-file is worse than both
Pyramid and iMinMax. In subsequent comparisons on skewed
data sets, we shall focus on iMinMax and Pyramid schemes.

5.4 Effect of skewed data distributions

In this study we investigate the relative performance of
iMinMax and Pyramid on skewed data distributions. Here,
we show the results on two distributions, namely, skewed nor-
mal and skewed exponential. Figure 10 illustrates these two
skewed data distributions in two-dimensional space.

0

400

800

1200

1600

2000

2400

2800

3200

100 200 300 400 500

A
ve

ra
ge

 P
ag

e 
A

cc
es

s 
C

os
t

Data Set Size (K)

VA-file
Pyramid

iMinMax

Fig. 8. Effect of varying data set sizes

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 P
ag

e 
A

cc
es

s 
C

os
t

Selectivity of Query (%)

100K, 30-dimensional uniform dataset

VA-file
Pyramid

iMinMax

Fig. 9. Effect of varying query selectivity (100K data set)

The first set of experiments studies the effect of θ on
skewed normal distribution. For normal distribution, the closer
the data center is to the cluster center, the more we can keep
points evenly assigned to each edge. For queries that follow the
same distribution, the data points will have the same probabil-
ity of being kept far from the query cube. In these experiments,
we fix the query width of each dimension at 0.4.

Figure 11a shows the results for 100K 30-dimensional
points. First, we observe that for iMinMax there exists a certain
optimal θ value that leads to the best performance. Essentially,
θ “looks out for” the center of the cluster. Second, iMinMax
can outperform the Pyramid technique by a wide margin (more
than 50%!). Third, we note that iMinMax can perform worse
than the Pyramid scheme. This occurs when the distributions
of points to the edges become skewed and a larger number
of points have to be searched. Because of the above points,
we note that it is important to fine-tune θ for different data
distributions in order to obtain optimal performance. The nice
property is that this tuning can be easily performed by varying
θ.

In Fig. 11b, we have the results for 500K 30-dimensional
points. As in the earlier experiment, iMinMax’s effectiveness



C. Yu et al.: Querying high-dimensional data in single-dimensional space 9

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

norm

a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

exp

b

Fig. 10. Skewed data distributions. a Normal
distribution. b Exponential distribution

0

100

200

300

400

500

600

700

800

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

A
ve

ra
ge

 P
ag

e 
A

cc
es

s 
C

os
t

Tuning value of iMinMax

Pyramid
iMinMax

a

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

A
ve

ra
ge

 P
ag

e 
A

cc
es

s 
C

os
t

Tuning value of iMinMax

Pyramid
iMinMax

b

Fig. 11a,b. Skewed normal data set. a 100K points. b 500K points

depends on the θ value set. We observe that iMinMax performs
better than Pyramid over a wider range of tuning factors and
over a wider margin (more than 66%).

The second set of experiments looks at the relative per-
formance of the schemes for skewed exponential data sets.

0

200

400

600

800

1000

1200

1400

1600

-0.15 -0.05 0.05 0.15 0.25 0.35 0.45

A
ve

ra
ge

 P
ag

e 
A

cc
es

s 
C

os
t

Tuning value of iMinMax

Pyramid
iMinMax

Fig. 12. Skewed exponential data sets (500K points)

As above, we fix the query width of each dimension at 0.4.
For exponential distribution (we choose to be exponential to
small values), many dimensions will have small values, and a
small number of them will have large values. Thus, many data
points will have at least one large value. Because many of the
dimensions have small values, the data points tend to lie close
along the edges of the data space. We note that exponential
data distributions can differ greatly from one another. They
are more likely to be close along the edges or close to the dif-
ferent corners depending on the number of dimensions that are
skewed to be large or small. For a range query that is generated
using an exponential distribution, its subqueries will mostly
be close to the low corner. Therefore, tuning the index keys
toward large values is likely to filter out more points from the
query.

Figure 12 shows the results for 500K 30-dimensional
points on a skewed exponential distribution. The results
are similar to that of the normal distribution experiments –
iMinMax is optimal at certain θ values. For the results on 100K
30-dimensional data points, although the iMinMax shows sim-
ilar behavior, the gain is not as impressive due to the skewness
of distribution and smaller data set, and hence we omit the
graph here.

We also tested iMinMax with two very skewed data sets.
One of them has very skewed data pointers at one corner of



10 C. Yu et al.: Querying high-dimensional data in single-dimensional space

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

-0.35 -0.25 -0.15 -0.05 0.05 0.15 0.25 0.35

A
ve

ra
ge

 P
ag

e 
A

cc
es

s 
C

os
t

Tuning value of iMinMax

Pyramid
iMiniMax

a

0

300

600

900

1200

1500

1800

2100

-0.15 -0.05 0.05 0.15 0.25 0.35 0.45 0.55

A
ve

ra
ge

 P
ag

e 
A

cc
es

s 
C

os
t

Tuning value of iMinMax

Pyramid
iMinMax

b

Fig. 13a,b. Highly skewed data sets. a Skewed at one corner of data
set. b Skewed at some corners of data set

the data space. The other also has very skewed data point-
ers, but clustered at different corners of the data set. These
data sets contain 500K 30-dimensional data points. And the
range queries used are 0.4 wide. Figure 13 shows that tuning
iMinMax can improve the performance well on very skewed
data sets.

5.5 Effect of buffer space

In this section, we shall see the effect of buffer space on the
performance of iMinMax. We use the buffer sizes of 0, 64, 128,
256, and 512 pages. Each page is 4 KB. Under the buffering
strategy used, frequently used pages such as those near the root
have higher priority and hence are kept longer in the buffer.
We use uniform data sets with 100K data points and set the
number of dimensions, respectively, at 8, 16, 30, 40, 50, and
80. Figure 14 shows the effect of buffer space.

The iMinMax method is built on top of an existing B+-
tree, and the traversal is similar to that of the conventional B+-
tree, although each query translates to d subinterval searches.
It should be noted that the traversal paths of the d subqueries

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

0 100 200 300 400 500

A
ve

ra
ge

 P
ag

e 
A

cc
es

s 
C

os
t

Buffer Size (pages)

d=80
d=50
d=40
d=30
d=16
d=8

Fig. 14. Effect of buffer space

generated by iMinMax(θ) do not overlap and hence share very
few common internal nodes. This is also true of the subqueries
generated by the Pyramid technique. Nevertheless, as in any
database applications, buffering reduces the number of pages
that need to be fetched due to rereferencing. The performance
results show such gain, albeit marginal, and it decreases as the
buffer size increases toward a saturated state. The marginal
gain is due to little overlap between the d range queries. Each
of the d subqueries goes down from the root node along a sin-
gle path to a leaf node and scans the leaf nodes rightward till a
value outside the search range is encountered. For each query,
the root node has to be fetched at most once, and some nodes
close to the root may be rereferenced without incurring addi-
tional page accesses. Leaf nodes are not rereferenced in any of
the d subqueries, and the priority-based replacement strategy
replaces them as soon as they are unpinned. Therefore, no sig-
nificant savings can be obtained by buffering leaf pages in the
iMinMax method. This result actually implies that iMinMax
can perform well even given a small main memory.

5.6 CPU cost

While the ratio between the access time of memory and hard
disk remains at about 5 orders of magnitude, the CPU cost is
an important criterion to consider in designing and selecting
an index. Indeed, for some indexes, the cost has shifted from
I/O to CPU cost.

Figure 15 shows the CPU costs of iMinMax against that
of the Pyramid method, VA-file, and linear scan. While linear
scan (seq-scan) incurs less seek time and disk latency, the
number of pages scanned remains large and the entire file
has to be checked line by line. This explains why linear scan
does not perform well as a whole. iMinMax performs better
than the Pyramid method, and the gain widens as the number
of dimensions increases. When the number of dimensions is
small, the VA-file is more efficient than the Pyramid method.
However, as the number of dimensions increases, its CPU
costs increase at a much faster rate than those of the Pyramid
method. Again, this is attributed to more comparisons and also
random accesses when fetching data objects after checking.



C. Yu et al.: Querying high-dimensional data in single-dimensional space 11

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

10 20 30 40 50 60 70 80

C
PU

 T
im

e 
(s

ec
on

d)

Dimension

VA-file
Pyramid

iMinMax
Seq-Scan

Fig. 15. Comparing CPU cost of iMinMax, Pyramid, and VA-file

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6

100 150 200 250 300 350 400 450 500 550

A
ve

ra
ge

 C
PU

 C
os

t(
se

c)

Data Set Size (K)

VA-file
Pyramid

iMinMax

Fig. 16. Effect of varying data set sizes on CPU cost

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5 6 7 8 9 10

C
PU

 T
im

e 
(s

ec
on

d)

Selectivity of Query (%)

100K, 30-dimensional uniform dataset

VA-file
Pyramid

iMinMax

Fig. 17. Effect of query selectivity on CPU cost (100K data set)

Figure 16 shows the effect of data volume on CPU costs.
As the number of data points increases, the performance of the
VA-file degrades rapidly. The reasons are similar to those of the

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10

C
PU

 T
im

e 
(s

ec
on

d)

Selectivity of Query (%)

500K, 30-dimensional uniform dataset

VA-file
Pyramid

iMinMax

Fig. 18. Effect of query selectivity on CPU cost (500K data set)

previous experiment. iMinMax shows consistent performance
and is more efficient than both Pyramid method and VA-file
and is not sensitive to data volume. The increase in data size
does not increase the height of the B+-tree substantially, and
the approach can effectively filter away objects that are not in
the answer.

Figure 17 summarizes the effect of query selectivity on
CPU costs. All methods are affected by an increase in query
size, as this involves more fetching of objects and checking.
The result shows the superiority of iMinMax over the other
two methods.

We did the same testing on a 500K data set, and the result
exhibits a trend similar to that of the 100K data set. Figure 18
summarizes the results. However, when the data size is large,
the gain of iMinMax over the Pyramid method decreases with
increasing selectivity. With large selectivity, the number of
objects that need to be examined increases and hence the CPU
cost incurred also increases.

5.7 Summary

The above experiments make it clear that the iMinMax(θ) is an
efficient indexing method for supporting range query. It out-
performs the Pyramid method and VA-file by a wide margin.
The performance gain is remarkably significant for skewed
data sets and large data volume.

The advantages of the iMinMax(θ) over the Pyramid
method are threefold: the iMinMax(θ) is simpler in de-
sign principle and hence less complex computationally; the
iMinMax(θ) requires d queries compared to 2d queries of the
Pyramid method; the iMinMax(θ) is more dynamic and can be
tuned without reconstruction of the index and hence is more
adaptable for skewed data sets.

In summary, iMinMax(θ) is a flexible, adaptive, and ef-
ficient indexing method. More importantly, it can be inte-
grated into existing DBMSs at the application layer by coding
the mapping functions as stored procedures or macros. Since
iMinMax(θ) employs the classical B+-tree, it can also be in-
tegrated into a DBMS’s kernel for greater performance gain.



12 C. Yu et al.: Querying high-dimensional data in single-dimensional space

6 Approximate KNN processing with iMinMax

In high-dimensional databases such as multimedia feature
databases, the two most frequently used operations are the sim-
ilarity range and KNN searches. The similarity range search
retrieves objects within a given distance ε from a given object,
while the KNN search retrieves the K-most similar objects that
are closest in distance to a given object. The similarity range
search is a spherical range search that can be easily imple-
mented by the range search outlined in the previous section,
and hence we shall concentrate on KNN search in this section.

In many high-dimensional applications, small errors can
be tolerated. As such, determining approximate answers
quickly has become an acceptable alternative. In this sec-
tion, we propose a novel algorithm that uses the iMinMax(θ)
technique to support approximate KNN queries. As in other
indexes, it facilitates fast initial response time by providing
users with approximate answers online that are progressively
refined till more accurate answers are obtained. Eventually, if
the user chooses not to terminate prematurely, the precise an-
swers will be obtained. We note that the approximate answers
are organized into two categories: those that are certain to be
in the final answer set and those without guarantees. It is the
latter category that changes as answers are refined.

6.1 Filter-and-refine KNN algorithms

In this paper, we use the Euclidean distance function to de-
termine the distance between two points. Intuitively, a near-
est neighbor search can be performed using a filter-and-refine
strategy. A range query is used to generate a superset of the
answers, and a refinement strategy is then applied to prune
away the false drops. We shall illustrate this with an example
in two-dimensional space as shown in Fig. 19. Given a search
point P , if we want to get two of its nearest neighbors, ra-
dius r is needed to have a search region that contains these
two points. To check all the points contained in this sphere, a
window query with side 2r will be conducted on the iMinMax
indexing structure. Since the region bounded by the window
query is larger than the search sphere, false drops may arise.
In our example, points A and C are the nearest neighbors,
while point B is the false hit. Clearly, it is almost impossible
to determine the optimal range query without additional infor-
mation. A range query that returns too few records may lead
to the wrong answers since a point satisfying a range query
need not be a nearest neighbor. A range query that returns too
many records will incur too much overhead.

Our solution is to adopt an iterative approach. In the first
iteration, a (small) range query (corresponding to d range sub-
queries on iMinMax) with respect to the data point is generated
based on statistical analysis. Some approximate answers can
then be obtained from this query. In the second iteration, the
query is expanded, and more answers may be returned. This
process is repeated until all desired KNN are obtained. We
also note that by continuously increasing the search area, the
hypersphere based on the Euclidean distance may exceed the
data space area. Of course, the area outside the data space has
no points to be checked. Figure 20 illustrates such a query.

We note that a naive method for implementing the “query
expansion” strategy is to use a larger search window, e.g.,

whole data space

query range

B

A

P

distance

C

r

Fig. 19. Query region of a given point

r

Fig. 20. Enlargement of search region

we apply a sequence of range queries with radii r, r + ∆r,
r + 2∆r, . . . until we obtain a value that contains at least K-
nearest neighbors. However, this method introduces the addi-
tional complexity of determining what∆r should be. More im-
portantly, the search of a subsequent query has to be done from
scratch, wasting all effort that was done in previous queries
and resulting in very poor performance.

Instead, we adopted a “creeping” search strategy that only
incrementally examined the expanded portion of a subsequent
query. The idea is to continue the search from where the previ-
ous iteration left off by looking at the left and right neighbors.
Figure 21 shows pictorially the “creeping search” and its effect
on “query expansion”. Here we see that, initially, the search
region may be within a single partition of the space. However,
as the query range expands, more partitions may need to be
examined.

Intuitively, the search begins with a small radius that gets
increasingly larger until the search radius is maxr. Note that
maxr should be set to cover the entire search space to ensure
the answers are correct; otherwise, the algorithm may termi-
nate prematurely with badly approximate solutions. However,
if all the KNN can be found within a sphere with radius r
(< maxr), the algorithm will terminate. We note that in each
iteration of the proposed scheme, only approximate answers
are produced. This is because the data points are indexed based
on either the maximum or minimum attribute value, without
capturing any similarity information.



C. Yu et al.: Querying high-dimensional data in single-dimensional space 13

��

��

�� ����

��

����

����������������������������������������������
�
�
�
�

��

(1)

(1)

(2)

a

b

a’

a

a’b

(2)

Fig. 21. “Creeping” search on iMinMax index tree

6.2 Quality of KNN answers using iMinMax

Since iMinMax operates with one dimension, it does not
capture similarity relationships between data points in high-
dimensional space. To study the quality of (approximate) KNN
answers returned using iMinMax, we conducted a series of
experiments. The quality of answers is measured against the
exact KNN. For example, when K = 10, if nine out of ten
nearest neighbors obtained from iMinMax are in the actual
answer set, then we say that the quality of the answer is 0.9.
It is important to note that, although the other points are not
in the actual answer set, they are close to the nearest neighbor
points due to the low contrast between data points with respect
to a given point in high-dimensional data space.

In this experiment, we shall examine the effect of the
search radius of the window query used by iMinMax(θ) on
the accuracy of the KNN returned for that radius. As before,
we define accuracy to mean the percentage of KNN in the
answer returned by a scheme over the actual KNN. We also
examined the KNN returned by an optimal scheme. For the
optimal approach, we enlarge the search radius gradually, and
for each step we scan the whole database to check for data
items that will fall within the search radius. The answer is
optimal, as only the nearest neighbors will be included in the
answer set.

We used the uniform data set, as it is the data distribu-
tion that presents the most difficulty in KNN searches due
to low contrast between data points [5]. Figure 22 shows the
percentage of KNN data points against that of the optimal
approach. As the radius increases, more KNN points are ob-
tained. Surprisingly, the result shows that a small query radius
used by iMinMax(θ) is able to get a high percentage of ac-
curate KNNs. Indeed, the results show that the percentage of
the K nearest points found is more than that found using the
optimal approach with respect to the search radius. This is be-
cause, under iMinMax, we have a set of KNNs that we have
no guarantee will be in the final answers with the current ra-
dius, but these KNNs are actually in the final KNN answer
set. This again demonstrates that iMinMax can produce very
good quality approximate answers.

6.3 KNN query efficiency

To evaluate the KNN query performance of iMinMax, we im-
plemented two different space partitioning strategies for iDis-
tance as outlined in [17]: a fixed space partitioning strategy
for the uniform data set and dynamic-cluster-based partition-
ing strategy for the skewed data set. For the latter, we imple-
mented two different strategies for the selection of reference
points: one uses the centroid of the cluster as the reference
point and the other uses the edge point closest to the cluster.
Our first experiment uses a 100K 30-dimensional uniform data
set, and the query is a 10-nearest neighbor query. Figure 23a
shows the result of the experiment. We note that iMinMax can
produce quality approximate answers very quickly compared
to linear scan. As shown, the I/O cost is lower than linear scan
with up to 95% accuracy (here we define accuracy rate as the
percentage of answers that are the KNN points). However,
since the data are uniformly distributed, all points are almost
equidistant to one another. As such, iMinMax ends up scan-
ning almost the entire data set in order to retrieve all 10-nearest
neighbors, resulting in a longer total time than linear scan. In
fact, uniform data distribution is noted as the most problem-
atic data distribution for KNN queries due to its low contrast.
It has been argued that for such a distribution, a KNN query
is not meaningful [5]. However, it should be noted that data
distributions change and do not conform to some predefined
conditions, and hence an index should be built to handle all
distributions well. Next, we observe that iMinMax performs
as well as iDistance. Since iDistance is a metric-based KNN
processing technique specially designed for KNN searches,
this result shows the robustness and effectiveness of iMinMax
for KNN queries.

In another set of experiments, we use a 100K
30-dimensional clustered data set. The query is still a 10-
nearest neighbor query. Figure 23b summarizes the result. The
relative performance of the two schemes is similar to that in
the case of the uniform data set, i.e., iMinMax remains effec-
tive in producing approximate answers quickly (as compared
to linear scan). However, we note that it is now less effec-
tive compared to iDistance. However, because it is a general
and simple structure, we believe iMinMax will be a valuable
structure.

6.3.1 On CPU cost

While linear scan incurs less seek time, linear scan of a fea-
ture file entails an examination of each data point (feature)
and the calculation of distance between each data point and
the query point. Further, due to the limited buffer size, the
feature file may be scanned intermittenly. The above factors
will impact the overall CPU time. Figure 24 shows the CPU
time of linear scan, iMinMax(θ), and iDistance for the clus-
tered data set. It is interesting to note that the performance in
terms of CPU time approximately reflects the trend in page
accesses. The performance of iMinMax(θ) is good when a
small amount of error is tolerable. At an accuracy of 90%, the
CPU cost of iMinMax(θ) is about half of linear scan’s. As the
accuracy increases, the CPU cost increases due to the fact that
more data points are being examined. The result shows that
the iMinMax(θ) is reasonably efficient for approximate KNN
search in terms of CPU cost.



14 C. Yu et al.: Querying high-dimensional data in single-dimensional space

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
er

ce
n

ta
g

e 
o

f 
th

e 
K

 n
ea

re
st

 p
o

in
ts

 f
o

u
n

d
 (

%
)

Radius

dimension = 8

K=10
K=20

K=100

a

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
er

ce
n

ta
g

e 
o

f 
th

e 
K

 n
ea

re
st

 p
o

in
ts

 f
o

u
n

d
 (

%
)

Radius

dimension=8

K=10
K=20

K=100

b
a Dimension = 8

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
er

ce
n

ta
g

e 
o

f 
th

e 
K

 n
ea

re
st

 p
o

in
ts

 f
o

u
n

d
 (

%
)

Radius

dimension = 16

K=10
K=20

K=100

c

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
er

ce
n

ta
g

e 
o

f 
th

e 
K

 n
ea

re
st

 p
o

in
ts

 f
o

u
n

d
 (

%
)

Radius

dimension=16

K=10
K=10

K=100

d
b Dimension = 16

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
er

ce
n

ta
g

e 
o

f 
th

e 
K

 n
ea

re
st

 p
o

in
ts

 f
o

u
n

d
 (

%
)

Radius

dimension = 30

K=10
K=20

K=100

e

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
er

ce
n

ta
g

e 
o

f 
th

e 
K

 n
ea

re
st

 p
o

in
ts

 f
o

u
n

d
 (

%
)

Radius

dimension=30

K=10
K=20

K=100

f
c Dimension = 30

Fig. 22a–f. Probability of finding a certain number of neighbors, with varying searching radius. a iMinMax. b Optimal. c iMinMax. d Optimal.
e iMinMax. f Optimal

7 Conclusion

In this paper, we have proposed a simple and yet very efficient
method for indexing high-dimensional data based on edges.
We have shown by extensive performance studies that the
method is more efficient and dynamic than the Pyramid tech-
nique and VA-file, as well as linear scan, for window queries.
Performance difference is expected to increase as the data
volume and dimensionality increase; this should happen with

skewed data distributions as well. We have also generalized
iMinMax(θ) for nearest neighbor search, and the performance
studies show that it is efficient for approximate KNN search
when slight inaccuracies can be tolerated. Further, being a
B+-tree-based index, iMinMax(θ) can be crafted easily into
existing database backends or implemented as a stored proce-
dure.



C. Yu et al.: Querying high-dimensional data in single-dimensional space 15

0

500

1000

1500

2000

2500

3000

3500

4000

4500

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

A
v
er

ag
e 

P
ag

e 
A

cc
es

s 
C

o
st

Accuracy rate (%)

100K uniform dataset,dimension=30,k=10

seq-scan
iMinMax
iDistance

a

0

500

1000

1500

2000

2500

3000

30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

A
v
er

ag
e 

P
ag

e 
A

cc
es

s 
C

o
st

Accuracy rate (%)

100K clustered dataset, dimension=30, k=10

seq-scan
iMinMax

iDistance(cluster centriod)
iDistance(cluster edge)

b

Fig. 23. A comparative study. a
Uniform data set. b Clustered data
set

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

A
ve

ra
ge

 C
PU

 C
os

t (
se

c)

Accuracy rate(%)

100K clustered dataset, dimension=30

Seq-Scan
iMinMax
iDistance

Fig. 24. CPU time

Acknowledgements. This research is part of a system project called
VIPER[11], funded by research grant RP 950694. We thank the ref-
erees for their useful comments.

References

1. Beckmann N, Kriegel H-P, Schneider R, Seeger B (1990) The
R∗-tree: an efficient and robust access method for points and
rectangles. In: Proceedings of the 1990 ACM SIGMOD inter-
national conference on management of data, Atlantic City, NJ,
23–25 May 1990, pp 322–331

2. Berchtold S, B}ohm B, Kriegel H-P (1998) The pyramid-
technique: towards breaking the curse of dimensionality. In:
Proceedings of the 1998 ACM SIGMOD international con-
ference on management of data, Seattle, 2–4 June 1998,
pp 142–153

3. Berchtold S, Keim DA, Kriegel H-P (1996) The X-tree: an
index structure for high-dimensional data. In: Proceedings of the
22nd international conference on very large data bases, Mumbai
(Bombay), India, 3–6 September 1996, pp 28–37

4. Bertino E et al (1997) Indexing techniques for advanced
database systems. Kluwer, Dordrecht

5. Beyer K, Goldstein J, Ramakrishnan R, Shaft U (1999) When is
nearest neighbors meaningful? In: Proceedings of the interna-
tional conference on database theory, Jerusalem, Israel, 10–12
January 1999, pp 217–235

6. Böhm C, Berchtold S, Keim D (2001) Searching in high-
dimensional spaces: Index structures for improving the perfor-
mance of multimedia databases. ACM Comput Surv 33(3):322–
373

7. Chan CY, Ooi BC, Lu H (1992) Extensible buffer management
of indexes. In: Proceedings of the 18th international conference
on very large data bases, Vancouver, BC, Canada, 23–27 August
1992, pp 444–454

8. GuttmanA (1984) R-trees: a dynamic index structure for spatial
searching. In: Proceedings of the 1984 ACM SIGMOD interna-
tional conference on management of data, Boston, 18–21 June
1984, pp 47–57

9. Kamel I, Faloutsos C (1994) Hilbert r-tree: an improved r-tree
using fractals. In: Proceedings of the 20th international confer-
ence on very large data bases, Santiago de Chile, Chile 12–15
September 1994, pp 500–509

10. Manopopoulos Y, Theodoridis Y, Tsotra VJ (2000) Advanced
database indexing. Kluwer, Dordrecht

11. Ooi BC, Tan KL, Chua TS, Hsu W (1992) Fast image re-
trieval using color-spatial information. J Very Large Databases
7(2):115–128

12. Ooi BC, Tan KL, Yu C, Bressan S (2000) Indexing the edge: a
simple and yet efficient approach to high-dimensional indexing.
In: Proceedings of the 18th ACM SIGACT-SIGMOD-SIGART
symposium on principles of database systems, Dallas, TX, 15–
17 May 2000, pp 166–174

13. Ramakrishnan R, Gehrke J (2000) Database management sys-
tems. McGraw-Hill, New York

14. SakuraiY,Yoshikawa M, Uemura S (2000) The a-tree: an index
structure for high-dimensional spaces using relative approxi-
mation. In: Proceedings of the 26th international conference
on very large data bases, Cairo, Egypt, 10–14 September 2000,
pp 516–526

15. Weber R, Schek H, Blott S (1998) A quantitative analysis
and performance study for similarity-search methods in high-
dimensional spaces. In: Proceedings of the 24th international
conference on very large data bases, New York, 24–27 August
1998, pp 194–205

16. Yu C (2002) High-dimensional indexing: transformational ap-
proaches to high-dimensional range and similarity searches.
Lecture notes in computer science, vol 2341. Springer, Berlin
Heidelberg New York

17. Yu C, Tan KL, Ooi BC, Jagadish HV (2001) Indexing the dis-
tance: an efficient method to knn processing. In: Proceedings
of the 27th international conference on very large data bases,
Rome, Italy, 11–14 September 2001, pp 421–430


