SWORS: A System for the Efficient Retrieval of Relevant
Spatial Web Objects

Xin Cao® Gao Cong®
Beng Chin Ooit

Christian S. Jensent
Nhan-Tue Phans

Jun Jie Ng¢
Dingming Wu¢

§ Nanyang Technological University, Singapore
* Arhus University, Denmark
¥ National University of Singapore, Singapore
* Hongkong Baptist University, Hong Kong

ABSTRACT

Spatial web objects that possess both a geographical lo-
cation and a textual description are gaining in prevalence.
This gives prominence to spatial keyword queries that ex-
ploit both location and textual arguments. Such queries are
used in many web services such as yellow pages and maps
services.

We present SWORS, the Spatial Web Object Retrieval
System, that is capable of efficiently retrieving spatial web
objects that satisfy spatial keyword queries. Specifically,
SWORS supports two types of queries: a) the location-aware
top-k text retrieval (LKT) query that retrieves k individ-
ual spatial web objects taking into account query location
proximity and text relevancy; b) the spatial keyword group
(SKG) query that retrieves a group of objects that cover the
query keywords and are nearest to the query location and
have the shortest inter-object distances. SWORS provides
browser-based interfaces for desktop and laptop computers
and provides a client application for mobile devices. The
interfaces and the client enable users to formulate queries
and view the query results on a map. The server side stores
the data and processes the queries. We use three real-life
data sets to demonstrate the functionality and performance
of SWORS.

1. INTRODUCTION

With the proliferation of geo-positioning, e.g., by means
of GPS or systems that exploit the wireless communication
infrastructure, accurate user location is increasingly avail-
able. On the one hand, many geo-referenced objects are
being associated with descriptive text documents (e.g., geo-
locations in Google Maps have textual descriptions). Next,
on the other hand, increasing numbers of web documents are
being geo-tagged (e.g., Google Places enables the associa-
tion of location with the web sites of businesses). Therefore,
very large and growing amounts of objects are available on

the web that have an associated geographical location and
textual description. Such spatial web objects include stores,
tourist attractions, restaurants, hotels, and businesses.

This gives prominence to spatial keyword queries [1-5]
(References [1, 2] provide additional references). Such a
queries generally take a location and a set of keywords as
arguments and retrieve spatial web objects that best match
the arguments. The location component represents a spe-
cific local intent, and the keywords component describes user
preferences.

Some forms of spatial keyword queries are supported in
real-world applications, such as yellow pages and Google
Maps. For example, users can specify an address and a set
of keywords in yellow pages services, upon which a list of
businesses whose descriptions contain the keywords are re-
turned, ordered by their distances to the specified address.
However, the algorithms and data structures used in such
applications are proprietary and not disclosed. The text
retrieval toolkit Lucene also supports a type of spatial key-
word query, namely the one that retrieves objects in a given
region that each contains all query keywords (i.e., treating
keywords as Boolean filters).

Indeed, most previous research on spatial keyword queries
treats keywords as Boolean filters and either finds the ob-
jects in a given spatial region that contain the query key-
words or retrieves a list of objects containing the query key-
words ranked based on their distances to the query point.

In contrast, SWORS supports the location-aware top-k
text retrieval (LET) query [2] that computes the text rele-
vance between the descriptions of the objects and the query
and then uses both the textual relevance and the spatial
proximity for ranking. As an example, a tourist traveling
with a child in Paris wants to find hotels that are child-
friendly and close to some specific tourist attractions. The
tourist might issue a spatial keyword query with the key-
word argument “cheap and family friendly hotel.” and a
location argument that is obtained from the GPS receiver
of the tourist’s mobile device.

Next, user needs may exist that are not easily satisfied
by a single object, but where groups of objects may com-
bine to meet the user needs. Put differently, the objects in
a group collectively meet the user needs. For example, the
tourist may have particular shopping, dining, and accom-
modation needs that are best met by several spatial web
objects. To address the need for such collective spatial key-
word queries, SWORS also supports the spatial group key-

word (SKG) query [1]. Such a query retrieves a group of spa-
tial web objects that collectively meet the user needs given
as a location and a set of keywords: the textual description
of the group of objects must cover the query keywords, the
objects must be close to the query point, and the objects in
the group must be close to each other.

SWORS exploits the IR-tree index [2], which targets the
efficient processing of spatial keyword queries, to process the
location-aware top-k text retrieval (LET) queries [2] as well
as the spatial group keyword (SKG) queries [1].

This demonstration enables participants to experience the
functionality and performance of SWORS. Browser-based
user interfaces are available for conventional desktop and
laptop computers. We also provide a client for mobile de-
vices. They enable users to formulate their queries and
view the relevant objects using Google Maps. On the server
side, we organize the data using the IR-tree and process
the queries utilizing this index. Queries are sent from the
browser or the client to the server by the standard HTTP
post operation.

The rest of the demonstration proposal is organized as
follows. Section 2 describes the data model and provides
the formal definitions of the queries. Section 3 presents the
architecture and design of SWORS. Finally, Section 4 offers
the demonstration details.

2. DATA MODEL AND QUERIES

We present the data model used in SWORS and give the
formal definitions of the queries supported in SWORS.

2.1 Data Model

Let S be a universal set of keywords. The keywords cap-
ture user preferences. Let D be a database consisting of
spatial web objects. Each object o in D is associated with
a location 0.\ and a set of keywords 0.1 (0.1p C S) that
describe the object (e.g., the menu of a restaurant).

2.2 Location-Aware Top-« Text Retrieval Query

A location-aware top-k text retrieval (LkT) query ¢ =
(g-A,g¢) has a location descriptor g.A and a set of key-
words q.¢p. The objects returned are ranked according to
a ranking function f(Dist(q,0),Sim(g,0)), where Dist(g, o)
measures the Euclidian distance between ¢.\ and o.\ and
Sim(Q, 0) computes the text relevance between ¢.¢ and 0.9
using a language model.

A wide range of ranking functions can be adopted in
SWORS, namely all functions that are monotone with re-
spect to the distance function Dist(q,0) and the text rel-
evance function Sim(g,0). Currently, SWORS computes a
ranking score of an object o with regard to a query ¢ as
follows:

Dist(q, 0)
maxD

L (1—a) - 2m@o)y

RS(q,0) = « T

where « € [0, 1] is a parameter used to balance spatial prox-
imity and text relevancy; where the Euclidean distance be-
tween ¢ and o is normalized by max D, which is the maximal
distance between any two objects in D; where max P is used
to normalize the probability score and is computed using the
maximal language model of each word.

2.3 Spatial Group Keyword Query

Consider a spatial group keyword query ¢ = (q.\, q.¢),
where ¢.\ is a location and ¢.v represents a set of keywords.
The spatial group keyword (SKG) query finds a group of
objects x, x C D, such that U,eyr.90 D ¢.¢b and such that
the cost Cost(x) is minimized. Given a set of objects x, the
cost function has two components:

Cost(q, x) = Ci (g, x) + C2(x),

where C(-) is dependent on the distances of the objects in x
to the query object and Ca(+) characterizes the inter-object
distances between the objects in x.

This type of cost function is capable of expressing that
result objects should be near the query location (C1(+)), that
the result objects should be near to each other (C3(-)). We
consider two instantiations of the cost function Cost(g, x).
Consequently, we obtain two types of SKG queries.
TYPE1 SKG Query: The cost function of this type of
query is defined as:

Cost(q, x) = Z(DiSt(ﬁ q9)

TEX

The cost function is the sum of the distance between each
object in x and the query location. The TYPE1 SKG query
may serve applications that involve travel or transportation
from the query result locations to the query location, such
as travel to a meeting point or the delivery of goods (e.g.,
take-out food).

TYPE2 SKG Query: The cost function of this type of
query is defined as:

Cost(q, x) = max(Dist(r, ¢)) + max (Dist(r1,r2))

TEX T1,72EX

The first part of this function is the maximum distance be-
tween any object in x and the query location ¢, and the sec-
ond part is the maximum distance between two objects in x
(this can be understood as the diameter of the result). When
there are multiple optimal groups of objects, we choose one
such group at random. The TYPE2 SKG query may fit
with applications where tourists plan visits to several points
of interest.

3. SWORS PROTOTYPE

We cover the architecture and then the browser/client and
server sides.

3.1 Architecture of SWORS

SWORS adopts the browser-server model for desktop and
laptop computers, and it adopts the client-server model for
mobile devices. The architecture is shown in Figure 1. The
system offers browser-based interfaces for desktop and lap-
top users and a client for mobile users (using Android-based
smartphones). Users input their queries through the web
browser or the Android client application, and the queries
are then sent to the server for processing. After the queries
are processed, the results are sent back and displayed us-
ing Google Maps in the users’ browser or client. On the
server side, the spatial web objects are indexed by the IR-
tree [2]. Specifically, queries are processed according to the
user requirements (searching for single objects or a group of
objects) utilizing a disk-resident IR-tree. Queries are sent
from the browser or the client to the server by the HTTP
post operation.

I
Browserl
I

I

Client |

I

IR-tree |
Indexing |
I

Figure 1: SWORS Architecture

3.2 Browser/Client Side

The browser side in computers and the client side in mo-
bile devices provide interfaces to users for generating queries
and viewing the returned spatial web objects. This compo-
nent presents a map and provides interactions with the map
using the Google Maps API.

Users specify a location and input a set of keywords that
describe their queries through the web-based interfaces or
the mobile client, where the query specifications are gath-
ered. Users can provide their location information in two
ways. First, they can click a location on Google Maps. The
Google Maps API is then called to get the latitude and lon-
gitude of that location. Second, they can input the name
of a location. Then a web service provided by Google that
geocodes the location name is called to retrieve the latitude
and longitude of the location. On the mobile platform, if
users do not specify a location explicitly, their current lo-
cation is detected by the mobile device and is used in the
queries.

Queries are sent to the server by the HTTP post opera-
tion. The top relevant objects are retrieved by the server,
and are displayed using Google Maps in the browser or
client. Users can click the relevant objects shown on the
map for more detailed information.

3.3 Server Side

The SWORS web server is built using JSP and Apache
Tomcat. Once a query is received by the JSP server, the
query processor implemented in Java is called to find the
query result.

3.3.1 Data Storage

‘We organize the spatial web objects and process the queries
utilizing the IR-tree, which is essentially an R-tree extended
with inverted files. Each leaf node in the IR-tree contains
entries of the form (o, 0., 0.di), where o refers to an object
in dataset D, 0.\ is the bounding rectangle of o, and o.di
is an identifier of the description of o. Each leaf node also
contains a pointer to an inverted file with the keywords of
the objects stored in the node.

An inverted file index has two main components: (1) A
vocabulary of all distinct words appearing in the descrip-
tion of an object. (2) A set of posting lists, each of which
relates to a word t. Each posting list is a sequence of pairs
(0.di, wo), where o.di is an identifier of an object o whose
description contains the word ¢ and w,, is the weight of
term ¢ in the description of object o.

Each non-leaf node R in the IR-tree contains a number of
entries of the form (cp, rect, cp.di), where cp is the address of
a child node of R, rect is the minimum bounding rectangle
(MBR) of all rectangles in entries of the child node, and
cp.di is an identifier of a pseudo text description that is
the union of all text descriptions in the entries of the child
node. The weight of each word ¢ in the pseudo document
referenced by cp.di is the maximum weight of the word in
the documents contained in the subtree rooted at node cp.
Additional details are available elsewhere [1,2].

The detailed description of objects are stored in a MySQL
database. After the result objects are found, we use their
identifiers for obtaining their coressponding text descrip-
tions from the database, and we return the information to
the user.

3.3.2 Query Processing

LKT and SKG queries are processed utilizing the IR-tree.
Since the problem of answering both types of SKG queries is
NP-complete (the proof can be found in the literature [1]),
we devise both exact and approximation algorithms for them
in SWORS.

Queries are sent to the server by the HTTP post oper-
ation. Other user requirements are also attached with the
query: 1) query type selection: the LET query (searching for
single objects) or the SKG query (searching for a group of
objects); 2) algorithm type selection (for SKG queries): ex-
act algorithms (asking for accurate results with longer query
time) or approximation algorithms (asking for approximate
results with fast response). Next, we briefly describe the
algorithms for processing the queries in SWORS.

LET Query Processing: The LkT query is processed us-
ing best-first traversal in the IR-tree. A priority queue is
used to keep track of the IR-tree nodes and objects that
have yet to be visited. When deciding which node to visit
next, the algorithm picks the node that most likely provides
the top-k objects among the set of all nodes that have yet to
be visited. The algorithm terminates when k highest ranked
objects (ranked according to the ranking function RS(q,0))
have been found.

SKG Query Processing: For the SKG TYPEL query,
an approximation algorithm with a provable performance
bound and an exact algorithm based on dynamic program-
ming are supported by SWORS.

The approximation algorithm follows the idea of solving
the NP-hard weighted set cover problem. It selects the next
best object greedily in each step and finally forms a group.
The IR-tree is used to prune the search space.

The exact algorithm is devised based on the assumption
that in some applications, the number of keywords in a query
may not be large. It exploits dynamic programming and the
IR-tree. The exact algorithm avoids enumerating the com-
binations of data objects in the database. Rather, it enu-
merates the query keywords and exploits a series of pruning
strategies to reduce the search space. We utilize the IR-tree
to retrieve only the objects that contain some query key-
words. Objects are processed in ascending order of their
distances to the query. When it is assured that no more
better results exist, the reading of objects stops, and the
best group is returned

SWORS supports a 2-approximation ratio algorithm based
on the IR-tree for the SKG TYPE2 query. The algorithm
first finds the nearest object for each keyword in the query.

Eeywords: i i
Location Mame: |
OLET Query @ TYPE1 SEG Query OTYPE2 SEG Query _Exact Algorithm

Exact Algarithm
Approximation Algorithm

&

~
¢)
s
i oy,
3
%
B

==

Loy,

wassaig Guefih

(——q |
a9 G
o

wang o <

M §|'|gn an_ q%zn

Western o
L oy SO N

Figure 2: Desktop/Laptop Interface

Next, the keyword only covered by the furthest object in
this group is found. Each object containing such a keyword
is checked in ascending order of its distance to the query.
On each of them, a new query is formed and issued with
the location of that object and the keywords of the original
query. The nearest object for each keyword in the query to
this object is then retrieved, and the cost of this group with
regard to the original query is computed. Finally, the group
with the best cost is returned.

We also support an exact algorithm that exploits the IR-
tree and branch-and-bound search to prune the search space.
This algorithm is based on the assumption that the number
of keywords in a query is small. It first utilizes the approx-
imation algorithm to derive an upper bound cost for the
best group. A best-first search on the IR-tree is performed
to enumerate the possible groups. The upper bound, which
is updated when a better group is found, is used to prune
the search space.

Presentation of the complete details of the algorithms can
be found elsewhere [1,2].

4. DEMONSTRATION AND DETAILS

The demonstration of SWORS is the first demonstration
of a non-proprietary, open platform for the efficient retrieval
of spatial web objects. Participants will be able to experi-
ence how the system can be used to retrieve objects accord-
ing to various types of user requirements.

The interfaces of SWORS are developed for desktop/laptop
computers and Android-based smartphones as shown in Fig-
ures 2 and 3, respectively. Users specify the keywords in the
“Keywords” text box. They can provide the location in-
formation by either entering the name of a location in the
“Location Name” text box or clicking a location on Google
Maps (the latitude and longitude of the location as obtained
using the Google Maps API is then shown in the “Coordi-
nates” text box). On the mobile devices, if no location is
specified explicitly, the user’s current location is detected au-
tomatically. Users also need to choose the query type (LKT
query, TYPE1 SKG query or TYPE2 SKG query). For the
LET query, the top returned relevant objects are listed in
ascending order according to their ranking scores. If the

Primary School

Map data @2012 GME, Google, MaplT, Tel¥ Atlas - Terms of Use

Jor Coordinates: [(1.349%274473441 98, 103.6653814125061) [Wap T —
5 r—

| Zatellite

Keywords: |

Location Name: |
or Coordinates: |(1.348141, 103.68695049¢
LKT @ TYPE1 SKG TYPE2 SKG
Exact Algorithm VV' Submit

—
?
| ;
m ¢ [Map | Satellite b
A
2

Py,

Reservior

View
Jusosasy fuelVel

(NTU) & 2
%, o
? IE
% o™ §
£ oS E P
A x4
4
) ST 38
Z z 3
Ju g _!;g m(z
+ & 9 0,
=) % 7
(€]
i H S 38
z
— S Aan® o
(4 “ang pr ’S

o,
~ é‘ " Bata - Terms ofse
v =

Figure 3: Android Smartphone Client

user wishes to issue an SKG query, the user should select a
corresponding algorithm (exact algorithm or approximation
algorithm) for processing the query. The returned group of
objects is shown on the map. Users can click one location
in the map to see detailed descriptions.

We use three real-world data sets for the demonstration.
The first dataset is crawled from Foursquare® in the re-
gion of Singapore. It consists of 47,653 points of interest,
each of which contains a latitude and longitude, its cate-
gories (restaurant, mall, etc.), and a description provided
by users who checked into the point of interest. The second
one is a large dataset collected from Flickr? in the region
of ew York City in the United States, which contains over
1.5 million photos. Each photo is associated with a set of
user-annotated tags and the latitude and the longitude of
the place where the photo was taken. The third dataset
contains about 179,000 points of interests with categories,
names, and descriptions in Europe downloaded from Pock-
etGPSWorld®. The demonstration will show that SWORS
is able to process the spatial keyword queries effectively and
efficiently over all three data sets.

5. REFERENCES

[1] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi.
Collective spatial keyword querying. In SIGMOD,
pages 373-384, 2011.

[2] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of
the top-k most relevant spatial web objects. PVLDB,
2(1):337-348, 2009.

[3] L. De Felipe, V. Hristidis, and N. Rishe. Keyword search
on spatial databases. In ICDE, pages 656-665, 2008.

[4] Z. Li, K. C. K. Lee, B. Zheng, W.-C. Lee, D. L. Lee,
and X. Wang. IR-Tree: An efficient index for
geographic document search. TKDE, 23(4):585-599,
2011.

[5] B. Yao, F. Li, M. Hadjieleftheriou, and K. Hou.
Approximate string search in spatial databases. In
ICDE, pages 545-556, 2010.

http://foursquare.com
2http://www.flickr.com
3http://www.PocketGPSWorld. com

