
Just-In-Time Query Retrieval Over Partially Indexed Data
on Structured P2P Overlays

Sai Wu§ , Jianzhong Li†, Beng Chin Ooi§, Kian-Lee Tan§
School of Computing, National University of Singapore, Singapore§

Harbin Institute of Technology, Harbin, China†

{wusai, ooibc, tankl}@comp.nus.edu.sg
lijzh@hit.edu.cn

ABSTRACT
Structured peer-to-peer (P2P) overlays have been successfully em-
ployed in many applications to locate content. However, they have
been less effective in handling massive amounts of data because of
the high overhead of maintaining indexes. In this paper, we propose
PISCES, a Peer-based system that Indexes Selected Content for Ef-
ficient Search. Unlike traditional approaches that index all data,
PISCES identifies a subset of tuples to index based on some crite-
ria (such as query frequency, update frequency, index cost, etc.). In
addition, a coarse-grained range index is built to facilitate the pro-
cessing of queries that cannot be fully answered by the tuple-level
index. More importantly, PISCES can adaptively self-tune to opti-
mize the subset of tuples to be indexed. That is, the (partial) index
in PISCES is built in a Just-In-Time (JIT) manner. Beneficial tu-
ples for current users are pulled for indexing while indexed tuples
with infrequent access and high maintenance cost are discarded.
We also introduce a light-weight monitoring scheme for structured
networks to collect the necessary statistics. We have conducted an
extensive experimental study on PlanetLab to illustrate the feasi-
bility, practicality and efficiency of PISCES. The results show that
PISCES incurs lower maintenance cost and offers better search and
query efficiency compared to existing methods.

Categories and Subject Descriptors
H.2.4 [Systems]: Distributed databases; C.2.4 [Distributed Sys-
tems]: Distributed databases

General Terms
Algorithms, Design, Experimentation, Management, Measurement,
Performance

Keywords
Peer-to-Peer, Partial Indexing, Just-In-Time, Self-Tuning, Sampling,
BATON, CAN

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

Local Distributor

manufacturer

manufacturer

retailers

retailers

retailers

Local Distributor

Figure 1: Supply Chain Management

1. INTRODUCTION
Peer-to-Peer (P2P) technologies have been deployed to locate

content in many applications. In particular, structured P2P over-
lays such as Chord[34], CAN[30], Pastry[31], PGrid[6] and BA-
TON[21]) have been developed to guarantee a bound on search per-
formance. However, the “success” stories remain restricted largely
to file-sharing based systems.

Consider an enterprise business application such as the supply
chain management (SCM) system in Figure 1. This application
needs to handle a large amount of data distributed over many com-
panies (peers) participating in the corporate network. Each organi-
zation presumably has its own enterprise resource planning (ERP)
or database system managing its own data. The traditional SCM
cannot effectively handle a large number of participants, and in fact
slows down information dissemination by creating a long chain (the
bullwhip effect). The implication of this is that the corporation may
not have all the necessary information in time for sound decision
making.

As a remedy to the bottleneck of large-scale systems, P2P tech-
nology offers a promising platform for business applications. To
effectively share information, organizations can participate in an
SCM P2P network, where each organization has an application
server acting as a peer node. In such applications, each node man-
ages its local data and exchanges information in the form of tables
and tuples. The data can thus be shared in a large-scale network
more efficiently.

We note that existing P2P systems for database applications (e.g.,
Mercury [10] and PIER [19]) have not been designed to support the
above applications. These systems adopt a full indexing strategy
where all database tuples are indexed in the network. This is clearly
not practical in our case as the amount of information to be shared
is massive in volume, and the number of tables and attributes is
huge. To index all tuples, the indexing process will consume too
much network bandwidth and take hours to complete. Also, as
nodes join or leave the network, the corresponding index needs to
be reconstructed or removed, which incurs considerable overhead.

As cycle time is a major metric of a supply chain [20], the real-
time supply chain, which provides up-to-second information, be-
comes the next-generation supply chain [12]. In this new type

of supply chains, data are updated in high and unpredictable fre-
quency. For illustration, FedEx receives about 2.5 million pack-
ages daily, and Sun Microsystems gets 480% spikes for a product
in demand. Hence, the update overhead to keep indexes up-to-date
and/or monitor the peers becomes impractical. The full indexing
strategy also cannot cope with the case where each peer wants to
share huge amounts of data and the network suffers high update and
churn rates.

Fortunately, we observe that, in practice, only a small portion of
data is actually frequently accessed, and most of the data receive
few or no accesses at all.

Example 1.1. As shown in [22], both offline and online sales
(from EBay) of Sotheby’s (http://www.sothebys.com/) commodities
follow a highly skewed distribution in prices. In online sales, most
transactions focus on the items with price from $ 200 to $ 400. In
such a case, Sotheby’s should monitor the sales of items in a spe-
cific range more frequently to adjust its storage. As a result, the
following query becomes popular:

SELECT count(sale)
FROM sale
WHERE price>x and price<y

As illustrated in Example 1.1, the focus is about goods in a price
range. Retailers should not bother to index information of goods
in other price ranges: The best strategy is to index what the user
requires.

In this paper, we examine the ambitious goal of designing practi-
cal peer-based data management systems (PDMS) to support enterprise-
quality business processing that involves a large amount of data
and peers. In particular, we propose PISCES, a Peer-based sys-
tem that Indexes Selected Content for Efficient Search. PISCES
selectively picks a subset of tuples based on some criteria, such
as query frequency, update frequency and index cost, to build a
partial index. This reduces both the cost to insert tuples into the
network, and the maintenance overhead. To handle queries that
cannot be fully facilitated by the tuple-level index, we employ a
coarse-grained range index to direct the queries to candidate nodes.
The coarse-grained range index is light-weight and its maintenance
cost is low. In addition, PISCES can adaptively tune itself to opti-
mize the subset of tuples to be indexed based on the query access
patterns. The tuples are indexed Just-In-Time (JIT): An index is
built for a query set whenever it is necessary. We also introduce a
light-weight monitoring scheme for structured networks to collect
the necessary statistics. We have conducted an extensive experi-
mental study on PlanetLab to illustrate the feasibility, practicality
and efficiency of PISCES.

The contributions of the paper are summarized as follows:
1. We propose a partial indexing strategy to selectively index

the tuples of databases based on the cost model of structured
overlays.

2. To handle the case of missing indexes in the partial indexing
strategy and to pull data for constructing new tuple-level in-
dexes, a new kind of index, the approximate range index, is
proposed.

3. A light-weight sampling scheme is applied to monitor query
distribution in the network.

4. Experiments in PlanetLab illustrate the effectiveness and scal-
ability of our scheme in different network configurations.

The rest of this paper is organized as follows. Section 2 reviews
related work and Section 3 gives an overview of our system. In
Section 4, we introduce our partial indexing strategy. To collect ap-
proximate network statistics, a new monitoring scheme is proposed
in Section 5. We test the effectiveness of our system by a series of
experiments in Section 6. Section 7 concludes the paper.

2. RELATED WORK
A partial index entails only marginal extra complexity and can

help solve a collection of problems that a database management
system (DBMS) faces. It was first adopted in PostgreSQL. Stone-
braker [35] listed possible applications of the partial index. Se-
shadri and Swami [33] proposed the scheme of building a partial
index based on statistics collected in various granularity . Through
analysis of statistics, partial indexes are constructed for frequently
accessed data. Experiments show that the partial index is a promis-
ing way to improve query efficiency. Our scheme extends the idea
of [33] to a distributed and dynamic environment.

The database community has proposed a series of PDMS to en-
hance the usability of P2P networks, such as Piazza [37] in un-
structured networks and PIER [19] and Mercury [10] in structured
networks. Compared to unstructured networks, structured ones
provide better search efficiency but incur more maintenance over-
heads. In the case of business applications, where data are in high
volume, maintenance messages dominate network cost in struc-
tured networks. [38] and [24] proposed a kind of partial indexing
strategy by combining structured networks and unstructured net-
works. Specifically, only rare items are indexed in structured net-
works whereas the popular ones are searched via flooding in un-
structured networks. In [25], a similar scheme is proposed to speed
up data dissemination in structured MANETs and support approxi-
mate similarity search for images. The above schemes are aimed at
improving search latency and reducing maintenance overheads. In
this paper, we start from a different motivation. Our scheme is in-
spired by the query patterns while the others focus on data patterns.
Our partial index is built in a JIT manner and popular queries are
expected to be answered by the index directly.

3. PRELIMINARIES
PISCES distinguishes itself from traditional P2P networks in

three ways. First, nodes employ database systems to organize their
data. Nodes can adopt different DBMS and customize their database
designs. Data sharing amongst nodes is also via tuples of databases.
Second, PISCES establishes some mapping servers outside P2P
networks. These mapping servers translate various users’ schemas
into a uniform mediated one. Third, in PISCES, nodes apply a par-
tial indexing strategy to disseminate their data, and hence greatly
reduce the overhead of disseminating data.

3.1 Schema Mapping Servers
Before a new node starts sharing its data, it asks a mapping server

to obtain the uniform mediated schema. Mapping servers are clas-
sified by the type of the schemas they can handle. The node selects
a corresponding mapping server and sends its database schema and
necessary meta-data. The server invokes a local schema mapping
algorithm, such as those proposed by Doan et al. [17, 16], and re-
turns a mediated schema to the node.

Schema mapping is a challenging task. Since the focus of our
work is developing a partial indexing strategy for P2P systems rather
than addressing schema matching problems, we assume that the
mediated schemas of all domains have already been defined. The
node only needs to perform the mapping process when it joins the
network. Even if the node leaves and rejoins the network, it does
not need to recreate the mapping relations if the local schema has
not been changed. Thus, the schema mapping servers are only
lightly loaded.

3.2 Basic Tuple-Level Indexing Strategy
In this paper, we propose indexing of important data based on

the scheme proposed in [19]. We shall first review how this scheme

works: Once a node obtains the mediated schema and mapping re-
lations, it indexes the data according to the mediated schema. Sup-
pose we are building an index for attribute A of relation R. Then
the index is given a namespace of R.name + A.name. Let vk be a
value of the indexed attribute of A. An index message including the
namespace, vk and ip address of the owner node is sent via the P2P
protocol to the corresponding node (responsible for value vk). After
the index is established, it can be applied to answer the query (exact
query or range query) involving A. Each index entry is assigned a
timestamp. The node responsible for the index may discard the in-
dex entry if its timestamp has expired. To guarantee that the nodes
responsible for the index are still alive, the owner node should send
refreshment messages to those nodes periodically. If the node is
still alive, it will refresh the timestamp. Otherwise, the index will
be recreated.

In PIER, all tuples in the database are published for sharing. This
full indexing strategy is impractical for a corporate network as busi-
ness databases are data intensive. In PISCES, a partial indexing
strategy is proposed to construct the index adaptively, which can
significantly reduce cost.

3.3 Histogram-based Approach
To index only a subset of the database, we collect the query fre-

quency for each tuple to determine if it is beneficial to index it.
Even in a traditional database, storing the precise query informa-
tion for every tuple is impractical due to the data size. Hence, we
adopt an approximation approach. Suppose the domain of attribute
A is [L,U], we partition the range into m cells of equal length. The
cell is used as a unit for index construction and query distribution
monitoring. In index construction, once PISCES decides to index
a cell, all tuples bounded by this cell will be indexed. To monitor
query distribution, we build a query frequency histogram, where
each cell acts as a bucket of the histogram. In this way, the statis-
tics maintenance cost is greatly reduced.

The granularity of cells affect the accuracy of the estimated in-
formation. In this paper, the length l of cells for attribute A is com-
puted in the following way: Suppose initially, k nodes declare that
they have data for attribute A after schema mapping. The schema
mapping server requires each of the nodes to send s sampling tu-
ples. Then, we have ks samples of attribute A. We sort them in
ascending order and remove the duplicate values.

Suppose the remaining values are {v1, ..., vn}. Let Ii and I repre-
sent vi+1−vi and l

n respectively , we define the distribution variance
of cell ci as:

var(ci) =
n−1∑
i=1

E((Ii − E(I))2)

We require that l should satisfy:

∀i(var(ci)) < εl2 ∧ l ≤ l0 (1)

ε is a tunable parameter; currently, we set ε = 0.01 and l0 is a
threshold of maximal cell length. The intuition of the above def-
inition is to guarantee that data in a cell almost follow a uniform
distribution. In this way, the histogram method can provide good
performance.

4. PISCES APPROACH
In this section, we introduce our proposed PISCES strategy, which

constructs an index for online databases in a JIT manner. As we aim
to reduce the maintenance overhead of a PDMS, we first analyze
the major cost of such a system. Then a new type of index, the ap-
proximate range index, is introduced to facilitate tuple-level index

building and reduce network cost. Based on the cost model and
network statistics, our partial indexing strategy switches between
tuple-level index and approximate range index adaptively. While
the proposed indexing and querying strategy are independent of the
underlying structured overlay, we use BATON [21] in our discus-
sion. We have developed and implemented the proposed method
on both BATON and CAN [30]. We note that the same idea can be
extended to any structured overlays that support range search.

4.1 Cost of a PDMS
Suppose node ni has a database with Nt tuples and we build an

index for its attribute. The index maintenance cost is mainly com-
posed of three parts: refresh cost, update cost and churn cost.

Refresh messages are used to guarantee the data are consistent
and to defend against data loss from network corruption (a node
leaving without notifying others). On average, node ni sends re-
fresh messages to the nodes responsible for its indexes every T sec-
onds. In BATON and many other structured overlays, the routing
cost of a message in an overlay of N nodes is O(log N). With a full
indexing strategy, node A incurs approximately a cost of:

Cre f resh =
Nt log N

T
(2)

per second. If only αNt (α < 1) tuples are indexed in a partial
indexing strategy, the cost is reduced to αCre f resh .

For its duration in the P2P network, node A may insert, delete
or update tuples, which in turn affects the indexes. Once a tuple
is inserted or deleted, the corresponding index entries should be
updated as well. Suppose I tuples are inserted or deleted per sec-
ond. In the full indexing case, because all data are indexed in the
network, the index update strategy will incur a cost of:

Cupdate = I log N (3)

In the partial indexing case, whether the update affects the index
depends on the indexing strategy. In our case, because the partial
indexing strategy is query driven, the number of affected tuples can
be expressed as a function of query distribution Pq, f (I, Pq), where
Pq(v) represents the probability of value v being queried and thus
0 ≤ f (I, Pq) ≤ I. The update cost for the partial indexing strategy
is:

C′update = f (I,Pq) log N (4)

If a node joins/leaves a P2P network, the indexes should be moved
accordingly. In a structured P2P network, if a node leaves, the in-
dexes stored at the node should be passed to its neighbors (the ad-
jacent node in BATON or CAN). If a new node joins the network,
its neighbor splits its indexes and transfers the corresponding part
to the new one. The new node will also publish the data in its local
database to the network. Suppose, on average, Nu nodes join or
leave the network per second and the total number of nodes is kept
constant. The average cost caused by churn in the full indexing
strategy is:

Cchurn =
1
N

NtNu + NuNt log N (5)

For the partial indexing strategy, the cost is reduced to αCchurn.
The total cost of maintaining the index for the full and partial

indexing strategies are:

C f ull = Cre f resh +Cupdate +Cchurn (6)

Cpartial = αCre f resh +C′update + αCchurn (7)

respectively. Note that all the costs are estimated. In our case,
accurate statistics is not necessary because the model is only used
as a hint for building an efficient index.

Although partial indexing reduces maintenance overhead, it also
leads to lower query recall. Some queries cannot be answered by
the current index as the corresponding tuples are not indexed. In
this case, an alternative is required, where our approximate range
index is applied. A natural question is which indexing strategy is
better? We omit the detailed analysis here. Instead, we use an
example to illustrate the important role of query distribution.

Suppose no index is updated and no node joins or leaves the net-
work. Under this assumption, different index entries incur the same
maintenance cost. In uniform query distribution, each tuple has the
same probability of being queried. The partial index can answer
α percent of queries by indexing α percent of tuples. There is no
benefit compared to the full indexing strategy. In Zipfian query
distribution, the distribution function is:

f (k; s,N) =
1

ksHN,s

where HN,s =
N∑

n=1

1
ns . Assume that s = 1 and we want to pick the

top-K terms in order that 2HK,1 > HN,1. We know that

limitN−>∞HN,1 = log N
So we assume that HK,1 = log K + C0 and HN,1 = log N + C1. To
achieve 2HK,1 > HN,1, we need

2 log K + 2C0 > log N +C1

log K > log
√

N + ε (8)

ε is a small constant when both K and N are large. By index-
ing the most popular

√
N tuples, we can answer about half of the

queries. Thus, the partial indexing strategy outperforms the full
indexing one significantly. In a more general case, if the query fol-
lows skewed distribution, the partial indexing strategy can reduce
maintenance cost.

4.2 Approximate Range Index
As mentioned, when only part of the data are indexed, queries

whose involved tuples are not indexed cannot be answered using
the index. In this case, flooding the entire network is an alternative.
This is clearly undesirable and impractical for large scale network
because of the significant communication overhead. In this paper,
a new kind of index, the approximate range index, is used to handle
this problem. Suppose the max and min values of attribute A in
node ni are vmax and vmin respectively. ni can build a range index
[vmin, vmax] to indicate that it may answer queries which overlap
with this range. We refer to this kind of index an approximate range
index. However, as such an approximate index introduces false
positive (i.e., a query is forwarded to a node that contains no answer
to the query) if applied for query processing, it must be carefully
designed for good performance. For example, in an extreme case,
assume node ni’s tuples have the same A value, vmin; then, the index
will always return a false candidate if used to answer the queries in
(vmin, vmax]. In our system, a range index entry is in the format
of (namespace, min, max, number of unique values). To measure
the effectiveness of an approximate range index, we define False
Positive Factor as:

Definition 4.1. False Positive Factor
The false positive factor (ρ) of a range is defined as the probability
of returning a false positive for an arbitrary query (range or exact
query) that overlaps with the range.

As we use cell as a unit for index building, two kinds of False
Positive Factor should be considered, outer cell factor and inner
cell factor. To simplify the notation, we use |R| to represent the
total number of cells in the range R.

(a)

(b)

71 2 3 4 5 6

71 2 3 4 5 6

Figure 2: Comparison of Different False Positive Factor

Definition 4.2. Outer Cell Factor
Outer cell factor is used to estimate the false positive of queries
with range greater than cell length l. Suppose f (i) returns the fre-
quency of consecutive i empty cells, outer cell factor ρ0 is computed
as:

ρ0 =
2

|R|(|R| + 1)

|R|∑
i=1

f (i) (9)

For example, in Figure 2, let the shaded cells represent non-
empty cells. f (1) returns 4 for both Figure 2(a) and Figure 2(b)
(4 empty cells in each case), while f (2) returns 1 (r1 = (c2, c3)) for
Figure 2(a) and 2 (r1 = (c5, c6), r2 = (c6, c7)) for Figure 2(b) respec-
tively. Finally, the outer cell factor of Figure 2(a) and Figure 2(b)
are estimated as 17.8% and 25% respectively. Note that the two
ranges with the same length and same number of non-empty cells
in Figure 2 have different false positive factors due to their distinct
data distributions.

Definition 4.3. Inner Cell Factor
Suppose P(r) represents the possibility of issuing a range query
with length r < l (l is the cell length), and ni is the number of unique
values in cell i, the inner cell factor for range R is computed as:

ρ1 =
1
|R|
∑

celli∈R

∫ l

0
P(r)(1 − r

l
)ni d(r) (10)

Inner cell factor gives a more precise description for possible
false positives of small range queries (exact query are 0-length
range query). If the query distribution is unknown, we assume that
queries of different ranges are issued in the same probability. Then
the cell’s inner false positive factor can be calculated as 2

n+2 . Fi-
nally, the false positive factor of range R is estimated as:

ρ(R) = (1 − l2

R2)ρ0 +
l2

R2 ρ1 (11)

To incrementally compute the false positive factor, we introduce
the following properties.

Lemma 4.1. If range r is chosen to be indexed and ci is a border
cell of r, ci must be non-empty cell. Otherwise, we can get a better
indexing strategy.

Proof. (sketch) If a range r has empty cells as its borders, we
can remove the empty cells and obtain an indexed range with lower
cost. The range can answer the same set of queries but the main-
tenance cost is reduced since the number of false positives is de-
creased.

As shown in Figure 3, the original indexing strategy has two
entries, [L, a] and [a, U]. But we can shrink them to get two ranges,
[L, b] and [c, d], with lower cost. The removed empty range from
the index entries must be the maximal empty range (all the cells in
the range are empty cells and its adjacent cells are non-empty).

Theorem 4.1. Suppose a range R is partitioned into a maximal
empty range r0 and two non-empty ones, r1 and r2. The outer cell
factors of ranges satisfy:

ρ0(R) =
(|r0| + 1)|r0|
(|R| + 1)|R| ρ0(r0)+

(|r1| + 1)|r1 |
(|R| + 1)|R| ρ0(r1)+

(|r2| + 1)|r2|
(|R| + 1)|R| ρ0(r2)

ab c dL U

71 2 3 4 5 6 8 9

Figure 3: Shrunk Index Range

Proof. (sketch) The query, which cannot be answered by R, can-
not be answered by r0, r1 and r2 either. For r0, no queries can be
answered because it is an empty range. As indicated by Lemma 4.1,
both r1 and r2’s border cells to r0 are non-empty. If the query can be
answered by r but cannot be answered by r1, it must be answered
by r2 and vice versa. So the outer cell factors of R is actually the
sum of outer cell factors of r0, r1 and r2 with normalization of query
distribution.

As a simple example, suppose the cells in Figure 2(a) are parti-
tioned into three ranges, r0={cell 2,cell 3}, r1={cell 1} and r2={cell
4, cell 5, cell 6, cell 7}. From Equation 9, we compute ρr0 = 1,
ρr1 = 0 and ρr2 = 0.2. Assume query distribution is uniform for
R, the probability of being queried for the subranges are pq(r0) =
0.107, pq(r1) = 0.0357 and pq(r2) = 0.357. So the estimated false
positive factor of r is 1× 0.107+ 0× 0.0357+ 0.2× 0.357 = 0.178.

Theorem 4.2. Suppose a range R is partitioned into range r0 and
r1. The inner cell factors of ranges satisfy:

ρ1(R) =
1
|R| (|r0|ρ1(r0) + |r1|ρ1(r1))

Proof. (sketch) This can be verified by Equation 10.

4.2.1 Optimal Approximate Range Index Strategy
The cost of approximate range index includes index maintenance

cost and false positive cost. When used during query processing,
the approximate range index may return false positives, i.e., some
queries may be forwarded to nodes that will not contribute any an-
swer tuples. Let x be the number of queries for the range R. The
overhead of the approximate index for range R is estimated as:

Crange = ρ(R)x +Centry (12)

Centry is the average maintenance cost of a single range index entry.
It can be derived from Equation 6.

Centry =
C f ull

Nt
=

log N
T
+

I log N
Nt

+
Nu

N
+ Nu log N (13)

Because the update frequency of approximate range index is far
lower than that of tuple-level index, we discard the term for updates
in Equation 13 when computing cost for range entries.

Now we face the problem of building an optimal approximate
range index, which can be formalized as

Definition 4.4. Optimal Range Index Problem
Given query distribution Pq, for attribute A with domain [L, H],
node n wants to set up an approximate range index I with k entries.
For any non-empty cell ci of n, ∃r j ∈ I → ci ∈ r j, and the cost

k∑
i=1

ρ(ri)xi + kCentry (14)

is minimized.

The optimal range index problem is an NP-hard problem, if the
range is partitioned in a continuous way. Fortunately, as we use
cell as a basic unit for indexing, the optimal indexing strategy can
be solved by dynamic programming. We search the possible solu-
tions of different partitioning strategies and select the best one. Let

f (p, q, k) denote the optimal indexing strategy by partitioning the
range from cell p to cell q into k entries (q ≥ p). The optimal solu-
tion can be computed as the best combination of the sub-solutions,
which is represented as:

f (p, q, k) = min(f (p, x, y)+ f (x+1, q, k−y)), (p ≤ x < q∧1 ≤ y ≥ k−1)
(15)

Algorithm 1 lists the detail of selecting the optimal indexing
strategy. At first, the cost table is initialized to compute the ba-
sic cost (lines 1 to 5). In line 5, shrinkcost(i, j) removes the empty
cells as suggested in Lemma 4.1 and returns the shrunk cost of the
range from cell i to j. Then we compute strategies with different
number of partitions and return the one with the least cost (lines
7-11). In line 8, a recursive function f is invoked to compute the
minimal cost of partitioning the whole space into a specific number
of entries. The detail of f is illustrated in Algorithm 2. If the cost of
the strategy has already been recorded, we return it directly (lines
3-4). Otherwise, the minimal cost is computed by Equation 15 (line
7-11). And the new cost is updated in the cost table. The complex-
ity of Algorithm 1 is O(e − s)3. Once, the entries of cost table have
been filled up, the algorithm terminates.

Algorithm 1 OptimalIndex(int s, int e)
//s: index of start cell
//e: index of end cell
1: initialize T as a (e-s+1)×(e-s+1)×(e-s+1) table
2: for i = 1 to e-s do
3: for j = 1 to e-s do
4: T[i,i,j]=cost of cell i
5: T[i,j,1]=shrinkcost(i,j)
6: min=possible max value, minindex = 1
7: for i = 1 to e-s do
8: c=f(s, e, i)
9: if c<min then

10: min=c, minindex=i
11: return strategy recorded by minindex

Algorithm 2 f(s, e, k)
//k: number of partitions
1: if k>e-s+1 then
2: return invalid
3: if T[s,e,k] is not null then
4: return T[s,e,k]
5: else
6: min=possible max value, mini=1, minj=1
7: for i=1 to k-1 do
8: for j=s to e-1 do
9: c=f(s, j, i)+f(j+1, e, k-i)

10: if c<min then
11: min=c, mini=i, minj=j
12: T[s,e,k]=min
13: return min

Theorem 4.3. Algorithm 1 returns an optimal indexing strategy.

Proof. (sketch) We first prove that for a specific k, f(p,q,k) re-
turns the minimal cost. Then, as our algorithm iterates all possible
ks, it can get the optimal one. When k=1, there is only one index-
ing strategy and thus f(p,q,1) is the best strategy. Assume for k<n,
f(p,q,k) always returns optimal strategy, now we prove that for k=n,
the above conclusion also stands. Suppose f(p,q,n) is not the opti-
mal one, and we get another best strategy f ’(p,q,n). In f ’(p,q,n), we
can get two sub partitions, f ’(p,q-x,n-y) and f ’(q-x+1,q,y). f ’(p,q-
x,n-y) and f ’(q-x+1,q,y) must be the suboptimal solutions, other-

0.4 [1,10)100,2k

0.2 [1,5)45,1.5k

0.1 [1,2)20,0.8k 0.1 [4,4)25,0.7k

0.2 [6,10)55,0.5k

A

B C

D E
Figure 4: Maintenance Tree

wise f ’(p,q,n) is not the optimal one either, which means f ’(p,q-
x,n-y)=f(p,q-x,n-y) and f ’(q-x+1,q,y)=f(q-x+1,q,y). So the cost of
our solution f(p,q,n) is no more than that of f ’(p,q,n) and it must be
the optimal one.

4.2.2 Maintenance of Approximate Range Index
With Algorithm 1, given the query distribution, we can com-

pute the optimal range indexing strategy in O(n)3, where n rep-
resents the number of cells. Once the query distribution evolves,
the indexing strategy should be recomputed. However, we do not
want to invoke Algorithm 1 frequently. Although cell number is
far smaller than the tuple number, O(n)3 is still a remarkable cost.
Moreover, indexing range entries incurs additional network over-
heads. In this section, we propose our light-weight maintenance
scheme. The scheme is based on the observation that the query
distribution changes slowly.

After Algorithm 1 computes the optimal indexing strategy for the
current query distribution, we construct a binary tree to organize
the index entries. The leaf node of the tree refers to an index entry,
whereas the inner node represents a set of entries. The tree node is
represented in the format of:

{errorbound, (cost, tupleNumber), cellrange}
Error bound is applied to limit the estimation error, cost represents
the maintenance cost of the range entries computed by Algorithm 1,
tuple number is the approximate number of tuples in the range and
cell range describes the start and end cell IDs.

Definition 4.5. Estimation Error
For a tree node n, suppose its initial cost computed by Equation 12
is c. After a time t, if the new observed cost is c’, the estimation
error is defined as |c−c′ |

c .

As shown in Figure 4, the root node represents the domain of
the attribute (cell 1 to cell 10). The total error bound is 0.4 and
its current cost is 100. The node splits its range into two children
such that their cost variance is minimized. The error bounds of
the children are half of their parents. Note that the combination
of children’s ranges may not equal to the parent’s range, because
some empty cells are excluded from the index entries.

If the query distribution of an index entry changes, the corre-
sponding leaf node will check if the change results in violation of
the error bound. If not, the change will be discarded. Otherwise,
the node will ask its parent for help. The parent node computes its
estimation error. If the change is still bounded, the parent node will
invoke Algorithm 1 to compute an optimal indexing strategy for
its range, and all descendant nodes update their ranges and initial
cost. Otherwise, the parent will forward the request to its own par-
ent. The process may be recursively invoked until the root node is
reached, where the total optimal indexing strategy is recomputed.
The total error bound is a tunable parameter. A small error bound
makes the index more sensitive to query distribution, while a large
bound leads to lazy update. In the experiments, we set it to 0.4.

G

KFCA

JHEB

ID

ID R-ChildL-Child MinKey

Node E: Level=2, Number=2, Subtree=[50,72)
Parent=D, Left Child=NULL, Right Child=F
Left Adjacent=D, Right Adjacent=F
Left Routing Table:

Right Routing Table:

MaxKey
0 CA 10 23

Node
B

0 nullnull 90 105H
ID R-ChildL-Child MinKey MaxKeyNode

1 Knull 130 144J

[0,10) [23,31)

10,23),[0,31)

[31,50),[0,72)

[50,58),[50,72)

[58,72)

[72,90), [0,180)

[90,105)

[105,130),[90,180)

[130,144),[130.180)

[144,180)

Figure 5: BATON Tree

4.2.3 Index Range Entry in BATON
Structured P2P networks support exact key index. Given a key,

the protocol can locate the peer responsible for the key in O(logN)
time. For overlays that support range queries, it is easy to extend
them to support range index. In this paper, we use BATON [21]
as an example, and BATON and CAN [30] in our implementation;
other overlays, such as P-ring [14], P-Grid [6] and HotRod [28],
can also adopt the same scheme.

Figure 5 illustrates the structure of BATON. Besides the origi-
nal indexes, an internal node of BATON also records the range of
its subtree. For example, node E’s own range is [50, 58) and its
subtree’s range is [50, 72). Once a node joins the network, it gets
a subtree range from its parent. The subtree range needs to be up-
dated only when nodes leave or join or when BATON needs balance
the system load. Moreover, even if a node drops out of the network
without notification, the subtree range can be recovered by asking
its parent and children.

Algorithm 3 shows how to locate the node responsible for a spe-
cific range. We depend on BATON’s routing protocol to locate the
node for a key (line 1). Here, the mid-point of the range is used
as the key, which turns out to be more effective than the minimum
and maximum values. The request is continuously forwarded to the
upper level nodes until a node whose subtree range fully contains
the range is reached. The complexity of Algorithm 3 is O(logN) (N
is the number of nodes), for the tree height is O(logN)[21].

The range indexing algorithm is illustrated in Algorithm 4. To
publish one range index entry, the node invokes Algorithm 3 to find
the candidate node for its entry. To reduce the cost of query pro-
cessing, we keep a soft status for each node. The node is marked
as left active, right active, left-right active or non-active (indicating
that it indexes ranges overlapping with left subtree, right subtree,
both subtrees or none of them). After indexing a range entry R, the
node checks whether its status need to be changed and notifies its
descendants. The notification processing is omitted here because
of space constraints. In summary, the node will change its status
and forward the notification to its children if it is in a different sta-
tus. Otherwise, the notification process is terminated. On the other
hand, if the last range index is removed from the node, it will invoke
the notification process as well.

Algorithm 5 lists the range query processing via approximate
range index. The algorithm checks the status of the parent node to
decide whether to forward the request or not.

4.3 Tuning the Partial Index
In this section, we present our JIT indexing strategy: only in-

dex what is beneficial to the current system. If a data range be-
comes popular, the nodes responsible for the range will receive
more queries. These nodes trigger an index requirement to data
owners. This behavior is similar to the publish/subscribe system.
The approximate range index can be considered as a subscription,

Algorithm 3 search(range r)
1: node m=lookup(r.mid)
2: if m.subtreeLow≤r.low and r.up≤m.subtreeUp then
3: return m
4: else
5: m=m.parent
6: return m.search(r)

Algorithm 4 index(range r, string ip, string namespace)
1: node m=search(r)
2: m.buildIndex(r, ip, namespace)
3: if !m.isLeftActive and isOverlap(r,m.leftSubtree) then
4: send left notification to m.leftChild
5: m.isLeftActive=true
6: if !m.isRightActive and isOverlap(r,m.rightSubtree) then
7: send right notification to my rightChild
8: m.isRightActive=true

registering what data the node can provide. After receiving the
notification, the owner node publishes its tuple-level index for the
corresponding cells. Thus the partial indexes are built in a query
driven manner.

For a cell c, suppose there are k nodes having data in this cell

and node i has approximately ni tuples in the cell (
k∑

i=1
ni = n). Let

nq be the average number of queries per second for this cell, if:

nCentry − nq

k∑
i=1

∫ l

0
P(r)(1 − r

l
)ni d(r) (16)

is negative, the cell should construct tuple-level index, because
even the smallest range index (1 cell length) will incur too much
overhead. The integration based on query distribution can be com-
puted by Monte Carlo method. S samples are taken to estimate
the values. To emphasize the importance of recent queries, nq is
calculated as:

nq = q +
n′q
f

(17)

where q represents the query number in this second, n′q is the last
computed value of nq and f is an aging factor to degrade the effect
of old queries. This aging scheme is also adopted in web cache
management [29]. In our implementation, the query number is
computed periodically and the average value is applied. To get the
approximate values of k and ni in Formula 16, when we search the
index of a specific range in Algorithm 5, we piggy back the number
of tuples registered in the range indexes to the leaf node (recall the
range index format). Then the average number of tuples in a cell
of the node can be computed. This piggy back process is invoked
periodically.

The tuple-level index is constructed in three steps

Algorithm 5 query(range r)
1: node m=search(r)
2: return m’s local index for r
3: while true do
4: n = m.parent
5: if (m=n.leftChild and n.isLeftActive) or (m=n.rightChild

and n.isRightActive) then
6: m=n
7: return m’s local index for r
8: else
9: break

1. Node responsible for the hot range decides to index tuples
for some cells according to Formula 16.

2. Algorithm 5 is invoked to find all nodes overlapping with the
cell. And a notification message is sent out to these nodes.

3. After publishing their data, the nodes update their local main-
tenance trees of approximate range indexes.

The first two steps of creating partial index guarantee that all
online nodes achieve the same indexing strategy (for a tuple, it will
be indexed by all nodes or none of them). In step 2, once a node
m sends index notification messages, it records the indexed cell’s
ID. For the newly joining node, when it publishes its range index to
a node m, m will check its record for indexed cells and inform the
joining node about the global decision.

In step 3, the node, after sending its data for indexing, will up-
date its maintenance tree to reflect the new cost. For example, in
Figure 4, if tuple-level index is created for cell 1, the cost of node
D, B and A need to be recomputed. The cost of indexed cells are
removed from the range entry cost. If the estimated error exceeds
the error bound, the indexing strategy should be modified.

Similar to the index construction, if a node observes that an in-
dexed cell is no longer beneficial (formula 16 is positive), the node
will discard the index of the cell and inform the corresponding
nodes. The maintenance trees of the involved nodes are updated
as well.

4.4 Load Balancing
Load balancing is a well studied topic in P2P system. In this pa-

per, load balancing is accomplished mainly via BATON’s protocol,
which has been shown to be effective for data indexes. However,
indexing range intervals incurs new load balancing problem. As
discussed in [23], arbitrarily small ranges may be mapped to ar-
bitrarily large interval. For example, range [70, 80) is mapped to
interval [0, 180)(node G) in Figure 5. To solve this problem, we
adopt a partitioning strategy.

Definition 4.6. Range Index Entry Partitioning
Suppose node n’s minimal value and maximal value for tuple-level
index are Tmin and Tmax respectively, and its subtree’s range is [L,
U). A range entry R=[l, u) at node n should be partitioned i.f.f.
Tmin − l < 1

2 (Tmin − L) and u − Tmax <
1
2 (U − Tmax)

With this definition, range [70, 80) will be partitioned into sub-
ranges [70,72) and [72,80), which are indexed at nodes F and G
respectively.

Theorem 4.4. A range entry is partitioned at most once accord-
ing to the Definition 4.6.

Proof. (sketch) After one partition, suppose the subrange r’ is
routed to node m’, it can no longer be partitioned. Otherwise, we
can find a child of m’ whose subtree range also contains r’. This
conflicts with Algorithm 3, which returns the first node that con-
tains the range.

As BATON is a balanced tree, in most cases, search space is par-
titioned evenly. Range partition defined in Definition 4.6 is effec-
tive to balance the load. In addition, the partial indexing strategy
also lightens the load of large range interval. As the index is de-
signed to answer the hot queries, the approximate range index is
therefore seldom used.

4.5 Implementation in Other Overlays
Our partial indexing scheme is not limited to BATON. In this

section, we discuss how to extend the approach to other overlays.

(x, y)

x

y

x

y

l

l

(a) Index Range in CAN

A

C
B

D

r1

l

l

r2

r3

E

(b) Notification Area

Figure 6: Range Indexing in CAN

In particular, we have also implemented our scheme on CAN [30].
To support partial indexing scheme in CAN, we only need to mod-
ify CAN to support range index. In [32], Sahin et al. propose a
method on CAN to process range queries. We modify their scheme
to support the approximate range index. For a range R = [x, y], it
can be represented as a point p=(x, y) in a 2-dimensional CAN. The
range R′ = [x′, y′] that overlaps with R satisfies:

x′ ≤ x ≤ y′ ∨ x′ ≤ y ≤ y′

The search area for the corresponding point of R′ is indicated as the
shaded area in Figure 6(a). Hence, to retrieve the range index for a
range query, we should search the query’s shaded area.

For an exact query q = x, we use a point (x, x) in the diagonal to
represent it. Then, only the space in the left-upper corner is used
(the space above the blue line), because values of y-axis are always
greater than those of x-axis. In our scheme, we use the cell as a
unit to store the data. So the value v is actually stored at the node
responsible for the point (
 v

l �,
 v
l � + l), where l is the cell length.

Thus, the usable data space in CAN is the space above the line
Y = X + l, the red line in Figure 6(a).

To optimize the search efficiency and ensure load balancing, two
strategies are applied.

1. Searching the whole shaded area of a query incurs too much
overhead. Instead, we use skyline points [11] to prune the
search space. As shown in Figure 6(b), the red triangle rep-
resents the dominated range of range index r1. Only queries
within the triangle need to search r1. To prune the search
space, when publishing a range index r1, we invoke Algo-
rithm 6 to inform the corresponding nodes. Specifically, we
keep a skyline point set for each node and their neighbors re-
spectively. Figure 6(b) shows the idea of Algorithm 6. The
first range index r1 is indexed at node A and A will update
its R[A], the skyline point set for itself, as {r1} and send no-
tification to its neighbors, B and C. Then, the second range
index r2 is indexed at E and the notification is sent to A. Node
A updates both skyline point sets for neighbor E (R[E]) and
itself (R[A]) as {r2}. The notification is sent to A’s neighbors
as well. Finally, the third range index r3 comes to A. But A
finds that r3’s point is dominated by r2 ∈ R[A]. So A will not
send notification to its neighbors. Once receiving a query q,
A first processes it locally and then checks the skyline point
sets of its neighbors. Query q is forwarded to neighbor E,
only if q is dominated by a point in R[E].

2. As only the space above the line Y = X+ l is used, to balance
the load, we modify CAN’s partitioning strategy to split the
space above Y = X + l evenly, instead of partitioning the
whole space evenly. Figure 6(b) illustrates a result of such
partition.

The cost model of CAN is slightly different to BATON, as the
routing cost in CAN is O(d√N). However, we can follow the same

Algorithm 6 Notify(node n, node m, range r)
//n receives the notification sent by m for range r
1: p=getPoint(r)
2: if p is not dominated by points in n.R[n] then
3: add p to n.R[n] and n.R[m]
4: n.R[n]=getSkyline(n.R[n])
5: n.R[m]=getSkyline(n.R[m])
6: Notify n’s right-down neighbors about r

analysis and the details are therefore omitted due to space con-
straint.

Other overlays such as P-Grid [6] and Pastry [31] can apply the
scheme proposed in [15] to process the range index. The routing
request is always sent to the parent node which maintains a larger
search range. Our scheme does not need any modification to be
integrated to these overlays.

5. MONITORING P2P NETWORK
PISCES requires approximate global statistics, e.g. total number

of nodes N, total query number Nq, query distribution Pq and aver-
age number of nodes joining/leaving Nu. However, in P2P systems,
it is not only costly to collect these statistics, the dynamism of the
system will render any accurate statistics obsolete very quickly.

Sampling techniques have been applied to unstructured P2P net-
works in [8, 36]. The sampling algorithm in unstructured P2P net-
works try to sample each peer in the same probability. In DHT
network, this issue is no longer a problem for the use of consis-
tent hashing. By sampling the nodes through randomly gener-
ated IDs, we will sample each node in the same probability. As
shown in Manku’s scheme [27, 26], the estimation error can be
bounded by a constant factor. However, for the overlays support-
ing range queries [21, 6, 7], hash function is not adopted and the
above schemes cannot be applied in our case. Thus, in this paper,
we introduce a new sampling scheme to address this problem.

Previous sampling schemes periodically send sampling messages
to the nodes in a random manner. This strategy introduces addi-
tional cost to P2P network. Instead, we decide to exploit the over-
lay’s protocol to do the sampling. Our scheme can be applied to
any overlays. For simplicity in description, we again use BATON
as an example.

5.1 Sampling Scheme

5.1.1 Footprint
To count the number of queries, the nodes record the correspond-

ing messages. One choice is to make the nodes, which process the
queries or updates, store the performed operations. But this scheme
leads to biased sampling result when some hotspot exists. To bet-
ter distribute the query and update information in the network, we
adopt a “footprint” scheme.

In BATON, a query will be processed in about O(log N) mes-
sages, and about 6 log N messages are required for node joining
and 4 log N messages for node leaving. In the original protocol,
after receiving these messages, the routing node will process the
corresponding request (update routing finger table or forward the
message to other nodes). But no information about the actions are
recorded. In this paper, we exploit these messages to help the sam-
pling process.

After a query is issued from the user node, it will reach the des-
tination in about O(log N) nodes. Now, we require the node, which
routes a specific query Q, to add the following entry to its local
storage.

(Q.ID,Q.time,Q.range)

The query ID is generated by the system automatically and each
query has a unique ID. The node records when it receives the query
routing request. And after a time threshold T , if Q.time + T <
current_time, the record of query Q will be discarded. The query
range is used to infer the involved cells. In this way, a query will
generate about O(log N) footprints in the network.

Following the same idea, when a node joins or leaves the net-
work, we require it to mark its footprint in the corresponding nodes.
In BATON, once joining or leaving, the node sends notification
messages to nodes in its level and its parent level to correct the
routing fingers. If a node receives such notification message, it will
generate the following records:

(Event, Event.time)

Event indicates whether it is a join or leave operation. And the node
records the message time as well. The old records will be discarded
periodically. In BATON, node joining and leaving will create about
6log(N) and 4log(N) footprints in the network respectively.

5.1.2 Iterative Sampling
In the BATON protocol, the node periodically sends ping mes-

sages to one of its routing fingers to fix incorrect fingers (other
overlays such as Chord [34] also perform this kind of stabilization).
This stabilization process is light-weight and performed frequently
(averagely 30 seconds in Chord protocol). Our sampling scheme
exploits the finger ping messages to accomplish the statistics col-
lection. Once the ping messages are received, the routing node will
reply with a summary of the corresponding statistics records.

Algorithm 7 stabilization(node n)
//nq , nl, nj : local records of query number, number of nodes leaving
and joining
//n̂q , n̂l, n̂ j : current global estimated statistics values
//n̄q , n̄l, n̄ j : iterative estimated values
1: while true do
2: for every i in the routing table do
3: if finger[i]!=null then
4: send ping message to finger[i] for stabilization and col-

lecting statistics
5: wait for reply
6: n̄q+ = f inger[i].n̄q
7: n̄ j+ = f inger[i].n̄ j
8: n̄l+ = f inger[i].n̄l
9: wait for t seconds

10: do the same sampling scheme for adjacent nodes, parent
node and child nodes

11: n̄q, n̄l, n̄ j are computed as the average values of neighbors
12: if time for new estimation then
13: n̂q = n̄q,n̂l = n̄l,n̂ j = n̄ j

14: n̄q =
nq

logN ,n̄l =
nl

4logN ,n̄ j =
n j

6logN

In Algorithm 7, three versions of estimated values are main-
tained. Local records denote the query or churn footprints recorded
by the node in the local database. It is the raw statistics observed by
the node. The current global estimated values are used for range in-
dex construction. And the iterative values are used to compute the
next global estimation values. The node collects the estimation val-
ues from its routing fingers, adjacent nodes, parent node and child
nodes. And its own estimations are computed as the average values
of the received values (lines 2-11). After sometime, the iterative
values are used as the new global estimated values and we start the
processing for computing new statistics. (lines 12-14).

Computer

Computer Computer Computer

E

B H
Computer

J
Computer

D F

Computer Computer Computer

E
Computer Computer

C DH A …...

Figure 7: Sampling Process

5.1.3 Analysis of the Sampling Scheme
Figure 7 shows how the sampling process works for a BATON

tree as illustrated in Figure 5. Node E collects statistics from its
routing fingers, which will recursively extract statistics from their
routing fingers. In this way, an information aggregation “tree” is
constructed (only the left-most subtree is displayed). This “tree”
is actually a graph as a node may have different parents. In an
iterative way, the global information will be aggregated at the root
node. But what is the expected statistics after some iterations?

We define two matrixes, R and P, to represent the relationship
between nodes.

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r0

r1

...

...
rN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0,0 p0,1 p0,N−1

p1,0 p1,1 p1,N−1

...

...
pN−1,0 pn−1,1 pN−1,N−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
R is a 1×N matrix. ri represents the corresponding local statistic

data of ith node in the network. P is an N × N matrix, representing
the routing finger relationship. If node j does not exist in the finger
table of node i, pi, j = 0. Otherwise, pi, j is a non-negative value
representing the weight of node j in node i’s finger table. Based
on Algorithm 7, pi, j = pi,k if both of them are non-negative. In
addition, the diagonal element pi,i is always non-negative and the
matrix P satisfies:

N−1∑
j=0

pi, j = 1

Let the number of non-negative elements in row i and column j be
pri and pcj respectively. In Chord, BATON or most other struc-
tured overlays, pri and pcj are therefore O(log N).

Suppose all nodes perform Algorithm 7 to collect the statistics.
Let 1 × N matrix Ri represent the estimated statistics after i itera-
tions. That is, the element of row j denotes node j’s estimation. Rn

is represented as:

Rn =

{
R if n = 0
PnR otherwise

Theorem 5.1. The estimated statistics computed by Algorithm 7
converges to the approximate average global statistics of the net-
work.

Proof. (sketch) In fact, we only need to prove that L = limn→∞Pn

exists and equals to a N × N matrix S where ∀i∀ j(ai, j ∈ S) →
(|ai, j − 1

N | < ε). S R will produce a global statistics which approxi-
mates 1

N (r0, r1, ..., rN−1) for each node.

Because
N−1∑
j=0

pi, j = 1 and 0 ≤ pi, j ≤ 1, P is actually a markov

stochastic matrix, generated by considering nodes and their links
as a directed graph. In BATON network, each node can locate
arbitrary node in O(log N) step, which means that we can find a
constant c, the elements of matrix Pc are all non-zero. Hence, the
Perron-Frobenius theorem [9] guarantees that the limit L always
exists. And there is a stationary probability vector π that does not
change under application of the transition matrix. π is associated
with eigenvalue 1. That is π(P − I) = 0. We get πP = π. The

PART

SUPPLIER

PARTSUPP

CUSTKEY

CUSTOMER

NATIONKEY

NATION

PARTKEY

SUPPKEY

PARTKEY

SUPPKEY

ORDERKEY

PARTKEY

SUPPKEY

LINEITEM

ORDERKEY

ORDERS

REGIONKEY

REGION

REGIONKEY

NATIONKEY
NATIONKEY

CUSTKEY

Figure 8: Schema of TPC-H

element ai, j of L is equal to jth element of π. Because for each row
and column, there is a similar number of non-negative elements
with same value, vector π is approximate to (1

N ,
1
N , ...,

1
N).

Theorem 5.1 indicates the correctness of the sampling scheme
in a static environment (the initial statistics, matrix R, does not
change). In our scheme, we do not need to wait for the matrix
to converge. An approximate estimation is sufficient for building a
good range index. To handle the dynamism of the network, in Al-
gorithm 7, we will recompute the global statistics periodically. The
new statistics are taken into account when new computation starts.

5.2 Optimization
If we piggy back the detail query distribution in each pong mes-

sage, the network cost will increase for the large size of pong mes-
sages. To keep the pong message as compact as possible, we adopt
some kind of optimization. First, we have two observations about
query distribution in real systems. 1) Most tuples receive zero or
few queries. 2) Queries are always focused on a hot area. In our
scheme, a cell is used as a bucket in histogram construction. To
further reduce the size of data to be transferred, we adopt the clus-
tering strategy. Cells are clustered by their received query numbers.
And the medians of the clusters are sent via pong messages. In ad-
dition, bloom filter [13] of each cluster is created and sent along to
verify the membership of the cluster.

6. EXPERIMENTAL EVALUATION
In this section, we evaluate our PISCES on PlanetLab[2], an

open platform for deploying distributed systems. 256 nodes are
selected from different continents in the world. We test our system
in different network configurations to demonstrate its flexibility and
scalability. And the results show that PISCES outperforms the full
indexing scheme significantly, especially in the case of large data
size, high update rate and high churn rate.

To simulate the real data, TPC-H[4] generator is used to generate
data for the nodes. TPC-H is a decision support benchmark, and its
schema is shown in Figure 8. Specifically, the following query is
used as the test query:

SELECT sum(TOTALPRICE) as totalSales
FROM ORDERS
WHERE TOTALPRICE>x and TOTALPRICE<y

The tuples in ORDERS table are grouped according to the SUP-
PKEY of LINEITEM (this is done by joining the ORDERS and
LINEITEM tables and grouping tuples by SUPPKEY). Then the
orders for the same SUPPKEY is disseminated to the same node,
which simulates the real scenario. Each node is assigned between
1k to 10k tuples. Every experiment is run for one hour (the network
initialization time is not included). The queries with selectivity of
0.01 are generated based on the Zipfian distribution with θ ranging
from 0.4 (mildly skewed) to 1.4 (highly skewed). This allows us
to evaluate the performance of PISCES under the conditions when

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.40.81.01.21.4

P
er

ce
nt

 o
f Q

ue
rie

s
A

ns
w

er
ed

 b
y

In
de

x

Theta

Effect of Query Distribution

CAN-PISCES
BATON-PISCES

(a) Index Effectiveness

 0

 20

 40

 60

 80

 100

 120

 140

0.40.81.01.21.4

A
ve

ra
ge

 T
im

e
of

 In
de

x
B

ui
ld

in
g

(s
ec

)

Theta

Effect of Query Distribution

CAN-PISCES
BATON-PISCES

(b) Index Building Time

Figure 9: Effect of Query Distribution

 0

 20

 40

 60

 80

 100

10987654321

P
er

ce
nt

 o
f T

ot
al

 Q
ue

rie
s

Percent of Top Keywords

Query Distribution of AOL

AOL Query Distribution

 1

 10

 100

 1000

 10000

54321

Percent of Cells Indexed

Cells’ Benefit

CAN-PISCES
BATON-PISCES

Figure 10: Statistics of AOL Figure 11: Cells’ Benefit

there are some popular data in the dataset and the query distribution
changes after a time interval.

Parameters Default Values
Network Size 256
Data Size 1000 per node
Update Rate 0.1 per second
Churn Rate 0.001 per second
Interval of Changing Query Distribution 500 second
Zipfian θ 1.0
Total Time 3600 second
Query Interval 300 msecond

The above table lists default configuration of the experiments.
We use CAN-PISCES, CAN-FULL, BATON-PISCES and BATON-
FULL to denote the PISCES in CAN, full indexing scheme in CAN,
PISCES in BATON and full indexing scheme in BATON respec-
tively. We count the total number of messages each node received
in an experiment, including query messages and index maintenance
messages (including index messages caused by node joining or
leaving to create/delete new/old indexes, migration of indexes, etc).
Then, the average message number in a minute (per node) is used
as our main performance metrics.

6.1 Effect of Query Distribution
As we discussed before, the query distribution plays an impor-

tant role in the index selection. In this subsection, we evaluate
PISCES by issuing queries of different distributions. Two metrics
are defined in this experiment. In Figure 9(a), we measure the per-
centage of queries that can be directly answered by the index with-
out JIT data pulling from the individual ERP or database system.
In Figure 9(b), the delay to construct the index is computed (mea-
sured as the interval between the data becoming popular and the
index for the data being constructed) When the query distribution
is highly skewed, about 90% of queries can be directly answered
by the index. Moreover, PISCES is also sensitive to the changing
of query distribution. The new index entries can be incorporated
into the existing index in less than 10 seconds. However, as the
distribution becomes more uniform (θ close to 0), the index cannot
answer most of the queries and it also takes a long time for PISCES
to observe the query distribution.

 1

 10

 100

 1000

 10000

100008000600040002000

A
ve

ra
ge

 T
im

e
of

 S
et

up
 (

se
c)

Tuple Number

Time of Index Building

CAN-PISCES
CAN-FULL

BATON-PISCES
BATON-FULL

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
ve

ra
ge

 C
os

t P
er

 N
od

e
P

er
 M

in
ut

e

Update Rate

Effect of Data Update

CAN-PISCES
CAN-FULL

BATON-PISCES
BATON-FULL

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

0.0050.0040.0030.0020.001

A
ve

ra
ge

 C
os

t P
er

 N
od

e
P

er
 M

in
ut

e

Churn Rate

Effect of Churn

CAN-PISCES
CAN-FULL

BATON-PISCES
BATON-FULL

Figure 12: Average Setup Time of Node Figure 13: Effect of Update Figure 14: Effect of Churn

 0

 100

 200

 300

 400

 500

 600

 700

 600 650 700 750 800 850 900 950 1000

A
ve

ra
ge

 C
os

t P
er

 N
od

e
P

er
 M

in
ut

e

Tuples Per Node

Effect of Data Size

CAN-PISCES
CAN-FULL

BATON-PISCES
BATON-FULL

(a)

 0

 20

 40

 60

 80

 100

100008000600040002000

A
ve

ra
ge

 C
os

t P
er

 N
od

e
P

er
 M

in
ut

e

Tuples Per Node

Effect of Data Size

CAN-PISCES
BATON-PISCES

(b)

 0

 100

 200

 300

 400

 500

 600

256128643216

A
ve

ra
ge

 C
os

t P
er

 N
od

e
P

er
 M

in
ut

e

Number Of Nodes

Effect of Network Size

CAN-PISCES
CAN-FULL

BATON-PISCES
BATON-FULL

Figure 15: Effect of Data Size Figure 16: Effect of Network Size

This indicates that PISCES is most efficient in skewed query dis-
tribution. In real cases, queries often follow some patterns. Fig-
ure 10 shows the statistics about the search of AOL [1] from March
2006 to May 2006. The top 5% keywords attract about 60% of to-
tal queries. In Figure 11, we compute the benefit of indexing data
within a cell. The benefit is defined as:

Number of Answered Queries / Indexing Cost

1000k queries following Zipfian distribution with θ = 1 are injected
to the system and we sort the cells by their benefits in descending
order. Figure 11 shows the average benefit of indexing top 1% to
5% cells. The average benefit decreases sharply as more cells are
indexed, which indicates that only the top cells are worth indexing.

6.2 Average Setup Time
In this experiment, we measure the average time for building

indexes. When a node joins the network, its index is constructed
to allow its content to be searched. Full indexing strategy requires
the node to publish all the local sharable data, which may last for
hours. Instead, PISCES can significantly reduce the joining time.
We do note that peers are likely to be more stable in a corporate
network compared to a social network, and this is even more so,
when the collaboration affects the companies’ profits and losses
(P&L). However, being a peer-to-peer network, we do not discount
node churning and respect the autonomy of peers.

As shown in Figure 12, setup time in both strategies increases as
we increase the data size(the time is shown in log scale). However,
data size has less effect on PISCES and it has a setup process with
less than 10 seconds in most cases.

6.3 Effect of Different Network Configurations
Several factors, such as the update rate, churn rate, data size and

network size, affect the maintenance cost of structured overlays.
In this subsection, we evaluate the performance of our scheme in
different network configurations. The major metric is the average
message number of a node per minute. In Figure 13, we vary the
update rate to test the performances of different strategies. The up-
date rate is defined as the number of tuples that are deleted/inserted

per second. In the experiment, the node uniformly picks a tuple
to update. In PISCES, the index should be updated only if the
updates involve the indexed data. On the contrary, in the full in-
dexing strategy, all updates should be reflected. In Figure 13, as
the update rate increases, the costs of CAN-FULL and BATON-
FULL increase linearly, whereas the update rate has minor effect on
CAN-PISCES and BATON-PISCES. BATON based schemes per-
form better than those based on CAN because the routing costs in
BATON and CAN are O(logN) and O(d√N) respectively. For a 2-
Dimensional CAN, the routing cost is much higher compared to
other overlays. This can be solved by creating some random rout-
ing fingers, as in MURK [18].

We compare the effect of churn in Figure 14. Even in a highly
dynamic network when one peer leaves or joins in about every three
minutes (churn rate of 0.005), PISCES remains cost effective. This
confirms the robustness of PISCES.

As shown in Figure 15(a), the strategies based on full index-
ing incur high overheads when publishing the node’s data, while
PISCES generates much less cost because it only needs to publish
the most popular data and a small range index. In Figure 15(b), we
only show the results of PISCES to focus on their trends. The cost
of PISCES grows slowly as the data size increases.

From Figure 16, we observe that as network size increases (rang-
ing from 32 to 256), the routing cost for all strategies (partial and
full indexing) also increase. However, because PISCES publishes
much fewer data than its full indexing counterpart, the cost in-
creases at a much slower rate.

6.4 Convergence of Iterative Sampling
Figure 17(a) shows how many iterations are required for the sam-

pling matrix to converge. Figure 17(b) illustrates the effect of ap-
proximate statistics. In the experiment, each node only performs
4 iterations of sampling (about 12 iterations are required for con-
vergence) and then a range index strategy is computed based on
inaccurate statistics. The query cost ratio of the approximate in-
dex strategy to that of the optimal index strategy is computed as
RangeIndexCost

OptimalCost − 1. The cost ratio is effected by the query distribution
and our scheme is more robust in skewed query distribution. We

 10

 15

 20

 25

 30

 35

 40

409620481024512256

Ite
ra

tio
n

N
um

be
r

Number of Nodes

Convergence of Sampling Matrix

iteration time

(a) Convergence

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

0.40.60.81.0

C
os

t R
at

io
 to

 O
pt

im
al

 S
tr

at
eg

y

Theta

Effect of Approximate Statistics

Cost Ratio

(b) Cost Ratio

Figure 17: Cost and Effect of Sampling

also observe that the sampling scheme is fairly effective in mildly
skewed distributions, because in such a case, query patterns can
still be detected.

7. CONCLUSION
We have proposed PISCES (Peer-based system that Indexes Se-

lected Content for Efficient Search) to reduce the maintenance cost
of corporate networks, where an index is built JIT (Just-In-Time).
PISCES is self-tuning to the changing of query distribution. It iden-
tifies a subset of tuples to index based on some criteria (such as
query frequency, update frequency, importance of the content, etc.).
We have also introduced the approximate range index, a new type
of index for processing queries that cannot be fully answered by the
current index. The approximate range index is also used for notify-
ing nodes about new index construction. To support our cost esti-
mation, we have proposed a light-weight iterative sampling scheme
to collect global statistics about the whole network. It exploits com-
mon maintenance messages of the network to keep the overhead
low. Experiments in PlanetLab indicate that our schemes can sig-
nificantly reduce the cost of P2P networks and PISCES is effective
in answering popular queries. In summary, we have proposed an ef-
ficient and practical indexing strategy that will make PDMS more
acceptable as a solution for supporting enterprise-quality business
processing and data sharing that involves a large amount of data
and peers.

8. ACKNOWLEDGMENT
This research is in part funded by ASTAR SERC Grant 072 101

0017 of S3 project [5], National Grand Fundamental Research 973
Program of China Grand 2006CB303000 and Key Program of Na-
tional Natural Science Foundation of China Grant 60533110.

9. REPEATABILITY ASSESSMENT RESULT
Code and/or data used in the paper are available at [3].

10. REFERENCES
[1] http://data.aolsearchlogs.com.
[2] http://www.planet-lab.org.
[3] http://www.sigmod.org/codearchive/sigmod2008/.
[4] http://www.tpc.org/tpch.
[5] S3:scalable,shareable and secure p2p based data management

system. In http://www.comp.nus.edu.sg/ s3p2p/.
[6] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic,

M. Hauswirth, M. Punceva, and R. Schmidt. P-grid: a self-organizing
structured p2p system. SIGMOD Rec., 32(3), 2003.

[7] J. Aspnes and G. Shah. Skip graphs. In SODA, 2003.
[8] A. Awan, R. A. Ferreira, S. Jagannathan, and A. Grama. Distributed

uniform sampling in unstructured peer-to-peer networks. In HICSS,
2006.

[9] O. Axelsson. Iterative solution methods. Cambridge University
Press, 1994.

[10] A. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting
Scalable Multi-Attribute Range Queries. In SIGCOMM, Portland,
OR, Aug. 2004.

[11] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In
ICDE, 2001.

[12] S. Boyson and T. Corsi. Managing the real-time supply chain. In
HICSS, 2002.

[13] A. Broder and M. Mitzenmacher. Network application of bloom
filters: A survey. In Internet Mathematics, 2004.

[14] A. Crainiceanu, P. Linga, A. Machanavajjhala, J. Gehrke, and
J. Shanmugasundaram. P-ring: an efficient and robust p2p range
index structure. In SIGMOD, 2007.

[15] A. Datta, M. Hauswirth, R. John, R. Schmidt, and K. Aberer. Range
queries in trie-structured overlays. In P2P, 2005.

[16] R. Dhamanka, Y. Lee, A. Doan, A. Halevy, and P. Domingos. imap:
Discovering complex semantic matches between database schemas.
In SIGMOD, 2004.

[17] A. Doan, P. Domingos, and A. Halevy. Reconciling schemas of
disparate data sources: A machine learning approach. In SIGMOD,
2001.

[18] P. Ganesan, B. Yang, and H. G. Molina. One Torus to Rule Them All:
Multidimensional Queries in P2P Systems. In WebDB, 2004.

[19] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and
I. Stoica. Querying the internet with pier. In VLDB, Sept. 2003.

[20] M. Hugos. Essentials of Supply Chain Management. John Wiley &
Sons, Inc., 2006.

[21] H. Jagadish, B. C. Ooi, and Q. Vu. Baton: A balanced tree structure
for peer-to-peer networks. In VLDB, 2005.

[22] E. Kazumori. Selling online versus offline: theory and evidences
from sotheby’s. In Proceedings of the 4th ACM conference on
Electronic commerce, 2003.

[23] A. Kothari, D. Agrawal, A. Gupta, and S. Suri. Range addressable
network: A p2p cache architecture for data ranges. In P2P, 2003.

[24] B. T. Loo, J. M. Hellerstein, R. Huebsch, S. Shenker, and I. Stoica.
Enhancing p2p file-sharing with an internet-scale query processor. In
VLDB, 2004.

[25] M. Lupu, J. Li, B. C. Ooi, and S. Shi. Clustering wavelets to
speed-up data dissemination in structured manets. In ICDE, 2007.

[26] G. S. Manku. Balanced binary trees for id management and load
balance in distributed hash tables. In PODC, 2004.

[27] G. S. Manku, M. Naor, and U. Wieder. Know thy neighbor’s
neighbor: the power of lookahead in randomized p2p networks. In
STOC, 2004.

[28] T. Pitoura, N. Ntarmos, and P. Triantafillou. Replication, load
balancing and efficient range query processing in dhts. In EDBT,
2006.

[29] S. Podlipnig and L. Böszörmenyi. A survey of web cache
replacement strategies. ACM Comput. Surv., 35(4), 2003.

[30] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
scalable content addressable network. In SIGCOMM, 2001.

[31] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-peer systems. In
Middleware, November 2001.

[32] O. D. Sahin, A. Gupta, D. Agrawal, and A. E. Abbadi. A peer-to-peer
framework for caching range queries. In ICDE, 2004.

[33] P. Seshadri and A. N. Swami. Generalized partial indexes. In ICDE,
1995.

[34] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet
applications. In SIGCOMM, San Diego, California, Aug. 2001.

[35] M. Stonebraker. The case for partial indexes. SIGMOD Rec., 18(4),
1989.

[36] D. Stutzbach, R. Rejaie, N. Duffield, S. Sen, and W. Willinger. On
unbiased sampling for unstructured peer-to-peer networks. In IMC,
2006.

[37] I. Tatarinov, Z. Ives, J. Madhavan, A. Halevy, D. Suciu, N. Dalvi,
X. Dong, Y. Kadiyska, G. Miklau, and P. Mork. The piazza peer data
management project. In SIGMOD Record 32(3), 2003.

[38] R. Zhang and Y. C. Hu. Assisted peer-to-peer search with partial
indexing. In INFOCOM, Miami, USA, March 2005.

