NATIONAL UNIVERSITY OF SINGAPORE

SCHOOL OF COMPUTING SEMESTER EXAMINATION FOR Semester 2 AY2010/2011

CS2105 Introduction to Computer Networks

APRIL 2011

Time Allowed 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This exam paper contains 15 questions and comprises 10 printed pages, including this page.
- 2. The total marks for this examination is 50. Answer **ALL** questions.
- 3. Write **ALL** your answers in the lined area provided. Please indicate clearly (with an arrow) if you use any space outside the lined area for your answer.
- 4. This is an CLOSED BOOK examination, but you are allowed to bring in one sheet of double-sided A4 size paper with notes.
- 5. Write your matriculation number on the top-left corner of every page.

Question:	1	2	3	4	5	6	7	Total
Points:	2	3	3	2	2	2	3	17
Score:								

Question:	8	9	10	11	12	13	14	15	Total
Points:	2	3	3	4	2	1	7	11	33
Score:									

Matriculation Number:	ulation Number:
-----------------------	-----------------

Part I

Short Questions

∖ns	wer a	all questions in the space provided. Be succinct and write neatly.
1.	and	oints) A sender S is sending packets to a receiver R , using Selective Repeat. Both sender receiver are using a window size of 3. We denote the packet with sequence number i as P_i first packet in the sending window of S is P_3 .
		each of the following statements, indicate if the statement is TRUE or FALSE. Briefly ain why.
	(a)	S must not have received acknowledgement for P_3 yet.
	(b)	S may receive an acknowledgement for P_2 .
	(c)	R must have received P_2 already.
	(d)	R may have already received P_6 .
	(0	
2.	at tl	oints) Two hosts A and B are connected with a 100 km, 100 Mbps, link. Signals propagate the speed of 2.5×10^8 m/s on the link. What should the maximum TCP receiver window (in bytes) for A and B be, in order to achieve maximum throughput? Show your workings

Matriculation	Number:									CS2105
3. (3 points) A host	A is ϵ	conne	ected	to a	home	rout	er F	2, wh	nich runs NAT.
A has IP IP addre 137.132.8	address ss of 10.0 8.88. A is ss of 69.6	10.0. 0.0.1, nitiat 63.189	0.2. and ses co	Rou the onnec at p	ter Hone of terms one of terms one of terms on t	has onnector a V	two ting Veb s	inter to t serve	faces the part	s. The one connecting to A has an oublic Internet has an IP address of address www.facebook.com (with an CP SYN segment. Consider the IP
(a) Whe		agrai	m lea	aves .	A, wh	at is	the s	ouro	e IP	address? what is the destination IP
(b) Whe		agra	m lea	aves .	R, wh	at is				address? what is the destination IP
num conr	ber of q vection be \dots	when tween	it lean A and A	aves and v	R. Sh www.f	ow thacebo	e en ok.co	try i	n the	when it leaves A and a source port e NAT table that corresponds to this uter that uses longest prefix matching
and 4-bit	addressin	ng:								
Prefix	Output	Inter	face							
10	A									
1	B									
x	C									
default	D									
` ,	pose that possible v	_			addr	ess 10	001 is	s for	ward	led to output interface C . What are
(b) How	many po	ssible	e add	lresse	s will	be fo	rwar	d to	outp	out interface B ? Justify your answer.

Matriculation Number	:								CS2105
` - / -	ytes a	are re	eceivec	l: 101	1100	0, 1	1110	000,	are computed over 8-bits data, the , 01010110. One of the bytes is the).
(a) Will the rec	eived l	bytes	pass 1	he ch	ecksı	ım v	erific	catio	on? Show your workings.
• • • • • • • • • • • • • • • • • • • •								. .	
• • • • • • • • • • • • • • • • • • • •									
• • • • • • • • • • • • • • • • • • • •								. .	
(b) Can you tel	which	n bits	conta	in err	or, if	any	? Ez	xplai	in.
() 0					,	J		_	
			• • • • • •						
6. (2 points) In a n u receives the fol								_	algorithm with poison reverse, a host
Destination C	ost								
w = 3									
x = 5									
y = 7									
z \propto)								
u has only two n	eighbo	ors, v	and z						
(a) When v reco		_	et tha	t is de	estine	ed to	z, v	vhich	h neighboring node of v would v send
` /	What	are t	he pos	sible	value	es of	c, si	ıch t	rrent least cost path from u to w has that after receiving this new distance through v ?
• • • • • • • • • • • • • • • • • • • •									
									and sends $K_A^-(m)$ to Bob. Bob uses public key of Alice respectively.
(a) Does this m	ethod	ensu	re con	fident	iality	? W	hy c	or wł	hy not?
(b) How can Bo	b be s	ure t	hat th	is me	ssage	con	nes fi	rom	Alice?
•••••									
• • • • • • • • • • • • • • • • • • • •				• • • • •		• • • •	• • • • •	• • • •	• • • • • • • • • • • • • • • • • • • •

Mat	ricul	ation Number:											CS2105
	For	· · · · · · · · · · · · · · · · · · ·											g the bus topology and runs CSMA/CD. LSE. Briefly justify your answer (in
	(a)	If the link prohigher.	paga	tion	spe	eed i	ncre	ases	(pao	cket	trav	æl	s faster), the chances of collision is
										• • • •			
	(b)												nces of collision is higher.
0	(3 n												booted and has an empty switching
	` -	e. Soon after, i				_			_	_	JU 16	SD	nooted and has an empty switching
	•												ess y on Interface 1
	•	,											ess z on Interface 2 ess y on Interface 2
	be "		ilter"										e switch takes. An action can either rward, indicate which interface the
	(a)	Frame 1:											
	(b)	Frame 2:			• • • •								
	(c)	Frame 3:											
	` -		n of t	he s	state	men	ts b	elow	, ind	licate	e if t		ne statement is TRUE or FALSE. If
	(a)	ARP table ma											
	(b)	Switch table of	of a sv	witc	h ma	aps a	an ir	ncom	ing	inter	face	e t	so an outgoing interface.
	(c)												outgoing interface.

Ma	triculation Number:											CS2105
11.	network that it is	$ \begin{array}{c} \text{conne} \\ \text{the p} \end{array} $	ectec roto	d to, col i	and	d is	tryin	g to	get	an l	IΡ	. It has no information about the address. For each of the protocol and if it so, briefly (in one sentence)
	(a) DNS											
	(b) DHCP	• • • • •										
	(c) ARP											
	(d) UDP			••••		••••		• • • •			• •	
12.	(2 points) A noise maximum bit rate					4 le	vels	of si	ignal	l to :	 rej	present data and has a theoretical
	If we double the ne your workings.	umbe	er of	leve	ls to	8,	what	is t	he n	iew t	the	eoretical maximum bit rate? Show
13.												t 256 kbps. What is the baud rate

Matriculation Number:	CS210
-----------------------	-------

Part II

Long Questions

14. Figure 1 shows the finite state machine of a protocol designed to run over a channel with the following properties: (P1) can corrupt packet, (P2) can loose packets, and (P3) has an unknown round trip time.

Figure 1: Finite State Machine of a Protocol

tion?
Either give an example where the same packet is delivered twice by drawing a timing
diagram, or argue why every packet will only be delivered once.

(a) (2 points) Is it possible for this protocol to deliver the same packet twice to the applica-

tricula	ntion Number:										CS2105
(b)	(3 points) Is i	it pos	ssibl	e for	this	s pro	toco	l to	not	dete	ct a lost data packet?
` '	Either give ar or argue why		-				-			ot de	etected by drawing a timing diagram
(c)	` - /				,	-					x properties P1, P2, P3 so that the astify your answer.
									• • • •		
			• • • •				• • • •		• • • •		

Mat	atriculation Number:							CS2105		
15.							-	connected with a R bps link. Signals mes have a length of L bits (including		
	to send, it senses the characteristic otherwise, it wait for the	nnel. channe ame tr	If the el to be ransmi	chan e idle ssion	nel i and is de	s idl send	le, it ds th the	orks as follows: When a host has data a sends the data frame immediately; he data frame as soon as the channel host checks if a collision has occured of time and tries again.		
	`							nding a data frame F at time t . We ry consecutive) with respect to F .		
	• A safe period, is not collide with	_	riod d	uring	whi	ch if	B s	tarts sending a data frame G, G will		
	 A detectable collision period is the period during which if B starts sending a data frame G, G will collide with F and this collision can be detected at either A or B. An undetectable collision period is the period during which if B starts sending a data frame G, G will collide with F and the collision can NOT be detected by A nor B. A busy period is the period during which B senses that the channel is busy and refrains from sending. 									
	the boundary of thes							se four periods at B clearly. Express, and s .		
		• • • • • •			• • • •					
					• • • •					
		• • • • • •								
	(b) (2 points) What is the	ne mini	imum	value	of L	, suc	th th	at a collision is always detected?		

Matricula	tion Numl	per:							CS2109
and v send) contr of da imme	valuable cl scheme i ol packet ta frame.	nannel s used. called I After t The ot	time is When RTS. The RTS	wasted a node trans is suc le, upo	To move wants smission cessfull	itigate to tra n of R y sent	e this ansm TS fo t, the	i, it i it a o ollow e tra	rame is transmitted despite collision is suggested that an RTS (request-to data frame, it first transmits a small is the same algorithm as transmission insmitting node sends the data frame, refrains from transmission until it
` ,	(1 point) or why no		he RTS	scheme	e above	elimi	nate	colli	sion of data frame completely? Why
(d) ((1 point)	Give a	major (drawba	ck of u	sing t	he R	TS s	scheme above.
(e) ((2 points)	Give t	two scer	narios v					e above is still benefitial.

END OF PAPER