NATIONAL UNIVERSITY OF SINGAPORE ## SCHOOL OF COMPUTING SEMESTER EXAMINATION FOR Semester 2 AY2010/2011 CS2105 Introduction to Computer Networks APRIL 2011 Time Allowed 2 hours ### INSTRUCTIONS TO CANDIDATES - 1. This exam paper contains 15 questions and comprises 10 printed pages, including this page. - 2. The total marks for this examination is 50. Answer **ALL** questions. - 3. Write **ALL** your answers in the lined area provided. Please indicate clearly (with an arrow) if you use any space outside the lined area for your answer. - 4. This is an CLOSED BOOK examination, but you are allowed to bring in one sheet of double-sided A4 size paper with notes. - 5. Write your matriculation number on the top-left corner of every page. | Question: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Total | |-----------|---|---|---|---|---|---|---|-------| | Points: | 2 | 3 | 3 | 2 | 2 | 2 | 3 | 17 | | Score: | | | | | | | | | | Question: | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Total | |-----------|---|---|----|----|----|----|----|----|-------| | Points: | 2 | 3 | 3 | 4 | 2 | 1 | 7 | 11 | 33 | | Score: | | | | | | | | | | | Matriculation Number: | ulation Number: | |-----------------------|-----------------| |-----------------------|-----------------| ## Part I # **Short Questions** | ∖ns | wer a | all questions in the space provided. Be succinct and write neatly. | |-----|-------|---| | 1. | and | oints) A sender S is sending packets to a receiver R , using Selective Repeat. Both sender receiver are using a window size of 3. We denote the packet with sequence number i as P_i first packet in the sending window of S is P_3 . | | | | each of the following statements, indicate if the statement is TRUE or FALSE. Briefly ain why. | | | (a) | S must not have received acknowledgement for P_3 yet. | | | | | | | (b) | S may receive an acknowledgement for P_2 . | | | | | | | (c) | R must have received P_2 already. | | | | | | | (d) | R may have already received P_6 . | | | | | | | | | | | (0 | | | 2. | at tl | oints) Two hosts A and B are connected with a 100 km, 100 Mbps, link. Signals propagate the speed of 2.5×10^8 m/s on the link. What should the maximum TCP receiver window (in bytes) for A and B be, in order to achieve maximum throughput? Show your workings | | | | | | | | | | | | | | Matriculation | Number: | | | | | | | | | CS2105 | |-----------------------------------|---|----------------------------|-----------------------|-----------------------------|--|------------------|----------------------|------------------------|-------------------|--| | 3. (3 points |) A host | A is ϵ | conne | ected | to a | home | rout | er F | 2, wh | nich runs NAT. | | A has IP
IP addre
137.132.8 | address
ss of 10.0
8.88. A is
ss of 69.6 | 10.0. 0.0.1, nitiat 63.189 | 0.2.
and
ses co | Rou
the
onnec
at p | ter Hone of terms one of terms one of terms on t | has onnector a V | two
ting
Veb s | inter
to t
serve | faces
the part | s. The one connecting to A has an oublic Internet has an IP address of address www.facebook.com (with an CP SYN segment. Consider the IP | | (a) Whe | | agrai | m lea | aves . | A, wh | at is | the s | ouro | e IP | address? what is the destination IP | | (b) Whe | | agra | m lea | aves . | R, wh | at is | | | | address? what is the destination IP | | num
conr | ber of q vection be \dots | when
tween | it lean A and A | aves and v | R. Sh
www.f | ow thacebo | e en
ok.co | try i | n the | when it leaves A and a source port e NAT table that corresponds to this uter that uses longest prefix matching | | and 4-bit | addressin | ng: | | | | | | | | | | Prefix | Output | Inter | face | | | | | | | | | 10 | A | | | | | | | | | | | 1 | B | | | | | | | | | | | x | C | | | | | | | | | | | default | D | | | | | | | | | | | ` , | pose that possible v | _ | | | addr | ess 10 | 001 is | s for | ward | led to output interface C . What are | | | | | | | | | | | | | | (b) How | many po | ssible | e add | lresse | s will | be fo | rwar | d to | outp | out interface B ? Justify your answer. | | | | | | | | | | | | | | Matriculation Number | : | | | | | | | | CS2105 | |---|---------|----------|-------------|-----------|--------|---------|-----------|-------------|--| | ` - / - | ytes a | are re | eceivec | l: 101 | 1100 | 0, 1 | 1110 | 000, | are computed over 8-bits data, the , 01010110. One of the bytes is the). | | (a) Will the rec | eived l | bytes | pass 1 | he ch | ecksı | ım v | erific | catio | on? Show your workings. | | • | | | | | | | | . . | | | • | | | | | | | | | | | • | | | | | | | | . . | | | | | | | | | | | | | | (b) Can you tel | which | n bits | conta | in err | or, if | any | ? Ez | xplai | in. | | () 0 | | | | | , | J | | _ | | | | | | • • • • • • | | | | | | | | 6. (2 points) In a n u receives the fol | | | | | | | | _ | algorithm with poison reverse, a host | | Destination C | ost | | | | | | | | | | w = 3 | | | | | | | | | | | x = 5 | | | | | | | | | | | y = 7 | | | | | | | | | | | z \propto |) | | | | | | | | | | u has only two n | eighbo | ors, v | and z | | | | | | | | (a) When v reco | | _ | et tha | t is de | estine | ed to | z, v | vhich | h neighboring node of v would v send | | | | | | | | | | | | | ` / | What | are t | he pos | sible | value | es of | c, si | ıch t | rrent least cost path from u to w has that after receiving this new distance through v ? | | • | and sends $K_A^-(m)$ to Bob. Bob uses public key of Alice respectively. | | (a) Does this m | ethod | ensu | re con | fident | iality | ? W | hy c | or wł | hy not? | (b) How can Bo | b be s | ure t | hat th | is me | ssage | con | nes fi | rom | Alice? | | ••••• | | | | | | | | | | | • | | | | • • • • • | | • • • • | • • • • • | • • • • | • | | Mat | ricul | ation Number: | | | | | | | | | | | CS2105 | |-----|-------|---------------------------------------|---------|------|---------|-------|-------|------|-------|---------|--------|-----|---| | | For | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | g the bus topology and runs CSMA/CD. LSE. Briefly justify your answer (in | | | (a) | If the link prohigher. | paga | tion | spe | eed i | ncre | ases | (pao | cket | trav | æl | s faster), the chances of collision is | | | | | | | | | | | | • • • • | | | | | | (b) | | | | | | | | | | | | nces of collision is higher. | | | | | | | | | | | | | | | | | 0 | (3 n | | | | | | | | | | | | booted and has an empty switching | | | ` - | e. Soon after, i | | | | _ | | | _ | _ | JU 16 | SD | nooted and has an empty switching | | | • | | | | | | | | | | | | ess y on Interface 1 | | | • | , | | | | | | | | | | | ess z on Interface 2 ess y on Interface 2 | | | be " | | ilter" | | | | | | | | | | e switch takes. An action can either rward, indicate which interface the | | | (a) | Frame 1: | | | | | | | | | | | | | | (b) | Frame 2: | | | • • • • | | | | | | | | | | | (c) | Frame 3: | | | | | | | | | | | | | | ` - | | n of t | he s | state | men | ts b | elow | , ind | licate | e if t | | ne statement is TRUE or FALSE. If | | | (a) | ARP table ma | | | | | | | | | | | | | | (b) | Switch table of | of a sv | witc | h ma | aps a | an ir | ncom | ing | inter | face | e t | so an outgoing interface. | | | (c) | | | | | | | | | | | | outgoing interface. | | | | | | | | | | | | | | | | | Ma | triculation Number: | | | | | | | | | | | CS2105 | |-----|-------------------------------------|---|---------------|----------------|-------|------|-------|---------|-------|--------|---------|---| | 11. | network that it is | $ \begin{array}{c} \text{conne} \\ \text{the p} \end{array} $ | ectec
roto | d to,
col i | and | d is | tryin | g to | get | an l | IΡ | . It has no information about the address. For each of the protocol and if it so, briefly (in one sentence) | | | (a) DNS | | | | | | | | | | | | | | (b) DHCP | • • • • • | | | | | | | | | | | | | (c) ARP | | | | | | | | | | | | | | (d) UDP | | | •••• | | •••• | | • • • • | | | • • | | | 12. | (2 points) A noise maximum bit rate | | | | | 4 le | vels | of si | ignal | l to : |
rej | present data and has a theoretical | | | If we double the ne your workings. | umbe | er of | leve | ls to | 8, | what | is t | he n | iew t | the | eoretical maximum bit rate? Show | 13. | | | | | | | | | | | | t 256 kbps. What is the baud rate | Matriculation Number: | CS210 | |-----------------------|-------| |-----------------------|-------| ## Part II ## **Long Questions** 14. Figure 1 shows the finite state machine of a protocol designed to run over a channel with the following properties: (P1) can corrupt packet, (P2) can loose packets, and (P3) has an unknown round trip time. Figure 1: Finite State Machine of a Protocol | tion? | |---| | Either give an example where the same packet is delivered twice by drawing a timing | | diagram, or argue why every packet will only be delivered once. | | | | | | | | | | | (a) (2 points) Is it possible for this protocol to deliver the same packet twice to the applica- | tricula | ntion Number: | | | | | | | | | | CS2105 | |---------|--------------------------------|--------|---------|-------|------|-------|---------|------|---------|-------|---| | (b) | (3 points) Is i | it pos | ssibl | e for | this | s pro | toco | l to | not | dete | ct a lost data packet? | | ` ' | Either give ar
or argue why | | - | | | | - | | | ot de | etected by drawing a timing diagram | (c) | ` - / | | | | , | - | | | | | x properties P1, P2, P3 so that the astify your answer. | | | | | | | | | | | • • • • | • • • • | | | | • • • • | | • • • • | | | | | | | | | | | | | | | | | Mat | atriculation Number: | | | | | | | CS2105 | | | |-----|---|---------------------------|------------------------|-------------------------|-----------------------|---------------|------------------------|--|--|--| | 15. | | | | | | | - | connected with a R bps link. Signals mes have a length of L bits (including | | | | | to send, it senses the characteristic otherwise, it wait for the | nnel.
channe
ame tr | If the el to be ransmi | chan
e idle
ssion | nel i
and
is de | s idl
send | le, it
ds th
the | orks as follows: When a host has data
a sends the data frame immediately;
he data frame as soon as the channel
host checks if a collision has occured
of time and tries again. | | | | | ` | | | | | | | nding a data frame F at time t . We ry consecutive) with respect to F . | | | | | • A safe period, is not collide with | _ | riod d | uring | whi | ch if | B s | tarts sending a data frame G, G will | | | | | A detectable collision period is the period during which if B starts sending a data frame G, G will collide with F and this collision can be detected at either A or B. An undetectable collision period is the period during which if B starts sending a data frame G, G will collide with F and the collision can NOT be detected by A nor B. A busy period is the period during which B senses that the channel is busy and refrains from sending. | | | | | | | | | | | | the boundary of thes | | | | | | | se four periods at B clearly. Express, and s . | | | | | | | | | | | | | | | | | | • • • • • • | | | • • • • | • • • • | | | | | | | | | • • • • • • | (b) (2 points) What is the | ne mini | imum | value | of L | , suc | th th | at a collision is always detected? | Matricula | tion Numl | per: | | | | | | | CS2109 | |--|---|--|---------------------------|---------------------------------------|---------------------------------|---------------------------------------|-----------------------------------|-------------------------------------|---| | and v
send)
contr
of da
imme | valuable cl
scheme i
ol packet
ta frame. | nannel
s used.
called I
After t
The ot | time is When RTS. The RTS | wasted a node trans is suc
le, upo | To move wants smission cessfull | itigate
to tra
n of R
y sent | e this
ansm
TS fo
t, the | i, it i
it a o
ollow
e tra | rame is transmitted despite collision is suggested that an RTS (request-to data frame, it first transmits a small is the same algorithm as transmission insmitting node sends the data frame, refrains from transmission until it | | ` , | (1 point)
or why no | | he RTS | scheme | e above | elimi | nate | colli | sion of data frame completely? Why | | | | | | | | | | | | | (d) (| (1 point) | Give a | major (| drawba | ck of u | sing t | he R | TS s | scheme above. | (e) (| (2 points) | Give t | two scer | narios v | | | | | e above is still benefitial. | END OF PAPER