NATIONAL UNIVERSITY OF SINGAPORE

SCHOOL OF COMPUTING FINAL EXAMINATION FOR Semester 2 AY2012/2013

CS2105 Introduction to Computer Networks

April 2013

Time Allowed 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This exam paper contains 15 questions and comprises 10 printed pages, including this page.
- 2. The total marks for this examination is 50. Answer **ALL** questions.
- 3. Write **ALL** your answers in the box provided. Please indicate clearly (with an arrow) if you use any space outside the box for your answer.
- 4. This is an CLOSE BOOK examination, but you are allowed to bring in one sheet of double-sided A4 size paper with notes.
- 5. Write your matriculation number on the top-left corner of every page.

EXAMINER'S USE ONLY					
Q1-10	20				
Q11	6				
Q12	4				
Q13	6				
Q14	9				
Q15	5				
TOTAL	50				

Matriculation Number:		CS2105
Part I		
Multiple Choi	ce Questions (20 po	ints)
answer box. Each question If multiple answers are box. Do NOT write more th	pelow, select the most appropriate answer is worth 2 points. e equally appropriate, pick one and write han one answer in the answer box. Is are appropriate, write X in the answer	e the chosen answer in the answer
` - /	Java implementation of a Web server that nt a Web-based application.	communicates with a back-end
Which of the following	step IS necessary to handle a POST red	quest?
A. Read the HT of the CGI p	TP header from the socket and write the process.	e header into the standard input
B. Read the HT the CGI proc	TP body from the socket and write the cess.	body into the standard input of
C. Read the CG	I script from the file and write the cont	ent of the file into the socket.
D. Read from the	ne standard output of the CGI process a	and store the output into a file.
	e query string from the HTTP header a input of the CGI process.	and write the query string into
Write X in the answer	box if none of the choices above are necessary	essary.
		Answer:
(2 / 0	net contains two hosts with IP addresses the following is/are possible address blo	
(i) 137.132.64.0/18		
(ii) 137.132.64.0/19		
(iii) $137.132.64.0/20$		
(iv) $137.132.64.0/21$		
A. (i) only		
B. (i) and (ii) or	nly	

Answer:

C. (i), (ii), and (iii) only

Write X in the answer box if none of the choices above are correct.

D. (iii) and (iv) only

E. (iv) only

3. (2 points) Consider the following forwarding table in a router that uses longest prefix matching to forward packets. Assume that 4-bit addressing is used.

prefix	interface
X	1
Y	2
Otherwise	3

We know that packets with an address of 0100 are forwarded to Interface 1 and packets with an address of 0010 are forwarded to Interface 2.

Which of the following CANNOT be the values for X and Y?

- A. X = 0 and Y = 00
- B. X = 01 and Y = 00
- C. X = 010 and Y = 00
- D. X = 01 and Y = 0
- E. X = 0 and Y = 001

Write X in the answer box if all choices above are possible values for X and Y.

Answer:

- 4. (2 points) Two hosts are communicating over a link. A perculiar bug in the software may randomly swap the values of the least significant bits in the first two bytes of the data during transmission. Which of the following error detection scheme CAN always detect the error caused by this bug?
 - (i) A 1-D parity bit scheme where one parity bit is computed for every byte in the data.
 - (ii) An 8-bit checksum computed from every byte in the data.
 - (iii) An CRC-8 scheme with generator 100000001.
 - A. (i) only
 - B. (iii) only
 - C. (i) and (ii) only
 - D. (i) and (iii) only
 - E. (i), (ii) and (iii) only

Write X in the answer box if none of the choices above are correct.

Answer:

Matriculation Number:									CS2105
5. (2 points) Which	of the f	ollowi	ing s	tater	$_{ m nent}$	abo	ut II	P hea	ader is TRUE?
A. The soution on				_					e IP header determine which applica-
		_			-			•	time period within which the source
IP addre				1000	01 010	00111		0110	ome period within which one searce
C. The 16-b the same					ne IP	hea	der	is un	aique across IP packets received from
D. The che is corrup		field in	n the	IP I	head	er al	lows	the	receiver to check if the IP datagram
E. The proused to						er de	term	nines	which link layer protocol should be
Write X in the ans	swer box	x if no	one o	$f th \epsilon$	stat	teme	nts a	abov	e are true.
									Answer:
6 (2 points) To one	iro that	n coll	licion	ic o	1,,,,,,,,	e dot	toeto	a C	SMA/CD uses a minimum frame size
of L_{min} . Which of					-				•
A. Reducin	g the m	naxim	um a	llow	able	dista	ance	betv	ween any two hosts.
B. Reducin	g the le	ength	of a	bit.					
C. Reducin	g the tr	ansm	issioi	n rat	e.				
D. Increasing	D. Increasing the propagation speed.								
E. Increasing	ng the n	numbe	er of	host	s sha	ring	the	med	lium.
Write X in the ans	swer box	x if no	one o	f heta	e cho	ices	abov	e ar	e correct.
									Answer:
7. (2 points) Which traceroute www.				prot	ocols	s is	TON	inv	volved in execution of the command
A. TCP									
B. UDP									
C. IP									
D. DNS									
E. ICMP									
Write X in the ans	wer box	x if ev	ery p	proto	ocol a	abov	e is	invol	lved.
									Answer:

Matriculation Numb	er: CS2105
` - /	ost uses a variety of protocols to discover information about the network it is Which of the following statements is FALSE?
A. To pe	erform a DNS lookup, a host must first discover the IP address of its local DNS r using DHCP.
B. To tr	ansmit a packet outside the host's subnet, the host must first discover the IP ess of its first-hop router using DHCP.
	nd a packet to another host outside its subnet, a host must first discover the IP ess of the destination host using DNS.
_	et an IP address assigned, a host must first discover the IP address of its DHCP r using DNS.
	and a packet to another host in the same subnet, a host must first discover the address of the destination host using ARP.
Write X in the	answer box if none of statements above are false.
	Answer:
` - /	sider a noisy channel with a Shannon capacity of 100 kbps and a bandwidth of gnal-to-noise ratio of this channel is
A. 3.3	
B. 5	
C. 9	
D. 10	
E. 1023	
Write X in the	answer box if none of the answers above are correct.
	Answer:
10. (2 points) Whi data rate?	ch of the following digital-to-analog modulation scheme can support the highest
A. PSK	at 8000 baud
B. QPSI	X at 8000 baud
C. 4-QA	M at 6000 baud
D. 8-QA	M at 4000 baud
E. 16-Q.	AM at 2000 baud
	Answer:

	Part II
	Short Questions (30 points)
	Answer all questions in the space provided. Be succinct and write neatly.
11.	(6 points) Two hosts A and B are 2000 km apart and are connected directly using a link with propagation delay of 800 bit times and propagation speed of 2.5×10^8 m/s. A is sending a sequence of packets, each is 100 bytes in size, to B .
	(a) (3 points) How long does it take to transmit a packet on this link?
	(b) (3 points) A is using a sliding window protocol to communicate reliably with B . What is the minimum window size A should use for the link to be fully utilized (assuming the channel is reliable)?

CS2105

 $Matriculation\ Number:$

Matriculation Number:										CS2105
-----------------------	--	--	--	--	--	--	--	--	--	--------

12. (4 points) A switch has three interfaces, labelled 1 to 3, and an empty switching table (initially). The switch receives four frames consecutively in the order listed in the table below. The source, destination, and the inferface in which each frame is received is summarized in the table:

Source	Destination	Incoming	
MAC Address	MAC Address	Interface	Action
AA:AA:AA:AA:AA	DD:DD:DD:DD:DD	1	
BB:BB:BB:BB:BB	AA:AA:AA:AA:AA	2	
CC:CC:CC:CC:CC	AA:AA:AA:AA:AA	1	
DD:DD:DD:DD:DD	BB:BB:BB:BB:BB	3	

The action column in the table above refers to the action that the switch takes on each frame. Complete the table above by filling in the action column. An action can be either "forward to x," where x is one of the interfaces, "broadcast," or "filter".

13. (6 points) A NAT-enabled router connects between a private subnet (LAN) and the public Internet (WAN). Tables 1 and 2 show the NAT translation table and part of the ARP table in the router respectively.

LAN-side	WAN-side
IP Address, Port	IP Address, Port
10.0.0.8, 8000	1.2.3.4, 50000
10.0.0.9, 9000	1.2.3.4, 60000

Matriculation Number:

IP Address	MAC Address
10.0.0.8	88:88:88:88:88
10.0.0.9	99:99:99:99:99

Table 1: NAT Translation Table

Table 2: ARP Table

The router receives two packets, one on its interface connected to the public Internet (WAN), the other on its interface connected to the private subnet (LAN). The link, network, and transport layer addresses of the packets are shown in the following table, in the column labelled "Incoming."

The router forwards the packet received from the WAN onto the LAN, and forwards the packet received from the LAN onto the WAN. Some (or all) of the addresses in the outgoing packets have been modified by the router. Fill in the link, network, and transport layer addresses of these two outgoing packets in the tables below, in the column labelled "Outgoing."

Packet from WAN to LAN						
		Incoming	Outgoing			
	MAC Address	33:33:33:33:33				
Source	IP Address	5.6.7.8				
	Port Number	80				
	MAC Address	22:22:22:22:22				
Destination	IP Address	1.2.3.4				
	Port Number	50000				

Packet from LAN to WAN							
		Incoming	Outgoing				
	MAC Address	99:99:99:99:99					
Source	IP Address	10.0.0.9					
	Port Number	9000					
	MAC Address	11:11:11:11:11					
Destination	IP Address	5.6.7.8					
	Port Number	80					

14. (9 points) The figure below shows a small network consisting of four routers u, v, w, and x. The cost of each link is labelled on the graph. The routers run distance vector routing protocol with poisoned reverse. The protocol has converged and minimum cost paths have been computed.

(a) (3 points) Node v periodically receives distance vectors from its neighbors, shown in the empty tables below. Fill in the missing distance values.

From u	u	v	w	x
From u	0			
From w	u	v	w	x
rioin w			0	
From x	u	v	w	x
riom x				0

A new link, (u, x), is added to the network with a cost of 2. The routers u and x detect the new link, update their routing tables, and send a new distance vector to their respective neighbors.

(b) (3 points) After detecting the link (u, x), but before receiving the distance vector from u, x updates its routing table to the following. Fill in the new computed costs and next hops in x's new routing table below.

Destination	Next Hop	Cost
u		
v		
w		

(c) (3 points) After receiving the distance vector from u, x updates its routing table to the following. Fill in the new computed costs and next hops in x's routing table below.

Destination	Next Hop	Cost
u		
v		
w		

Mat	ricula	ation Ni	umber:										CS2105
	the with K_B^+	followin her pr	$egin{array}{l} \operatorname{g} & \operatorname{prot} \ \operatorname{vate} & i \ \oplus i \ \end{array}$	ocol. key <i>I</i> is co	For K_A^- , on ca	or ea follo tena	ch r wed ted	nessa by	age Bob	m_i , so the proof of m_i is the proof of m_i and m_i in m_i and m_i is the proof of m_i and m_i in m_i and m_i is the proof of m_i and m_i in m_i and m_i is the proof of m_i and m_i in m_i and m_i is the proof of m_i and m_i in m_i	she o iblic	encry key	she wants to send to Bob. She uses ypts m_i and the sequence number $i \in K_B^+$. The resulting message $M_i = 0$ (where H is a cryptographic hash
	(ii) t secu	the cert	ificate the pro	auth otoco	oriti ol, in	ies ca	an b te if	e tru	isteo	d. Fo	or ea	ch o	aphic hash function are secure, and f the following statements about the UE or FALSE. Explain your answer
	(a) (1 point) Only Bob can decrypt the received M_i to obtain m_i												
	(b)	(1 poir	nt) Bob	can	det	 ect i	M_i	has	bee	n mo	difie		
						• • • •				• • • •			
(0	(c)	(1 poir	nt) Bob	can	be :								
						• • • •							
	(d)	(1 poir	 nt) Bob	 can	det	ect a	···· a rep	olay a	attac	····			
	(e)	(1 poir blocks									epts	and	d deletes a message from Alice (i.e.,

END OF PAPER