CS2105 Lecture 9 Link Layer

24 March, 2014

CS2105 Lecture 9 Link Layer 24 March, 2014

After this class, you are expected to be able to understand:

- how the role of link layer and the services it could provide.
- how parity and CRC schemes work
- different methods for accessing shared medium
- how ALOHA, Slotted ALOHA, CSMA, and CSMA/CD works
- how the DOCSIS standard incorperate different medium access techniques
- · the framing of an Ethernet frame

"These Protocols Transmit At Random Interval. It May Sound Ridiculous, But The Reason They Do It Is Simply Beautiful."

Application

Transport

Network

Link

Physical

Link layer provides **node-to-node** communication services of **frames**.

Possible services: **Framing**

Possible services: Link Access

Possible services: Reliable Delivery

Possible services: Error Detection and Correction

Parity Bit

2D Parity

Cyclic Redundancy Check

$$D2^r + R = nG$$

R is remainder of $D2^r/G$

CRC calculation is done in base-2 arithmatic without carry or borrow.

Example: G = 1001, D = 101110

Multiple Access Protocol

(for a shared medium)

Partition the Channel Take Turns Randomly Access

Time-Division Multiplexing

Frequency-Division Multiplexing

4-8kHz

8-12kHz

12-16kHz

16-20kHz

Partition the Channel Take Turns Randomly Access

Polling

Token Passing

Admin Matters

Partition the Channel Take Turns Randomly Access

Slotted ALOHA

The discussions about effeciency of ALOHA, Slotted ALOHA, CSMA, and CSMA/CD in the textbook is outside the scope of CS2105.

ALOHA

CSMA (Carrier Sense Multiple Access)

When there is a frame to send: repeat while channel is busy do wait end while start sending while has more bits do continue sending end while stop sending until frame is sent without collision

CSMA/CD (Carrier Sense Multiple Access/Collision Detection)

While channel is not idle, wait

if collide during transmission, stop

At *n*-th consecutive collision, let $m = \min(n, 10)$. Pick *K* randomly from $\{0, 1, ...2^m - 1\}$. Wait for 512K bit time.

```
When there is a frame to send, set n = 1
  repeat
      while channel is busy do
          wait
      end while
      start sending
      while no collision or has more bits do
          continue sending
      end while
      stop sending
      if there is a collision then
          K = random(0, 2^n - 1)
          Wait 512K bit time
          n = min(n + 1, 10)
      end if
  until frame is sent completely
```

Example: DOCSIS

Example: DOCSIS

- Use FDM to divide upstream and downstream into multiple channels
- Use TDM for upstream (channels are shared)
- CMTS assign slots to cable modems
- Cable modems send slot requests in random access manner.

Ethernet Framing Example

