
Lecture 1

Introduction

12 August, 2011
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Instructor
Ooi Wei Tsang

ooiwt@comp.nus.edu.sg
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Office Hour
Fri 4 - 6pm
AS6 05-14
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Required Textbook

$47.90

$52.20
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Average Weekly Workload
(your milage may vary)

Preparation
6 hr

Lab
1 hr

Tutorial
1 hr

Lecture
2 hr

Note that NUS officially lists the workload as 2-1-1-0-4 which is a typo (it does not add up to 10!)

pre-class activities
reading 
lab exercises
tutorial questions
preparing notes
etc.
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Assessment

Midterm
20%

Lab
30%

Exam
50%
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    October 2011
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                   1
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Important Dates
    November 2011
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midterm final
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midterm and final are 
semi-open book
(one 2-sided A4 sheet)
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Lecture Format

1200-1400

0 20 40 60 80 100 120

2545545

Lecture Break Lecture Dismiss
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slides will be posted
1-2 days before lecture

but 
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no lecture notes 
will be provided
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students are 
expected to take 

notes during lecture
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students are 
expected to read the 
assigned readings
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no “model” answer 
will be posted
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blog.nus.edu.sg/cs2106
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your responsibility: check for 
update frequently 

(hint: subscribe via email or RSS)
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do participate in online 
discussion

(and use your real name!)
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screencast 
will be posted
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but expect 3-4 days delay 
and technical glitches do 

occur

(not a good reason 
to skip lecture)
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pre-class activities
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simple activities for you to do / think 
about before attending lecture.

might help improve your 
understanding in class

online discussion only
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tutorials
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a set of questions 
asked each week
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you are expected to think 
through the answers

before the attending the
tutorial sessions
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we will discuss your answers 
during tutorial sessions

we will conclude each discussion 
with the correct / best answer
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labs
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one lab exercise 
(almost) every week
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can do it at your own time

some are ungraded
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lab sessions:

1. lab TAs available for 
assistance

2. discuss lab answers 
from past labs
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some lab and tutorial questions 
are meant to let you discover 

new knowledge yourself

(only if you think through the answers)
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warning: I am brutal in 
penalizing students 
who do not following 
instructions exactly
for lab submissions
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feedback
what your seniors from 2010 

think of CS2106
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31% 
find CS2106
“Very Difficult”

Average is 14% for other 2000-level modules
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lots of stuff to learn

“The scope of the module is quite large.”

“Too much content in too little time.”
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the labs are difficult

“.. lab sessions can sometimes be really 
difficult hence time consuming.”

“The weekly labs can be quite stressful.”
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but useful for learning
“weekly labs ensure that students really 
understand the concepts introduced in 
the lecture.”

“Labs are tough, but it is through the labs 
which I feel I learnt the most from”

“However the labs are also the real place 
that we actually learn”
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independent learning
“The teaching material and most 
importantly style, is very conducive to 
independent learning”

“Also get chance to acquire independent 
learning through reading man page and 
google search”

“strengths: encourage a LOT of self-
study”
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what is 

CS2106
about?
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NOT about how to use 
Mac OS X, MS Windows, 

Linux etc.
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about basic concepts 
and design principles 

in OS
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many different variations: 
for different OS

and different architecture
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but same 
concepts and principles
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why should I learn

OS ?
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I am not going to write 
another OS!
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CS2106 is important 
because 
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complex software
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abstraction + 
interface design
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concurrency

48



resource management
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understand 
performance issues
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#define	  SIZE	  10000
int	  a[SIZE][SIZE];

for	  (i	  =	  0;	  i	  <	  size;	  i++)
	  	  for	  (j	  =	  0;	  j	  <	  size;	  j++)
	  	  	  	  a[i][j]	  =	  0;
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#define	  SIZE	  10000
int	  a[SIZE][SIZE];

for	  (i	  =	  0;	  i	  <	  size;	  i++)
	  	  for	  (j	  =	  0;	  j	  <	  size;	  j++)
	  	  	  	  a[j][i]	  =	  0;
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My computer is slow.  Should I 
upgrade to

A. a faster CPU
B. more CPU core
B. a faster harddisk
C. a bigger harddisk
D. more memory
E. faster memory
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what to learn from OS course 
(beside OS):

1. complex systems
2. abstraction + interface design
3. concurrency
4. resource management
5. performance issues
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Assumed Background
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UNIX and C
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why UNIX?
(Linux, Mac OS X, Sun OS etc.)

57



need a concrete example for 
the concepts and principles 

taught in CS2106
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many OS concepts are 
cleanly manifested in UNIX
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source code are available
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why C?
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UNIX is written (mostly) in C
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intermediate-level language 
(e.g., explicit memory allocation, 

bits manipulation)
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CS2100
Computer

Organization

64



how a program is 
executed

a brief review
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to build and run a program:

linkpre-process load

foo.c

compile

foo.o a.out

memory
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CPU

program
counter

Memory

data

code

stack
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Loop:

1. fetch instruction located at PC
2. decode instruction
3. fetch data
4. execute instruction and update
    PC
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int	  main()
{
	  	  int	  x	  =	  1;
	  	  foo(x);
	  	  x	  =	  x	  +	  1;
}

int	  foo(int	  x)
{
	  	  	  	  :
	  	  	  	  :
}
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int	  main()
{
	  	  int	  x	  =	  1;
	  	  foo(x);
	  	  x	  =	  x	  +	  1;
}

int	  foo(int	  x)
{
	  	  	  int	  y	  =	  x+1;
	  	  	  bar(y);
}

int	  bar(int	  x)
{
	  	  	  	  :
	  	  	  	  :
}
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CPU

program
counter

Memory

data

code

stack
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CPU

program
counter

Memory

stack
pointer

frame
pointer

data

code

stack
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stack

data

code

CPU

Memory

function parameters
local variables

saved frame pointer
return address

CPU

program
counter

stack
pointer

frame
pointer
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OS
Operating Systems
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operating system

compilers editors shell...

browser calendar media player...

machine language

microarchitecture

physical devices
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The OS is a layer of software 
that manages processors, 
storage and I/O devices and 
provide simple interfaces to the 
hardware to user programs.
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OS 
is everywhere
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phone, car, robot, router, 
media player, game 
console, .. 
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1. read a number from a 
    storage
2. print the number to screen

consider the simple program:

how to code in a world without OS?
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is the number stored on a CD, 
thumbdrive, harddisk..?

location of the number on the 
storage?

is another program writing to the 
number at the same time?
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what graphics chip is the system 
using? 

what is the display resolution?

is another process displaying 
something at the same location?
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OS hides all these details 
from programmers
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x = read_number(“ file.txt ”);
print(x);

83



OS 
as an extended 

machine
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operating system

compilers editors shell...

browser calendar media player...

file display keyboard mouse printer battery socket
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operating system (a.k.a kernel)

compilers editors shell..

browser calendar media player..

file display keyboard mouse printer battery socket

user 
mode

kernel 
mode
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interfaces provided by OS 
are known as system calls
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a bit in the program status 
word (PSW) keeps track of 
the current mode (user or 
kernel mode)
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a system call is similar to a 
procedure call except:

1.
a special instruction sets the 
kernel mode bit in PSW before 
executing the system call
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2.
a special instruction sets the 
user mode bit in PSW after 
executing the system call
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3. 
CPU executes the OS “system 
call handler” for a given system 
call 

(more details later..)
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stack

data

code

CPU

Memory

function parameters
local variables

saved frame pointer
return address

CPU

program
counter

stack
pointer

frame
pointer

kernel

program
status word
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In user mode, certain privileged 
instructions cannot be executed, 
certain addresses cannot be 
accessed etc.

In kernel mode, there is no 
restriction.
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operating system (a.k.a kernel)

compilers editors shell..

browser calendar media player..

file display keyboard mouse printer battery socket

user 
mode

kernel 
mode
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OS 
as a resource manager
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operating system

disk space RAM processor 
cycles

network 
bandwidth

screen 
estate

battery
power ....

96



suppose that

the computer runs one task at a 
time, always completing it before 
running another task ?
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a task always have full use of all 
resources.

not efficient since not all resources 
are fully utilized at all time (e.g., 
CPU is idle when I/O is 
performed).
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suppose that

the computer keeps multiple tasks in the 
memory.  When the running task is idle, 
switch to another task (multi-
programming)
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now, resources are shared among 
the tasks.

how does CPU switch from one 
task to another?

how to prevent one task from 
corrupting the memory of another 
task?
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what if there are multiple users using 
the system, and there is one CPU 
intensive task?
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The computer keeps multiple tasks in 
the memory and switch between 
them frequently (regardless of 
whether the task is idle) (time-
sharing)
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time-multiplexing: CPU, printer

space-multiplexing: memory, disk, 
screen
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OS 
is an extended machine 

and
a resource manager
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