
Lecture 1

Introduction

12 August, 2011

1

Instructor
Ooi Wei Tsang

ooiwt@comp.nus.edu.sg

2

mailto:ooiwt@comp.nus.edu.sg
mailto:ooiwt@comp.nus.edu.sg

Office Hour
Fri 4 - 6pm
AS6 05-14

3

Required Textbook

$47.90

$52.20

4

Average Weekly Workload
(your milage may vary)

Preparation
6 hr

Lab
1 hr

Tutorial
1 hr

Lecture
2 hr

Note that NUS officially lists the workload as 2-1-1-0-4 which is a typo (it does not add up to 10!)

pre-class activities
reading
lab exercises
tutorial questions
preparing notes
etc.

5

Assessment

Midterm
20%

Lab
30%

Exam
50%

6

 October 2011
Su Mo Tu We Th Fr Sa
 1
 2 3 4 5 6 7 8
 9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31

Important Dates
 November 2011
Su Mo Tu We Th Fr Sa
 1 2 3 4 5
 6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30

midterm final

7

midterm and final are
semi-open book
(one 2-sided A4 sheet)

8

Lecture Format

1200-1400

0 20 40 60 80 100 120

2545545

Lecture Break Lecture Dismiss

9

slides will be posted
1-2 days before lecture

but

10

no lecture notes
will be provided

11

students are
expected to take

notes during lecture

12

students are
expected to read the
assigned readings

13

no “model” answer
will be posted

14

blog.nus.edu.sg/cs2106

15

your responsibility: check for
update frequently

(hint: subscribe via email or RSS)

16

do participate in online
discussion

(and use your real name!)

17

screencast
will be posted

18

but expect 3-4 days delay
and technical glitches do

occur

(not a good reason
to skip lecture)

19

pre-class activities

20

simple activities for you to do / think
about before attending lecture.

might help improve your
understanding in class

online discussion only

21

tutorials

22

a set of questions
asked each week

23

you are expected to think
through the answers

before the attending the
tutorial sessions

24

we will discuss your answers
during tutorial sessions

we will conclude each discussion
with the correct / best answer

25

labs

26

one lab exercise
(almost) every week

27

can do it at your own time

some are ungraded

28

lab sessions:

1. lab TAs available for
assistance

2. discuss lab answers
from past labs

29

some lab and tutorial questions
are meant to let you discover

new knowledge yourself

(only if you think through the answers)

30

warning: I am brutal in
penalizing students
who do not following
instructions exactly
for lab submissions

31

feedback
what your seniors from 2010

think of CS2106

32

31%
find CS2106
“Very Difficult”

Average is 14% for other 2000-level modules

33

lots of stuff to learn

“The scope of the module is quite large.”

“Too much content in too little time.”

34

the labs are difficult

“.. lab sessions can sometimes be really
difficult hence time consuming.”

“The weekly labs can be quite stressful.”

35

but useful for learning
“weekly labs ensure that students really
understand the concepts introduced in
the lecture.”

“Labs are tough, but it is through the labs
which I feel I learnt the most from”

“However the labs are also the real place
that we actually learn”

36

independent learning
“The teaching material and most
importantly style, is very conducive to
independent learning”

“Also get chance to acquire independent
learning through reading man page and
google search”

“strengths: encourage a LOT of self-
study”

37

what is

CS2106
about?

38

NOT about how to use
Mac OS X, MS Windows,

Linux etc.

39

about basic concepts
and design principles

in OS

40

many different variations:
for different OS

and different architecture

41

but same
concepts and principles

42

why should I learn

OS ?

43

I am not going to write
another OS!

44

CS2106 is important
because

45

complex software

46

abstraction +
interface design

47

concurrency

48

resource management

49

understand
performance issues

50

#define	 SIZE	 10000
int	 a[SIZE][SIZE];

for	 (i	 =	 0;	 i	 <	 size;	 i++)
	 	 for	 (j	 =	 0;	 j	 <	 size;	 j++)
	 	 	 	 a[i][j]	 =	 0;

51

#define	 SIZE	 10000
int	 a[SIZE][SIZE];

for	 (i	 =	 0;	 i	 <	 size;	 i++)
	 	 for	 (j	 =	 0;	 j	 <	 size;	 j++)
	 	 	 	 a[j][i]	 =	 0;

52

My computer is slow. Should I
upgrade to

A. a faster CPU
B. more CPU core
B. a faster harddisk
C. a bigger harddisk
D. more memory
E. faster memory

53

what to learn from OS course
(beside OS):

1. complex systems
2. abstraction + interface design
3. concurrency
4. resource management
5. performance issues

54

Assumed Background

55

UNIX and C

56

why UNIX?
(Linux, Mac OS X, Sun OS etc.)

57

need a concrete example for
the concepts and principles

taught in CS2106

58

many OS concepts are
cleanly manifested in UNIX

59

source code are available

60

why C?

61

UNIX is written (mostly) in C

62

intermediate-level language
(e.g., explicit memory allocation,

bits manipulation)

63

CS2100
Computer

Organization

64

how a program is
executed

a brief review

65

to build and run a program:

linkpre-process load

foo.c

compile

foo.o a.out

memory

66

CPU

program
counter

Memory

data

code

stack

67

Loop:

1. fetch instruction located at PC
2. decode instruction
3. fetch data
4. execute instruction and update
 PC

68

int	 main()
{
	 	 int	 x	 =	 1;
	 	 foo(x);
	 	 x	 =	 x	 +	 1;
}

int	 foo(int	 x)
{
	 	 	 	 :
	 	 	 	 :
}

69

int	 main()
{
	 	 int	 x	 =	 1;
	 	 foo(x);
	 	 x	 =	 x	 +	 1;
}

int	 foo(int	 x)
{
	 	 	 int	 y	 =	 x+1;
	 	 	 bar(y);
}

int	 bar(int	 x)
{
	 	 	 	 :
	 	 	 	 :
}

70

CPU

program
counter

Memory

data

code

stack

71

CPU

program
counter

Memory

stack
pointer

frame
pointer

data

code

stack

72

stack

data

code

CPU

Memory

function parameters
local variables

saved frame pointer
return address

CPU

program
counter

stack
pointer

frame
pointer

73

OS
Operating Systems

74

operating system

compilers editors shell...

browser calendar media player...

machine language

microarchitecture

physical devices

75

The OS is a layer of software
that manages processors,
storage and I/O devices and
provide simple interfaces to the
hardware to user programs.

76

OS
is everywhere

77

phone, car, robot, router,
media player, game
console, ..

78

1. read a number from a
 storage
2. print the number to screen

consider the simple program:

how to code in a world without OS?

79

is the number stored on a CD,
thumbdrive, harddisk..?

location of the number on the
storage?

is another program writing to the
number at the same time?

80

what graphics chip is the system
using?

what is the display resolution?

is another process displaying
something at the same location?

81

OS hides all these details
from programmers

82

x = read_number(“ file.txt ”);
print(x);

83

OS
as an extended

machine

84

operating system

compilers editors shell...

browser calendar media player...

file display keyboard mouse printer battery socket

85

operating system (a.k.a kernel)

compilers editors shell..

browser calendar media player..

file display keyboard mouse printer battery socket

user
mode

kernel
mode

86

interfaces provided by OS
are known as system calls

87

a bit in the program status
word (PSW) keeps track of
the current mode (user or
kernel mode)

88

a system call is similar to a
procedure call except:

1.
a special instruction sets the
kernel mode bit in PSW before
executing the system call

89

2.
a special instruction sets the
user mode bit in PSW after
executing the system call

90

3.
CPU executes the OS “system
call handler” for a given system
call

(more details later..)

91

stack

data

code

CPU

Memory

function parameters
local variables

saved frame pointer
return address

CPU

program
counter

stack
pointer

frame
pointer

kernel

program
status word

92

In user mode, certain privileged
instructions cannot be executed,
certain addresses cannot be
accessed etc.

In kernel mode, there is no
restriction.

93

operating system (a.k.a kernel)

compilers editors shell..

browser calendar media player..

file display keyboard mouse printer battery socket

user
mode

kernel
mode

94

OS
as a resource manager

95

operating system

disk space RAM processor
cycles

network
bandwidth

screen
estate

battery
power

96

suppose that

the computer runs one task at a
time, always completing it before
running another task ?

97

a task always have full use of all
resources.

not efficient since not all resources
are fully utilized at all time (e.g.,
CPU is idle when I/O is
performed).

98

suppose that

the computer keeps multiple tasks in the
memory. When the running task is idle,
switch to another task (multi-
programming)

99

now, resources are shared among
the tasks.

how does CPU switch from one
task to another?

how to prevent one task from
corrupting the memory of another
task?

100

what if there are multiple users using
the system, and there is one CPU
intensive task?

101

The computer keeps multiple tasks in
the memory and switch between
them frequently (regardless of
whether the task is idle) (time-
sharing)

102

time-multiplexing: CPU, printer

space-multiplexing: memory, disk,
screen

103

OS
is an extended machine

and
a resource manager

104

