Lecture 2

Abstractions
and Interfaces

19 August, 2011

Overview of Basic
Concepts in OS

process

Recall;
Time-Sharing

Waiting Area

7NN

4)

Memory

r

~N

Disk

A Y
N~

Network

what do you need to
remember In order to
resume a task?

process.
code + data +
context of execution

address space

how to prevent one process
from corrupting the memory of
another process?

every process has Iits own
address space

a process may occupy
different physical memory
location at different time

but the executable code
remains the same.

(e.g., for instruction:
load from address X to register Y
what should X be?)

CPU

Memory

stack

data

code

13

file and directory

Data on disks are organized
Into files and directories

block special files
character special files
In
/dev

pipe

User interfaces to OS:
1. shell

2. window systems

DIOCESS
adadress space
fles and directories
shell

=n
o) () ()
A ~ Lernel

operating system (a.k.a kernel) mode

Interfaces provided by OS
are known as system calls.

CPU

frame
pointer

())

stack
pointer

program
counter

program
status word

Memory

stack

return address

oo

oo
oo

oo

data

code

kernel

23

Invoking system calls involved:

1. a common setup/cleanup
routine

2. actual doing the work of the
system call

system call setup:

1. switch to kernel mode (PSW bit)

2. save context of current process

3. pass arguments to kerel

4. determine which system call
service routine to call

system call clean/up:

1. Indicate error code, if any

2. check If need to switch to another
process

3. restore process context

4. return to user mode

System calls are typically
triggered by an interrupt
instruction (e.g., TRAP or INT)

Structure of OSes

Structure of
Linux Kernel

user program

interrupt

system calls

dispatcher

hardware

30

user program

system calls

memory process
management fllimanagement

I/O component

interrupt dispatcher

hardware

31

user program

system calls

virtual file sys

memory process
management [l management

device drivers

interrupt dispatcher

hardware

such design is called
monolithic kernel

dynamically loadable
kernel module
keeps the kermel small, extensible

(also in MS Windows, Mac OS X)

Alternative to monolithic design:
microkernel

An example microkemel architecture

m file systems device drivers
system calls

memory management process management

interrupt dispatcher

hardware

36

keep minimal functions in kernel

example:

EuoS SYMBIAN

A brief introduction to

C

C vs Java

(highlights)

Java: set of classes

C: set of functions + structures

C:
no byte datatype
Nno boolean datatype

no String class

(use char, int, and array of char respectively)

C:
NO “new’ operator

must explicit declare as pointer for
reference variables

must explicitly malloc() and free()
memory

Java: all variables are reference
except boolean and numeric types

C: all variables are primitive types
(holds the value of that exact type)

Java: external classes must be
Imported

C: external functions and types
must be declared

(made easy with #include statement)

int main()

1

return 9;

}

#include <stdio.h>

int main()

1
printf(“Hello World!\n”);

return 9;

}

#include <stdio.h>
#include <stdlib.h>

void say hello(int times)
{
int i;
for (1 = 0; 1 < times; i++)
printf(“Hello World\n>);
}

int main(int argc, char *argv[])
{
say hello(atoi(argv[1]));
return 0;

¥

47

every variable has an address
and can store a value.

int Xx;

10

39201

assignment operator takes the
value on the right, store into the
address on the left.

int *x;

int y;
y = 2;
X = &y;
*X = 3;
y = *X;

// what 1s *y, &x ?

int y = 2;

f(y);

int f(int a)
{

char *name;

name = malloc(10);
strcpy(name, “cs2106”);

free(name);

struct student {
int student 1id;
char *name;
int age;

}
typedef struct student std;

std* create student()

{
std *s = malloc(sizeof(std));

// 1nitialize student

return s;

}

