Lecture 3 Processes & Threads

26 August, 2011

what is a process?

resource + execution

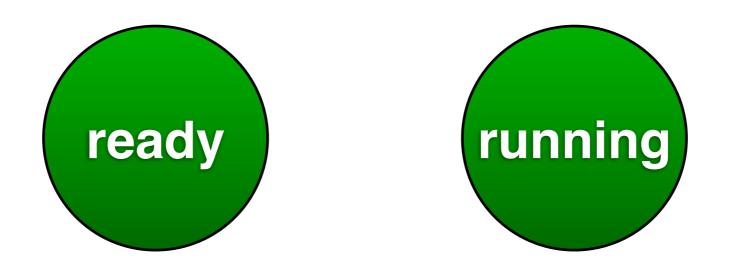
typical content of a process control block:

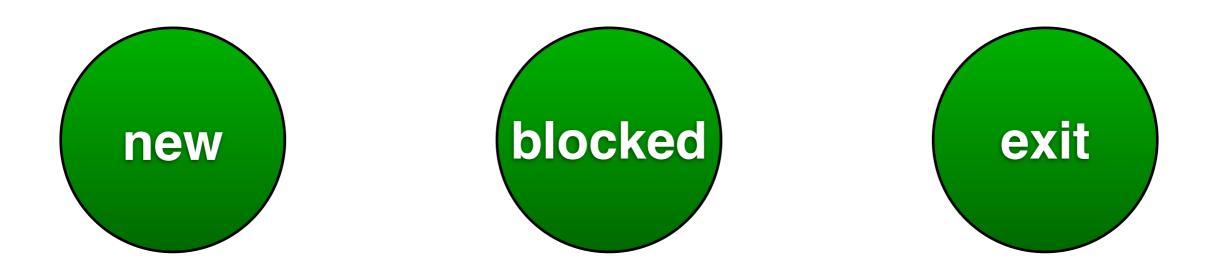
registers, state, priority, pid, parent program counters, program status word CPU time used pointers to memory segments working directory opened files user ID, group ID

OS maintains process table (one PCB / process)

A CPU scheduler decides which process to run

OS saves and restores PCBs to context switch between processes


when to context switch?


blocked I/O

e.g. Java InputStream's read()

interrupt (system call, timer, I/O)

e.g. time allocated to a process is used up, data ready to be read

which ready process to run next ?

what causes a new process to be created?

explicit creation through system call

system initialization

(e.g, Linux init process)

upon user requests

(e.g., double click an icon, typing a command)

what causes a process to terminate ?

finish running

(with or without error)

fatal error

(an example from Lab 1)

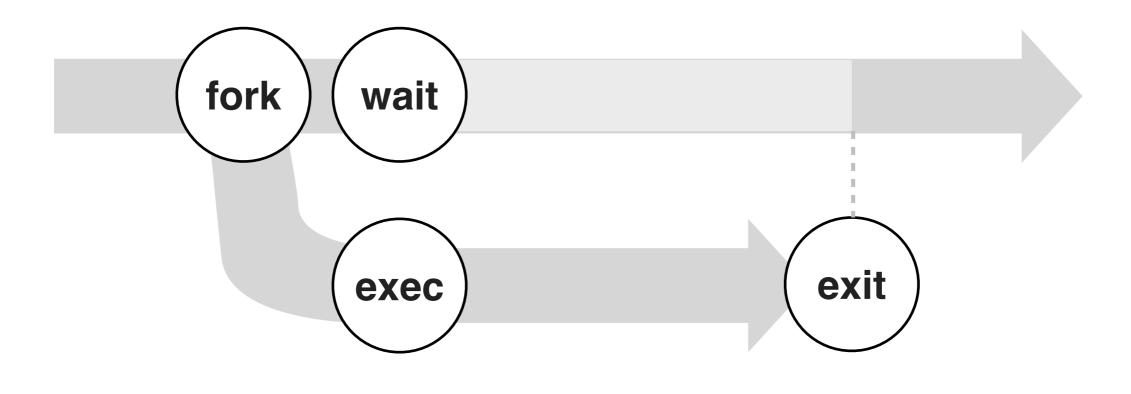
killed by another process

system calls for process management

BOOL WINAPI CreateProcess(

);

- ____in_opt LPCTSTR lpApplicationName,
- __inout_opt LPTSTR lpCommandLine,
- _____in__opt LPSECURITY_ATTRIBUTES lpProcessAttributes,
- ____in_opt LPSECURITY_ATTRIBUTES lpThreadAttributes,
- ___in BOOL bInheritHandles,
- ____in DWORD dwCreationFlags,
- ____in_opt LPVOID lpEnvironment,
- _____in__opt LPCTSTR lpCurrentDirectory,
- ____in LPSTARTUPINFO lpStartupInfo,
- __out LPPROCESS_INFORMATION lpProcessInformation


pid_t fork();

process hierarchy

POSIX standard (Portable Operating System Interface for Unix)

process-related system calls

fork, exec, wait, exit

zombie process orphan process

consider a Web browser

Warning: Unresponsive script

A script on this page may be busy, or it may have stopped responding. You can stop the script now, or you can continue to see if the script will complete.

Stop script

consider a Web server

concurrent multi-process server

while (1)block until new connection fork() if (is child process) handle new connection exit()

fork() is expensive

(do we really need to duplicate all the resources ?)

threads same resource, different executions

a multi-threaded process

global variables, files, children, address space

advantages of multi-threading

vs single-threaded

improved responsiveness

exploits parallelism

abstraction for "independent" sequence of execution

vs multi-process

cheaper

allows sharing of resources

POSIX Threads API

pthread_create()
pthread_exit()
pthread_join()
pthread_yield()

thread scheduling done by either process or kernel

mixing threads and fork() can be tricky