
Lecture 3

Processes
Threads

26 August, 2011

&

1

what is a process?

2

resource + execution

3

typical content of a process control block:

registers, state, priority, pid, parent
program counters, program status word
CPU time used
pointers to memory segments
working directory
opened files
user ID, group ID

etc.
4

OS maintains
process table

(one PCB / process)

5

A CPU scheduler
decides which
process to run

6

OS saves and
restores PCBs to
context switch

between processes

7

when to context switch?

8

blocked I/O

e.g. Java InputStreamʼs read()

9

interrupt
(system call, timer, I/O)

e.g. time allocated to a process is used up,
data ready to be read

10

new

ready running

blocked exit

11

which ready process to
run next ?

12

what causes a new
process to be created?

13

explicit creation through
system call

14

system initialization

(e.g, Linux init process)

15

upon user requests

(e.g., double click an icon, typing a command)

16

what causes a process
to terminate ?

17

finish running
(with or without error)

18

fatal error
(an example from Lab 1)

19

killed by another
process

20

system calls for
process management

21

BOOL WINAPI CreateProcess(

 __in_opt LPCTSTR lpApplicationName,

 __inout_opt LPTSTR lpCommandLine,

 __in_opt LPSECURITY_ATTRIBUTES lpProcessAttributes,

 __in_opt LPSECURITY_ATTRIBUTES lpThreadAttributes,

 __in BOOL bInheritHandles,

 __in DWORD dwCreationFlags,

 __in_opt LPVOID lpEnvironment,

 __in_opt LPCTSTR lpCurrentDirectory,

 __in LPSTARTUPINFO lpStartupInfo,

 __out LPPROCESS_INFORMATION lpProcessInformation

);

22

pid_t fork();

23

process hierarchy

24

POSIX standard
(Portable Operating System

Interface for Unix)

25

process-related system calls

fork, exec, wait, exit

26

fork

exec

wait

exit

27

zombie process
orphan process

28

consider a
Web browser

29

30

consider a
Web server

31

concurrent multi-process server

while (1)
 block until new connection
 fork()
 if (is child process)
 handle new connection
 exit()

32

fork() is expensive

(do we really need to duplicate all the
resources ?)

33

threads
same resource, different executions

34

global variables, files,
children, address space

stack
state

registers

stack
state

registers

stack
state

registers

a multi-threaded process

35

advantages of
multi-threading

36

improved responsiveness
exploits parallelism
abstraction for “independent”
sequence of execution

vs single-threaded

37

cheaper
allows sharing of resources

vs multi-process

38

POSIX Threads API

	 	 pthread_create()
	 	 pthread_exit()
	 	 pthread_join()
	 	 pthread_yield()

39

thread scheduling
done by either

process or kernel

40

mixing threads and
fork() can be tricky

41

