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what is a process?
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resource + execution

3



typical content of a process control block: 

registers, state, priority, pid, parent 
program counters, program status word
CPU time used
pointers to memory segments
working directory
opened files
user ID, group ID

etc.
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OS maintains 
process table

(one PCB / process)
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A CPU scheduler
decides which 
process to run
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OS saves and 
restores PCBs to 
context switch

between processes
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when to context switch?
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blocked I/O

e.g. Java InputStreamʼs read( )
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interrupt 
( system call, timer, I/O )

e.g. time allocated to a process is used up,
data ready to be read
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new

ready running

blocked exit
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which ready process to 
run next ?
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what causes a new 
process to be created?
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explicit creation through 
system call
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system initialization

(e.g, Linux init process)
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upon user requests

(e.g., double click an icon, typing a command)
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what causes a process 
to terminate ?
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finish running
(with or without error)
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fatal error
(an example from Lab 1)
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killed by another 
process
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system calls for 
process management
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BOOL WINAPI CreateProcess(

  __in_opt     LPCTSTR lpApplicationName,

  __inout_opt  LPTSTR lpCommandLine,

  __in_opt     LPSECURITY_ATTRIBUTES lpProcessAttributes,

  __in_opt     LPSECURITY_ATTRIBUTES lpThreadAttributes,

  __in         BOOL bInheritHandles,

  __in         DWORD dwCreationFlags,

  __in_opt     LPVOID lpEnvironment,

  __in_opt     LPCTSTR lpCurrentDirectory,

  __in         LPSTARTUPINFO lpStartupInfo,

  __out        LPPROCESS_INFORMATION lpProcessInformation

);
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pid_t fork();
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process hierarchy
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POSIX standard
(Portable Operating System 

Interface for Unix)
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process-related system calls

fork, exec, wait, exit
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fork

exec

wait

exit
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zombie process
orphan process
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consider a 
Web browser

29
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consider a 
Web server
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concurrent multi-process server

while (1)
   block until new connection
   fork( )
   if (is child process)
      handle new connection
      exit( )
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fork( ) is expensive

(do we really need to duplicate all the 
resources ?)
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threads
same resource, different executions
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global variables, files, 
children, address space

stack
state

registers

stack
state

registers

stack
state

registers

a multi-threaded process
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advantages of 
multi-threading
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improved responsiveness
exploits parallelism
abstraction for “independent” 
sequence of execution 

vs single-threaded
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cheaper
allows sharing of resources

vs multi-process
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POSIX Threads API

	  	  pthread_create(	  )
	  	  pthread_exit(	  )
	  	  pthread_join(	  )
	  	  pthread_yield(	  )
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thread scheduling 
done by either 

process or kernel
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mixing threads and 
fork() can be tricky 
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