Lecture 3

Processes
Threads

26 August, 2011

what Is a process”

resource + execution

typical content of a process control block:

registers, state, priority, pid, parent
program counters, program status word
CPU time used

pointers to memory segments

working directory

opened files

user ID, group ID

elc.

OS maintains
process table

(one PCB / process)

A CPU scheduler
decides which
Process 10 run

OS saves and
restores PCBs to
context switch
between processes

when to context switch?

blocked |/0O

e.g. Java InputStream’s read()

Interrupt
(system call, timer, 1/0O)

e.g. time allocated to a process is used up,
data ready to be read

blocked

which ready process to
run next 7

what causes a new
process to be created?

explicit creation through
system call

system Initialization

(e.g, Linux init process)

upOoN User requests

(e.g., double click an icon, typing a command)

what causes a process
to terminate 7

finish running

(with or without error)

fatal error

(an example from Lab 1)

Killea by another
process

system calls for
pProcess management

BOOL WINAPI CreateProcess(

___1n_opt
__1nout_opt
~_1n_opt
__1n_opt
_1n
_1n
___1n_opt
___1n_opt

in

out

LPCTSTR 1pApplicationName,

LPTSTR 1lpCommandLine,

LPSECURITY ATTRIBUTES 1pProcessAttributes,
LPSECURITY _ATTRIBUTES 1lpThreadAttributes,
BOOL bInheritHandles,

DWORD dwCreationFlags,

LPVOID 1pEnvironment,

PCTSTR 1pCurrentDirectory,
PSTARTUPINFO 1pStartupInfo,

PPROCESS INFORMATION 1pProcessInformation

22

pid t fork();

PDrocess hierarchy

POSIX standard
(Portable Operating System
Interface for Unix)

process-related system calls

fork, exec, wait, exit

27

ZOMmDbIe Process
orphan process

consider a
Web browser

Warning: Unresponsive script

A script on this page may be busy, or it may have
stopped responding. You can stop the script now, or you
can continue to see if the script will complete.

(Continue) £ Stopscript)

30

consider a
Web server

concurrent multi-process server

while (1)
block until new connection
fork()
If (is child process)
handle new connection
exit()

fork() Is expensive

(do we really need to duplicate all the
resources ?)

threads

same resource, different executions

a multi-threaded process

global variables, files,
children, address space

stack stack stack
state state state
registers | registers | registers

35

advantages of
multi-threading

vs single-threaded

Improved responsiveness
exploits parallelism

abstraction for “independent”
sequence of execution

vs multi-process

cheaper

allows sharing of resources

POSIX Threads API

pthread create()
pthread exit()
pthread join()
pthread yield()

thread scheduling
done by either
process or kermel

mixing threads and
fork() can be tricky

