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Interprocess Communication
1. mutual exclusion
2. synchronization

2



the
producer-consumer

problem
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producer consumer
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while (1)
   if (buffer is full)
        sleep
   if (buffer is empty)
        produce
        wake up consumer
   else
        produce    

producer
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while (1)
   if (buffer is empty)
        sleep
   if (buffer is full)
        consume
        wake up producer
   else     
        consume

consumer
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while (1)
   if (buffer is empty)

        sleep
   if (buffer is full)
        consume
        wake up producer
        :

while (1)
   if (buffer is full)
        sleep
   if (buffer is empty)
        produce
        wake up consumer
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problem: 
producerʼs wake up 

call is ignored if 
consumer is awake
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how to remember 
“sleep” / “wake” 

message?
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the
semaphore
abstraction
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x

semaphore

x is an integer
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down( )
    value = value - 1
    if value < 0
       sleep (put in wait list)
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up( )
      value = value + 1
      if value <= 0 
           wake someone
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new

ready running

blocked exit
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up( ) and down( )
are atomic 

can use enter( ) and leave( ) from 
last lecture to ensure mutual exclusion
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operations on 
semaphore

init(S, i)  or S = i
up(S)

down(S)
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semaphore in C

#include <semaphore.h>
sem_t s;
sem_init(&s, 0, 1);
sem_wait(&s); //down
sem_post(&s); //up
sem_destroy(&s);
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Process 2
  :
  :
up(S)

Process 1
  :
  :
down(S)
       

semaphore S = 0
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Process 2
  :
  down(S)
  :
  up(S)
  :

semaphore S = 1

Process 1
  :
  down(S)
  :
  up(S)
  :
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while (1)
   down(free_slots)
   produce
   up(used_slots)
     

while (1)
   down(used_slots)
   consume
   up(free_slots)
     

semaphore free_slots = N
semaphore used_slots = 0
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while (1)
   down(free_slots)
   down(mutex)
   produce
   up(mutex)
   up(used_slots)
     

while (1)
   down(used_slots)
   down(mutex)
   consume
   up(mutex)
   up(free_slots)
     

semaphore free_slots = N
semaphore used_slots = 0
semaphore mutex = 1
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pitfalls of
semaphore
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Process 2
  :
  down(T)
  down(S)
  up(S)
  up(T)

semaphore S = T = 1

Process 1
  :
  down(S)
  down(T)
  up(T)
  up(S)
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  :

  down(T)

  down(S)

  :
  down(S)

  down(T)
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deadlock
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while (1)
   down(mutex)
   down(free_slots)
   produce
   up(mutex)
   up(used_slots)
     

while (1)
   down(mutex)
   down(used_slots)
   consume
   up(mutex)
   up(free_slots)
     

semaphore free_slots = N
semaphore used_slots = 0
semaphore mutex = 1
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while (1)
   down(mutex)
   down(free_slots)

   produce
   up(mutex)
   up(used_slots)

while (1)

   down(mutex)
   down(used_slots)
   consume
   up(mutex)
   up(free_slots)
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the
dining philosophers

problem
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while (1)
   think
   pick left chopstick
   pick right chopstick
   eat
   put down left chopstick
   put down right chopstick
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while (1)
   think
   wait till left chopstick is available
   pick left chopstick
   wait till right chopstick is available
   pick right chopstick
   eat
   put down left chopstick
   put down right chopstick
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32



starvation
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while (1)
   think
   enter( )
      pick left chopstick
      pick right chopstick
      eat
      put down left chopstick
      put down right chopstick
   leave( )
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eat think

hungry

(may block)
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while (1)
    think
    if a neighbor is eating
         wait for chopsticks
    eat
    if a neighbor is waiting and is   
       ready to eat
         wake up neighbor
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while (1)
    think
    state[ i ] = HUNGRY
    if a neighbor is eating
       wait for chopsticks    
    state[ i ] = EAT
    eat
    state[ i ] = THINK
    if a neighbor is waiting
         wake up neighbor
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while (1)
    think
    state[ i ] = HUNGRY
    if state[ L ] == EAT || state[ R ] == EAT
         down(semaphore[ i ])
    state[ i ] = EAT
    eat
    state[ i ] = THINK
    if state[L] == HUNGRY && state[LL] != EAT
          up(semaphore[ L ])    
    if state[R] == HUNGRY && state[RR] != EAT
          up(semaphore[ R ])
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while (1)
    think
    state[ i ] = HUNGRY
    if state[ i ] == HUNGRY && state[ L ] != EAT && state[ R ] != EAT
         up(semaphore[ i ])
         state[ i ] = EAT
    down(semaphore[ i ])
    eat
    state[ i ] = THINK
    if state[L] == HUNGRY && state[LL] != EAT && state[ LR ] != EAT
          up(semaphore[ L ])             
          state[ L ] = EAT
    if state[R] == HUNGRY && state[RL] != EAT && state[RR] != EAT
          up(semaphore[ R ])
          state[ L ] = EAT
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while (1)
    think
    state[ i ] = HUNGRY
    test( i )
    down(semaphore[ i ])
    eat
    state[ i ] = THINK
    test( L )
    test( R )
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while (1)
    think
    down(mutex)
    state[ i ] = HUNGRY
    test( i )
    up(mutex)
    down(semaphore[ i ])
    eat
    down(mutex)
    state[ i ] = THINK
    test( L )
    test( R )
    up(mutex)

41



the
mutex

abstraction
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1/0

mutex

lock / unlock
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the
condition variable

abstraction
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condition
variable

wait / signal
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POSIX threads in C
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#include	
  <pthread.h>
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gcc	
  a.c	
  -­‐lpthread
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pthread_create(..)
pthread_exit(..)
pthread_join(..)
pthread_yield(..)
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demo
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pthread_mutex_init(..)
pthread_mutex_lock(..)
pthread_mutex_unlock(..)
pthread_mutex_trylock(..)
pthread_mutex_destroy(..)
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pthread_cond_init(..)
pthread_cond_wait(..)
pthread_cond_signal(..)
pthread_cond_broadcast(..)
pthread_cond_destroy(..)
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