
Lecture 5
Interprocess

Communication
9 September, 2011

1

Interprocess Communication
1. mutual exclusion
2. synchronization

2

the
producer-consumer

problem

3

producer consumer

4

while (1)
 if (buffer is full)
 sleep
 if (buffer is empty)
 produce
 wake up consumer
 else
 produce

producer

5

while (1)
 if (buffer is empty)
 sleep
 if (buffer is full)
 consume
 wake up producer
 else
 consume

consumer

6

while (1)
 if (buffer is empty)

 sleep
 if (buffer is full)
 consume
 wake up producer
 :

while (1)
 if (buffer is full)
 sleep
 if (buffer is empty)
 produce
 wake up consumer

7

problem:
producerʼs wake up

call is ignored if
consumer is awake

8

how to remember
“sleep” / “wake”

message?

9

the
semaphore
abstraction

10

x

semaphore

x is an integer

11

down()
 value = value - 1
 if value < 0
 sleep (put in wait list)

12

up()
 value = value + 1
 if value <= 0
 wake someone

13

new

ready running

blocked exit

14

up() and down()
are atomic

can use enter() and leave() from
last lecture to ensure mutual exclusion

15

operations on
semaphore

init(S, i) or S = i
up(S)

down(S)
16

semaphore in C

#include <semaphore.h>
sem_t s;
sem_init(&s, 0, 1);
sem_wait(&s); //down
sem_post(&s); //up
sem_destroy(&s);

17

Process 2
 :
 :
up(S)

Process 1
 :
 :
down(S)

semaphore S = 0

18

Process 2
 :
 down(S)
 :
 up(S)
 :

semaphore S = 1

Process 1
 :
 down(S)
 :
 up(S)
 :

19

while (1)
 down(free_slots)
 produce
 up(used_slots)

while (1)
 down(used_slots)
 consume
 up(free_slots)

semaphore free_slots = N
semaphore used_slots = 0

20

while (1)
 down(free_slots)
 down(mutex)
 produce
 up(mutex)
 up(used_slots)

while (1)
 down(used_slots)
 down(mutex)
 consume
 up(mutex)
 up(free_slots)

semaphore free_slots = N
semaphore used_slots = 0
semaphore mutex = 1

21

pitfalls of
semaphore

22

Process 2
 :
 down(T)
 down(S)
 up(S)
 up(T)

semaphore S = T = 1

Process 1
 :
 down(S)
 down(T)
 up(T)
 up(S)

23

 :

 down(T)

 down(S)

 :
 down(S)

 down(T)

24

deadlock

25

while (1)
 down(mutex)
 down(free_slots)
 produce
 up(mutex)
 up(used_slots)

while (1)
 down(mutex)
 down(used_slots)
 consume
 up(mutex)
 up(free_slots)

semaphore free_slots = N
semaphore used_slots = 0
semaphore mutex = 1

26

while (1)
 down(mutex)
 down(free_slots)

 produce
 up(mutex)
 up(used_slots)

while (1)

 down(mutex)
 down(used_slots)
 consume
 up(mutex)
 up(free_slots)

27

the
dining philosophers

problem

28

29

while (1)
 think
 pick left chopstick
 pick right chopstick
 eat
 put down left chopstick
 put down right chopstick

30

while (1)
 think
 wait till left chopstick is available
 pick left chopstick
 wait till right chopstick is available
 pick right chopstick
 eat
 put down left chopstick
 put down right chopstick

31

32

starvation

33

while (1)
 think
 enter()
 pick left chopstick
 pick right chopstick
 eat
 put down left chopstick
 put down right chopstick
 leave()

34

eat think

hungry

(may block)

35

while (1)
 think
 if a neighbor is eating
 wait for chopsticks
 eat
 if a neighbor is waiting and is
 ready to eat
 wake up neighbor

36

while (1)
 think
 state[i] = HUNGRY
 if a neighbor is eating
 wait for chopsticks
 state[i] = EAT
 eat
 state[i] = THINK
 if a neighbor is waiting
 wake up neighbor

37

while (1)
 think
 state[i] = HUNGRY
 if state[L] == EAT || state[R] == EAT
 down(semaphore[i])
 state[i] = EAT
 eat
 state[i] = THINK
 if state[L] == HUNGRY && state[LL] != EAT
 up(semaphore[L])
 if state[R] == HUNGRY && state[RR] != EAT
 up(semaphore[R])

38

while (1)
 think
 state[i] = HUNGRY
 if state[i] == HUNGRY && state[L] != EAT && state[R] != EAT
 up(semaphore[i])
 state[i] = EAT
 down(semaphore[i])
 eat
 state[i] = THINK
 if state[L] == HUNGRY && state[LL] != EAT && state[LR] != EAT
 up(semaphore[L])
 state[L] = EAT
 if state[R] == HUNGRY && state[RL] != EAT && state[RR] != EAT
 up(semaphore[R])
 state[L] = EAT

39

while (1)
 think
 state[i] = HUNGRY
 test(i)
 down(semaphore[i])
 eat
 state[i] = THINK
 test(L)
 test(R)

40

while (1)
 think
 down(mutex)
 state[i] = HUNGRY
 test(i)
 up(mutex)
 down(semaphore[i])
 eat
 down(mutex)
 state[i] = THINK
 test(L)
 test(R)
 up(mutex)

41

the
mutex

abstraction

42

1/0

mutex

lock / unlock

43

the
condition variable

abstraction

44

condition
variable

wait / signal

45

POSIX threads in C

46

#include	
 <pthread.h>

47

gcc	
 a.c	
 -­‐lpthread

48

pthread_create(..)
pthread_exit(..)
pthread_join(..)
pthread_yield(..)

49

demo

50

pthread_mutex_init(..)
pthread_mutex_lock(..)
pthread_mutex_unlock(..)
pthread_mutex_trylock(..)
pthread_mutex_destroy(..)

51

pthread_cond_init(..)
pthread_cond_wait(..)
pthread_cond_signal(..)
pthread_cond_broadcast(..)
pthread_cond_destroy(..)

52

