Lecture 5
Interprocess

Communication

9 September, 2011

Interprocess Communication
1. mutual exclusion

2. synchronization

the
producer-consumer
problem

producer

while (1)

if (buffer is full)
sleep

if (buffer is empty)
produce
wake up consumer
else
produce

while (1)
iIf (buffer is empty)
sleep

iIf (buffer is full)
consume
wake up producer
else
consume

while (1)
if (ouffer is empty)

while (1)
if (ouffer is full)
sleep
iIf (ouffer is empty)
produce
wake up consumer
sleep
if (ouffer is full)
consume

wake up producer

problem:

producer’'s wake up
call is ignored If

consumer Is awake

how to remember
‘sleep” / “wake”
message”’

the
semaphore
abstraction

/ semaphore \

OO~

.n

A 4

X IS an integer

down()
value = value - 1
If value <0
sleep (put in wait list)

up()
value = value + 1

If value <=0
wake someone

blocked

up() and down()
are atomic

can use enter() and leave() from
last lecture to ensure mutual exclusion

operations on
semaphore

INit(S, 1) or S =1

up(S)
down(S)

semaphore in C

#1nclude <semaphore.h>
sem t s;

sem 1nit(&s, 0O, 1);
sem walt(&s); //down
sem post(&s); //up

sem destroy (&s) ;

semaphore S =0

Process 1 Process 2

down(S) up(S)

semaphore S =1

Process 1 Process 2
down(S) down(S)

up(S) up(S)

semaphore free_slots =N
semaphore used_slots =0

while (1) while (1)
down(free_slots) down(used_slots)
produce consume

up(used_slots) up(free_slots)

semaphore free_slots =N
semaphore used_slots =0

semaphore mutex = 1

while (1) while (1)
down(free_slots) down(used_slots)
down(mutex) down(mutex)
produce consume
up(mutex) up(mutex)

up(used_slots) up(free_slots)

pitfalls of
semaphore

semaphore S=T =1

Process 1 Process 2
down(S) down(T)
down(T) down(S)
up(T) up(S)

up(S) up(T)

aown(S) down()

down(l) down(S)

deadlock

semaphore free_slots =N
semaphore used_slots =0

semaphore mutex = 1

while (1) while (1)
down(mutex) down(mutex)
down(free_slots) down(used_slots)
produce consume
up(mutex) up(mutex)

up(used_slots) up(free_slots)

while (1) while (1)
down(mutex)
down(free_slots)
down(mutex)

the
dining philosophers
problem

while (1)
think
pick left chopstick
pick right chopstick
eat
put down left chopstick
put down right chopstick

while (1)

think

walit till left chopstick is available
pick left chopstick

wait till ight chopstick is available
pick right chopstick

eat

put down left chopstick

put down right chopstick

starvation

while (1)
think
enter()
pick left chopstick
pick right chopstick
eat
put down left chopstick
put down right chopstick
leave()

while (1)
think
If a neighbor is eating
wait for chopsticks
eat
If a neighbor Is waiting and is
ready to eat
wake up neighbor

while (1)

think

state[i | = HUNGRY

If a2 neighbor is eating
wait for chopsticks

state| 1 | = EAT

eat

state] 1 | = THINK

if a neighbor is waiting

wake up neighbor

while (1)

think

state[| | = HUNGRY

If state] L | == EAT |l state] R | == EAT
down(semaphore] i])

state[| | = EAT

eat

state| 1 | = THINK

if state[L] == HUNGRY && state[LL] = EAT
up(semaphore| L])

if state[R] == HUNGRY && state[RR] = EAT
up(semaphore[R])

while (1)

think

state[i | = HUNGRY

if state[1 | == HUNGRY && state[L | = EAT && state[R | = EAT
up(semaphorel i])
state[| | = EAT

down(semaphore[i])

eat

state[1 | = THINK

if state[L] == HUNGRY && state[LL] |= EAT && state] LR | I= EAT
up(semaphore[L)
state[L | = EAT

if state[R] == HUNGRY && state[RL] |= EAT && state[RR] = EAT
up(semaphore[R])
state[L | = EAT

39

while (1)
think
state] i | = HUNGRY
test(i)
down(semaphore[i])
eat
state[i] = THINK
test(L)
test(R)

40

while (1)

think

down(mutex)

state[i | = HUNGRY
test(i)

up(mutex)
down(semaphore] i])
eat

down(mutex)

state] 1] = THINK
test(L)

test(R)

up(mutex)

41

the
mutex
abstraction

/ mutex \

OO (A

lock / unlock

the
condition variable
abstraction

/ condition \

variable

O-O-C5 L

"

/

wait / signal

POSIX threads in C

#include <pthread.h>

gcc a.c -lpthread

pthread create(..)
pthread exit(..)
pthread join(..)
pthread yield(..)

demo

pthread mutex init(..)
pthread mutex lock(..)
pthread mutex unlock(..)
pthread mutex trylock(..)
pthread mutex destroy(..)

pthread cond init(..)
pthread cond wait(..)
pthread cond signal(..)
pthread cond broadcast(..)
pthread cond destroy(..)

