
Lecture 7
Deadlock

30 September, 2011

1

Process 2
 :
 down(T)
 down(S)
 up(S)
 up(T)

semaphore S = T = 1

Process 1
 :
 down(S)
 down(T)
 up(T)
 up(S)

2

 :

 down(T)

 down(S)

 :
 down(S)

 down(T)

3

while (1)
 think
 wait till left chopstick is available
 pick up left chopstick
 wait till right chopstick is available
 pick up right chopstick
 eat
 put down left chopstick
 put down right chopstick

4

while (1)
 think
 down(chopstick[i])
 down(chopstick[(i+1)%N]
 eat
 up(chopstick[i])
 up(chopstick[(i+1)%N]

5

6

Resource

7

acquire resource
(wait until available)
use resource
release resource

8

software
vs.

hardware
resource

9

preemptive
vs.

non-preemptive
resource

10

single copy
vs.

multiple copies
of a resource

11

4
conditions

for deadlock

12

mutual exclusion
each resource must be either

assigned to exactly one process
or is available

13

while (1)
 think
 down(chopstick[i])
 down(chopstick[(i+1)%N]
 eat
 up(chopstick[i])
 up(chopstick[(i+1)%N]

14

hold and wait
processes holding resources granted
earlier can request for new resource

15

while (1)
 think
 down(chopstick[i])
 down(chopstick[(i+1)%N]
 eat
 up(chopstick[i])
 up(chopstick[(i+1)%N]

16

no preemption
resources granted cannot be

forcefully taken away

17

while (1)
 think
 down(chopstick[i])
 down(chopstick[(i+1)%N]
 eat
 up(chopstick[i])
 up(chopstick[(i+1)%N]

18

circular waiting
a circular chain of processes, each waiting for a
resource held by the next member of the chain

19

20

Deadlock
Modeling

21

22

A

R

C

T

B

S

A requests R
B requests S
C requests T
A requests S
B requests T
C requests R

23

Deadlock
Detection
is the system deadlocked, and if so,

which process are involved?

24

Deadlock Detection
(if each resource

type has one copy)

25

1. !periodically build a !! ! !
! ! resource graph

2. !run depth first search on
! ! the graph to detect cycle

26

Deadlock Detection
(if each resource

type has multiple copies)

27

0 0 1 0
2 0 0 1
0 1 2 0

4 2 3 1 2 1 0 0

resources in existence resources available

allocation matrix request matrix

2 0 0 1
1 0 1 0
2 1 0 0

A

B

C

A

B

C

R S T UR S T U

R S T UR S T U

28

A CB

R TS U

29

is there a process
whose requests can

be satisfied?

30

A

R TS U

31

B

R TS U

32

C

R TS U

33

C

R TS U

34

0 0 1 0
2 0 0 1
0 1 2 0

4 2 3 1 2 1 0 0

resources in existence resources available

allocation matrix request matrix

2 0 0 1
1 0 1 0
2 1 0 0

A

B

C

A

B

C

R S T UR S T U

R S T UR S T U

35

A B

R TS U

36

0 0 1 0
2 0 0 1
0 0 0 0

4 2 3 1 2 2 2 0

resources in existence resources available

allocation matrix request matrix

2 0 0 1
1 0 1 0
0 0 0 0

A

B

C

A

B

C

R S T UR S T U

R S T UR S T U

37

0 0 1 0
0 0 0 0
0 0 0 0

4 2 3 1 4 2 2 1

resources in existence resources available

allocation matrix request matrix

2 0 0 1
0 0 0 0
0 0 0 0

A

B

C

A

B

C

R S T UR S T U

R S T UR S T U

38

suppose we have
deadlock,
now what?

39

1. preempt
2. rollback

3. terminate

40

Deadlock
Avoidance

if we know the resources required by a process,
can we avoid deadlock by careful allocation?

41

Deadlock
Prevention

can we set some rules that prevent deadlock?

42

mutual exclusion
each resource must be either

assigned to exactly one process
or is available

43

allow sharing of
resources

44

45

hold and wait
processes holding resources granted
earlier can request for new resource

46

allocate only if all
resources are available

47

while (1)
 think
 down(mutex)
 state[i] = HUNGRY
 test(i)
 up(mutex)
 down(semaphore[i])
 eat
 down(mutex)
 state[i] = THINK
 test(L)
 test(R)
 up(mutex)

48

no preemption
resources granted cannot be

forcefully taken away

49

allow resources to be
preempted

50

51

circular waiting
a circular chain of processes, each waiting for a
resource held by the next member of the chain

52

order resource
numerically and
acquire in order

53

1

2

3 4

5

6

54

Livelock

55

Starvation

56

Process A (low):

 down(mutex)
 :
 work
 :
 :
 up(mutex)

Process B (high):

 down(mutex)
 :
 important tasks
 :
 :
 up(mutex)

57

Priority Inversion

58

