
Lecture 9
Memory Management II

21 October, 2011

1

Address Space Physical Memory

2

MMU

fetch 0x2669

fetch 0xE69

CPU

1001 10 0110 1001

11 10 0110 1001

page table
lookup

page table

TLB

3

Physical Memory

4

What really happened
during a page fault?

5

(i)
save current execution
context and jump to a

page fault handler

6

stack

data

code

CPU

Memory

function parameters
local variables

saved frame pointer
return address

CPU

program
counter

stack
pointer

frame
pointer

kernel

program
status word

7

(ii)
find out which page is

needed and whether the
memory access is valid

8

(iii)
determine which frame
to load the page into

9

(iv)
if the frame to be

replaced is dirty, block
faulting process.

10

(v)
 write dirty frame to disk

and load the faulted
page from disk
(using DMA)

11

(vi)
 upon disk interrupt,
update page table,
rewind any partially

executed instruction, and
mark process as ready

12

(vii)
when process is

scheduled to run, restore
execution context

13

Global
vs.

Local
Replacement

14

Dirty
vs.

Clean
Pages

15

Locked
vs.

Unlocked
Pages

16

Demand Paging
vs.

Prepaging

17

Free when needed
vs.

Free in background

18

Swap Partition
vs.

Page File

19

major
vs.

minor
page fault

20

Page Replacement
Algorithm

which page to evict from the
physical memory?

21

1 3 0 12 9 6 4 18
1 0 1 0 1 0 0 0

Physical Memory

1, 4, 6, 0, 2, 3, 4, 4, 12, 10, 2,
Page Requests

M bit

22

Goals:
Maximize Hit Rate

Simple & Fast

23

Belady’s Algorithm:
evict the page which

will be accessed
furthest into the future

24

optimal
but

unrealizable

25

assuming that
pages that haven’t been

referenced recently will not
be reference in near future

26

1 3 0 12 9 6 4 18
1 0 1 0 1 0 0 0

Physical Memory

1, 4, 6, 0, 2, 3, 4, 4, 12, 10, 2,
Page Requests

M bit

R bit

27

Not Recently Used (NRU)
evicts pages in the order

1. R = 0, M = 0
2. R = 0, M = 1
3. R = 1, M = 0
4. R = 1, M = 1

28

First-in-first-out (FIFO)
evicts the page that stayed

in RAM the longest

29

1 4 6 0
1 0 1 0

Physical Memory

1, 4, 6, 0, 2, 3, 4, 4, 12, 10, 2,
Page Requests

M bit

R bit

30

Second Chance
evicts the page with R=0

that stayed in RAM
the longest

31

1 4 6 0
1 0 1 0

Physical Memory

1, 4, 6, 0, 1, 2, 3, 4, 4, 12, 10,
Page Requests

M bit

R bit

32

p = pages[i]
while p.R is 1
 p.R = 0
 i = (i + 1) % N
 p = pages[i]
evict p

33

This is called the
Clock

Algorithm

34

Least Recently Used (LRU)
evicts the page that hasn’t

been used the longest time.

35

LRU implementation
with linked list

on referencing frame k:
 move k to back of list

on evict:
 evict head of list

36

37

LRU implementation
with counter

on referencing frame k:
 frame.t = current time

on evict:
 evict frame with min t

38

LRU implementation
with matrix

on referencing frame k:
 set all bits of row k to 1
 set all bits of column k to 0

on evict:
 evict frame with min row

39

40

LRU approximation
with NFU

periodically
 page.count += page.R

on evict:
 evict frame with min count

41

LRU approximation
with aging

periodically
 page.count >>= 1
 page.count |= (page.R << N)

on evict:
 evict frame with min count

42

43

locality of reference: process
refers to a small number of

pages at a time.

44

working set of a process:
set of pages accessed in

last T seconds

45

while noone is evicted
 i = (i + 1) % N
 p = pages[i]
 if p.R is 1
 p.R = 0
 else
 if p last accessed > T ago
 if p is dirty
 schedule p’s write to disk
 else
 evict p

46

what if we have gone one
round with evicting?

all pages are in working set.
evict any clean page.

47

what if all pages are dirty?

evict current page
(or any page)

48

This is called the
WSClock
Algorithm

49

NRU
FIFO
SC

CLOCK
LRU

WSCLOCK

50

What happen when working
set of all processes exceed
the size of physical memory

?

51

Thrashing
CPU spend significant amount of time

paging in/out, not doing real work

52

53

54

