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Physical Memory
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What really happened 
during a page fault?
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(i) 
save current execution 
context and jump to a 

page fault handler
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(ii)
find out which page is 

needed and whether the 
memory access is valid
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(iii)
determine which frame 
to load the page into
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(iv)
if the frame to be 

replaced is dirty, block 
faulting process.
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(v)
 write dirty frame to disk 

and load the faulted 
page from disk 
(using DMA)
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(vi)
 upon disk interrupt, 
update page table, 
rewind any partially 

executed instruction, and 
mark process as ready
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(vii)
when process is 

scheduled to run, restore 
execution context
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Global
vs.

Local
Replacement
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Dirty
vs.

Clean
Pages
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Locked
vs.

Unlocked
Pages
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Demand Paging
vs.

Prepaging
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Free when needed
vs.

Free in background
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Swap Partition
vs.

Page File
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major
vs.

minor
page fault
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Page Replacement
Algorithm

which page to evict from the 
physical memory?
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Goals: 
Maximize Hit Rate

Simple & Fast
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Belady’s Algorithm:
evict the page which 

will be accessed 
furthest into the future
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optimal
but

unrealizable
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assuming that
pages that haven’t been 

referenced recently will not 
be reference in near future
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Not Recently Used (NRU)
evicts pages in the order

1. R = 0, M = 0
2. R = 0, M = 1
3. R = 1, M = 0
4. R = 1, M = 1
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First-in-first-out (FIFO)
evicts the page that stayed 

in RAM the longest

29



1 4 6 0
1 0 1 0

Physical Memory

1, 4, 6, 0, 2, 3, 4, 4, 12, 10, 2, ....
Page Requests

M bit

R bit

30



Second Chance
evicts the page with R=0

that stayed in RAM 
the longest
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p = pages[i]
while p.R is 1
    p.R = 0
    i = (i + 1) % N
    p = pages[i]
evict p
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This is called the 
Clock

Algorithm
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Least Recently Used (LRU)
evicts the page that hasn’t 

been used the longest time.
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LRU implementation 
with linked list

on referencing frame k:
    move k to back of list

on evict:
    evict head of list
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LRU implementation 
with counter

on referencing frame k:
    frame.t = current time

on evict:
    evict frame with min t
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LRU implementation 
with matrix

on referencing frame k:
    set all bits of row k to 1
    set all bits of column k to 0 

on evict:
    evict frame with min row
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LRU approximation 
with NFU

periodically
     page.count += page.R

on evict:
    evict frame with min count
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LRU approximation 
with aging

periodically
     page.count >>= 1
     page.count |= (page.R << N)

on evict:
    evict frame with min count
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locality of reference: process 
refers to a small number of 

pages at a time.
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working set of a process:
set of pages accessed in 

last T seconds
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while noone is evicted
    i = (i + 1) % N
    p = pages[i]
    if p.R is 1
       p.R = 0
    else 
      if p last accessed  > T ago 
           if p is dirty
                schedule p’s write to disk
           else
                evict p
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what if we have gone one 
round with evicting?

all pages are in working set.  
evict any clean page.
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what if all pages are dirty?

evict current page
(or any page)
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This is called the 
WSClock
Algorithm
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What happen when working 
set of all processes exceed 
the size of physical memory

?
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Thrashing
CPU spend significant amount of time 

paging in/out, not doing real work
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