Lecture 9
Memory Management ||

21 October, 2011

Address Space Physical Memory

4)

page table

fetch 0x2669

page table

lookup

Physical Memory

What really happened
during a page faulit?

(1)
save current execution
context and jump to a

page fault handler

CPU Memory

<
frame stack
pointer \
return address
stack saved frame pointer
pointer local variables
function parameters
program || N[
counter
data
program
status word code
kernel
J

(11)
find out which page IS
needed and whether the
memory access IS valio

(1D,
determine which frame
to load the page Into

(Iv)
If the frame to be
replaced Is dirty, block

faulting process.

(V)
write dirty frame to disk
and load the faulted

page from disk
(using DMA)

(V1)
upon disk interrupt,
update page table,
rewind any partially
executed Instruction, and

mark process as ready

(vii)
when process IS
scheduled to run, restore

execution context

Global
VS.
Local
Replacement

Locked
VS

Unlocked
Pages

Demand Paging
VS.
Prepaging

Free when needed
VS.
Free in background

Swap Partition
VS.
Page File

major
VS.
minor

page fault

Page Replacement
Algorithm

which page to evict from the
physical memory?

Physical Memory

0

12

9

6

18

M bit —

1

0

1

0

Page Requests

1,4,6,0,2,3,4,4,12,10, 2,

Goals:
Maximize Hit Rate
Simple & Fast

Belady’s Algorithm:
evict the page which
will be accessed
furthest into the future

optimal
but
unrealizable

assuming that
pages that haven't been
referenced recently will not
be reference in near future

Physical Memory

0

12

9

6

18

1

0

1

0

M bit —

Rbit

Page Requests

1,4,6,0,2,3,4,4,12,10, 2,

Not Recently Used (NRU)
evicts pages In the order
1.R=0,M=0

R
R=1,
R

S =SS
| I | I |
-) =

0
1
1

2.
3.
4.

First-in-first-out (FIFO)
evicts the page that stayed
In RAM the longest

Physical Memory

1 4 | 6 | 0
M bit —__°

Rbit

Page Requests

1,4,6,0,2,3,4,4,12,10, 2,

Second Chance
evicts the page with R=0
that stayed in RAM
the longest

Physical Memory

1 4 | 6 | 0
M bit —__°

Rbit

Page Requests

1,4,6,0,1,2,3,4,4,12, 10,

p = pages]|
while p.Ris 1
P.R=0
I=(1+1) %N
p = pages|]
eviICL P

This Is called the

Clock
Algorithm

Least Recently Used (LRU)
evicts the page that hasnt
been used the longest time.

LRU implementation
with linked list

on referencing frame Kk:
move k to back of list

on evict:
evict head of list

37

LRU implementation
with counter

on referencing frame K:
frame.t = current time

on evict:
evict frame with min t

LRU implementation
with matrix

on referencing frame K:
set all bits of row k to 1
set all bits of column kto O

on evict:
evict frame with min row

40

LRU approximation
with NFU

periodically
page.count += page.R

on evict:
evict frame with min count

LRU approximation
with aging

periodically

page.count >>= 1
page.count | = (page.R << N)

on evict:
evict frame with min count

43

locality of reference: process
refers to a small number of
pages at a time.

working set of a process:
set of pages accessed In
last T seconds

while noone is evicted
I=(1+1)%N
p = pages]]]
ifp.Ris 1
Pp.R=0
else
if p last accessed > T ago
if p is dirty
schedule p’s write to disk
else
evict p

what if we have gone one
round with evicting?

all pages are in working set.
evict any clean page.

what if all pages are dirty?

evict current page
(or any page)

This Is called the

WSClock
Algorithm

NRU
FIFO
SC
CLOCK
LRU
WSCLOCK

What happen when working
set of all processes exceed

the size of physical memory
7

Thrashing

CPU spend significant amount of time
paging in/out, not doing real work

File Options View Help

Applications | Processes | Services | Performance | Networking | Users
Image Name User Name CPU Memory (... PEL; =
calibre-parallel.exe *32 elfchief 28 1,596,08...

: firefox.exe *32 elfchief 00 227,128K
calibre.exe *32 elfchief 01 115,864K
aimé.exe *32 elfchief 00 53,676 K
dwm.exe elfchief 00 45,432K
explorer.exe elfchief 00 34,084K
calibre-parallel.exe *32 elfchief 00 17,088 K
calibre-parallel.exe *32 elfchief 00 17,088 K R
calibre-parallel.exe *32 elfchief 00 17,088 K 1
calibre-parallel.exe *32 elfchief 00 17,088 K
calibre-parallel.exe *32 elfchief 00 17,084K
calibre-parallel.exe *32 elfchief 00 17,084K
calibre-parallel.exe *32 elfchief 00 17,084K
calibre-parallel.exe *32 elfchief 00 17,084K
calibre-parallel.exe *32 elfchief 00 17,084K
calibre-parallel.exe *32 elfchief 00 17,084K
calibre-parallel.exe *32 elfchief 00 17,084K =
BTStackServer.exe elfchief 00 6,512K
taskeng.exe elfchief 00 6,416 K
BTTray.exe elfchief 00 6,208 K
sttray64.exe elfchief 00 5,092K
taskeng.exe elfchief 00 3,896 K
taskmar.exe elfchief 00 3,500 K
Csrss.exe 00 3,968 K
nvvsvc.exe 00 3.252K

53

File Edit View Terminal Tabs Help

wri@karianne: ~ 3¢ |wri@karianne: ~

last pid: 90813; 1load averages: 1.33, 1.19, 1.04 up 184+12:03:57 23:33:27
57 processes: 1 running, 56 sleeping

CPU states: 2.7% user, 0.0% nice, 13.2% system, 0.0% interrupt, 84.1% idle
Mem: 345M Active, 29M Inact, 94M Wired, 17M Cache, 59M Buf, 976K Free

Swap: 983M Total, 206M Used, 777M Free, 20% Inuse, 2536K In, 1988K Out

PID USERNAME THR PRI NICE SIZE RES STATE TIME WCPU COMMAND
90659 1 -20 0 476M 358M swread 14:59 .80% ruby
763 5 20 O 57776K 1388K kserel 924:20 .00% mysqld
621 96 0 3356K 0K select 25:28 .00% <sshd>
413 96 0 1388K 244K select 22:00 .00% syslogd
733 8 0 17884K 544K nanslp 19:48 .00% httpd
627 96 ® 3400K 400K select 11:35 .00% sendmail
543 96 0 4932K 372K select 6:43 .00% nmbd
39301 4 0 18312K 0K accept :35 .00% <httpd>
42295 0 18384K 0K accept :30 .00% <httpd>
42515 0 18356K OK accept 112 .00% <httpd>
42450 0 18392K OK accept 152 .00% <httpd>
39309 0 18388K OK accept 144 0.00% <httpd>
42460 0 18388K 0K accept 140 .00% <httpd>
42781 0 18368K 0K accept :37 .00% <httpd>
639 0 1312K 176K nanslp :30 .00% cron
50364 0 18336K OK accept 115 .00% <httpd>
547 0 8756K 200K select :59 .00% smbd

= e e e e e e e e e e
(o) I S e ¢ I SN S S S S
HFNNNNNNWWW
ocNoNoNoNoNoNoNoNoNoNoNoRNoNo RO RO RS

(o)

