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Magnetic Disks

seek, rotate, transfer
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Disk Blocks

...
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which data stored where?
which blocks are free?
who owns the block?

4



what is a partition?
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...

...

...

Partition 1

Partition 2

Partition 3

boot block

MBR Partition Table

superblock
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how to map files to blocks?
how to allocate blocks to files?
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Contiguous Allocation
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mapping files to blocks is simple
reading from disk is very fast

10



but

need to know file size 
fragmentation of space
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used in CD-ROMS

12



Using Linked List
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mapping files to blocks is simple
reading sequentially is fast

but

random access is slow
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Using FAT
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 5 4 8 6 7 -1 13 -1 16 12

file allocation table (in RAM)
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how big can a FAT get?

assume 256 GB disk, 1 KB block

18



filename

directory entry in FAT-12 
(MSDOS)

ext reserved size

attribute bits 
(hidden, read-only, systems etc.)

date time 1st block
(only 12 bits are used)

8                 3    1                 10               2     2     2       4
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how big can a disk partition get? 

assume 512 bytes per block
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Using i-nodes
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.. ..

superblock

metadata
(free blocks etc.)} }i-nodes data}
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one i-node per file, 
containing info about 

files on disk 
(owner, file type, size, address, last access 

time, last modified time etc.)
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i-node addresses
address of block 1
address of block 2

:
address of block 12
single indirect block
double indirect block
triple indirect block
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address of block 1

address of block 2

:

address of block 12

single indirect block

double indirect block

triple indirect block
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only stores i-nodes of 
opened files in memory

(in i-node table)

access to small files is fast
still support large files
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directories in UNIX are 
just files
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directory entry on Linux 
(content of a directory “file”)

file name

i-node 
number

entry
size

type length of
file name

unusedunused
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example: opening /home/user1/lab.c

read dir entries (data blocks) of /
look for i-node number for home
read i-node for /home
read data blocks of /home
look for i-node number for user1
   :
   :
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caching of directory entries 
in memory improves access time
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Sharing files
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hard link

foo

i-node 
number

2unused 2 bar
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soft link

fooL

i-node 
number

6unused

5779

address of block 2

:

address of block 12

single indirect block

double indirect block

triple indirect block

i-node 6

....

:

33



Removing a file
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removes directory entry

file name

i-node 
number

entry
size

type length of
file name

unusedunused
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.. ..

superblock

metadata
(free blocks etc.)} }i-nodes data}

marks blocks as free
marks i-node as free

36



what if the system crashes?

remove dir entry
release blocks
release i-node
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journaling file system

write a log to disk
remove file

remove log from disk
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journaling is used in

NTFS (Windows NT)
ext3 (Linux 2.4)

HFS+ (Mac OSX)
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Improving File 
Systems Performance
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1. Buffer Cache

caches disk blocks in 
memory
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critical dirty blocks are written 
immediately to disk

data blocks are written 
periodically via sync()
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2. Read Ahead

read more blocks than 
requested
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3. Reducing Disk Arm 
Motion

(a) put relevant blocks 
together on the same 

cylinder
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3. Reducing Disk Arm 
Motion

(b) schedule disk arm 
motion carefully
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Disk Addressing

1. (cylinder, head, sector) 
2. logical block address
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FCFS
SSF

Elevator
Cylinder requests: 10, 9, 1, 11, 18, 19 
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4. Defragmentation

reorganize files on disk 
to keep them contiguous
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