
Lecture 11

File Systems

4 November 2011

1

Magnetic Disks

seek, rotate, transfer

2

Disk Blocks

...

3

which data stored where?
which blocks are free?
who owns the block?

4

what is a partition?

5

...

...

...

Partition 1

Partition 2

Partition 3

boot block

MBR Partition Table

superblock

6

how to map files to blocks?
how to allocate blocks to files?

7

Contiguous Allocation

8

9

mapping files to blocks is simple
reading from disk is very fast

10

but

need to know file size
fragmentation of space

11

used in CD-ROMS

12

Using Linked List

13

14

mapping files to blocks is simple
reading sequentially is fast

but

random access is slow

15

Using FAT

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 5 4 8 6 7 -1 13 -1 16 12

file allocation table (in RAM)

17

how big can a FAT get?

assume 256 GB disk, 1 KB block

18

filename

directory entry in FAT-12
(MSDOS)

ext reserved size

attribute bits
(hidden, read-only, systems etc.)

date time 1st block
(only 12 bits are used)

8 3 1 10 2 2 2 4

19

how big can a disk partition get?

assume 512 bytes per block

20

Using i-nodes

21

.. ..

superblock

metadata
(free blocks etc.)} }i-nodes data}

22

one i-node per file,
containing info about

files on disk
(owner, file type, size, address, last access

time, last modified time etc.)

23

i-node addresses
address of block 1
address of block 2

:
address of block 12
single indirect block
double indirect block
triple indirect block

24

address of block 1

address of block 2

:

address of block 12

single indirect block

double indirect block

triple indirect block

25

only stores i-nodes of
opened files in memory

(in i-node table)

access to small files is fast
still support large files

26

directories in UNIX are
just files

27

directory entry on Linux
(content of a directory “file”)

file name

i-node
number

entry
size

type length of
file name

unusedunused

28

example: opening /home/user1/lab.c

read dir entries (data blocks) of /
look for i-node number for home
read i-node for /home
read data blocks of /home
look for i-node number for user1
 :
 :

29

caching of directory entries
in memory improves access time

30

Sharing files

31

hard link

foo

i-node
number

2unused 2 bar

32

soft link

fooL

i-node
number

6unused

5779

address of block 2

:

address of block 12

single indirect block

double indirect block

triple indirect block

i-node 6

....

:

33

Removing a file

34

removes directory entry

file name

i-node
number

entry
size

type length of
file name

unusedunused

35

.. ..

superblock

metadata
(free blocks etc.)} }i-nodes data}

marks blocks as free
marks i-node as free

36

what if the system crashes?

remove dir entry
release blocks
release i-node

37

journaling file system

write a log to disk
remove file

remove log from disk

38

journaling is used in

NTFS (Windows NT)
ext3 (Linux 2.4)

HFS+ (Mac OSX)

39

Improving File
Systems Performance

40

1. Buffer Cache

caches disk blocks in
memory

41

critical dirty blocks are written
immediately to disk

data blocks are written
periodically via sync()

42

43

2. Read Ahead

read more blocks than
requested

44

3. Reducing Disk Arm
Motion

(a) put relevant blocks
together on the same

cylinder
45

3. Reducing Disk Arm
Motion

(b) schedule disk arm
motion carefully

46

Disk Addressing

1. (cylinder, head, sector)
2. logical block address

47

FCFS
SSF

Elevator
Cylinder requests: 10, 9, 1, 11, 18, 19

48

4. Defragmentation

reorganize files on disk
to keep them contiguous

49

50

