National University of Singapore
School of Computing

CS2106 Laboratory 1 Semester 1 11/12

MATRICULATION NUMBER:

In this lab exercise, you will get familiarize with some basic UNIX commands, editing and
compiling C programs, as well as debugging C programs.

The exercise has been tested on SunFire. You should use SunFire for this exercise. If you
try the exercise on Linux machines, the results may be slightly different (but should not impact
your learning).

For SunFire server: To remotely access SunFire, use your favourite ssh client and ssh into
sunfire.comp.nus.edu.sg. Use your SoC UNIX username and password to login. If you do not
have an account on SunFire, apply for one here: http://mysoc.comp.nus.edu.sg/~newacct.

This is an ungraded lab exercise. Completing the exercise, however, will help you understand
the concepts covered in the exercise better and will be much helpful for the subsequent labs.
In particular, being familiar pointers and gdb will save you time in debugging your programs
later.

You should complete the lab before 28 August 2011. We will discuss selected questions
during the lab session of Week 4 (29 August 2011 - 2 Septemebr 2011).

Every lab exercise is an individual exercise.

Ideally, you should work on the lab exercise before the lab session. During the lab session,
raise any difficulties you encounter or doubts that you have with the lab TAs. You may also
discuss your solution with the lab TAs.

http://mysoc.comp.nus.edu.sg/~newacct

1. Navigating and Manipulating Files and Directories.

You will learn to use the basic commands 1s, mkdir, rmdir, rm, cd, pwd, 1ln, cp, mv.

man is your best friend. Use the man command to find out what these commands
do and what the available options are.

(a)

Use a combination of the above commands, and create the following file systems hier-
archy under your home directory:

cs2106/1ab01/01/
cs2106/1ab01/02/
cs2106/1ab01/03/

Note down the commands you used.

Under ¢s2106/1ab01/01/ directory, create two text files named foo and bar with an
editor (you can use vim or other editors). You can put any text you want into the two
files.

Under ¢s2106/1ab01/02/ directory, using the command 1n, create a hard link to the
file foo, which you just created, and a soft link to the file bar that you just created.

Note down the commands you used.

Make a copy of the files foo and bar to the folder ¢s2106/1ab01/03/
Note down the commands you used.

Now change the content of the files foo and bar under ¢s2106/1ab01/01 with a text
editor, and save the files.

Check the content of the files under ¢s2106/1ab01/02 and ¢cs2106/1ab01/03. What
do you observe?

Page 2

(e) Now, remove the directory cs2106/1ab01/01 (and its file content) completely. Check
the content of the files under ¢s2106/1ab01/02 and ¢s2106/1ab01/03. What do you
observe?

(f) Copy the whole directory cs2106/1ab01/03 to c¢s2106/1ab01/01. Note down the
command you use.

Page 3

2. Useful utilities, redirections, and pipes

Go through the examples given in the textbook Section 1.5.6 and 10.2.3, try them out
on SunFire (modify them if necessary) to make sure you understand the notion of input
redirection <, output redirection >, pipe |, and understand the purpose of utilities sort,
head, tail, wc, and grep.

man

is your best friend. Use the man command to find out what the various

commands do and what are the available options.

(a)

The command who lists the current users logging into SunFire. Using who, in combi-
nation of other commands using pipe, write a command that counts how many users
are currently logged in in SunFire.

(x) The command ps lists the current processes running on SunFire; the command
cut extracts columns of text from a file; the command uniq remove consecutive lines
that are duplicates. Using these commands, in combination with wc, sort, grep that
you have seen in Section 1.5.6 and Section 10.2.3, construct a sequence of pipes that
counts how many wunique users are currently running sshd on SunFire. Assume that
username are at most 8 characters in length.

Page 4

3. Compiling and Running C programs

We now explore how to use gcc, the GNU C Compiler. You should first read Section 1.8.3
of the textbook if you have not done so.

You can do the rest of this lab exercise in any directory, but to keep things organized, I
suggest that you do it under ¢s2106/1ab01/.

You may find the man page for gcc useful.

Use the following command to download the program hello.c from the Web:
wget http://www.comp.nus.edu.sg/ ooiwt/cs2106/1ab01/hello.c

The program is similar to what I shown in class.

Use the following command to generate an executable file from hello.c
gcc hello.c

This command should create a new executable file called a.out.
Run a.out, giving it a parameter, which is the number of times to print ”Hello World.” on
the screen. Example:

./a.out 10

a.out is the default name of the executable created with gcc. You can specify the output
executable file name with the -o option.

gcc -o hello hello.c

Now, you should see an executable file called hello in the same directory. You can run this
file just like running a.out.

./hello 10
Now, let’s explore the different stages of converting a C program into an executable: pre-
processing, compiling, and linking.
(a) Run the command

gcc -E hello.c

The output is too long and scrolls too fast. You can either pipe the output of the
command to a program called less:

gcc -E hello.c | less
or redirect the output to a file:
gcc -E hello.c > hello.out
and view the file hello.out using your favorite editor.
What do you see? What does the option -E mean? What does the pre-processor do?

(b) Run the command:
gcc -c hello.c
What file is created by this command? If you now run
gcc hello.o
what do you get?

(c) Comment out the main() function in hello.c using /* and */ (but leave the function
say_hello() in there). Run again:

gcc hello.c

What error message do you see?

gcc —c hello.c

Any error message now? Explain the differences in the outputs you see above, before
and after commenting out main() and with and without -c.

Page 6

4. Debugging with gdb. In this section, you will learn (i) the basic commands of a debugger

gdb;

(ii) what is a segmentation fault error. You will go through some steps that is typical

in finding out pointer errors in your program with gdb.

(a)

(b)

Run the program hello without any argument.
./hello
What do you get? What does this error message mean?

To find out what causes the error, we are going to use the debugger gdb. First, make
sure that you have uncommented the function main() which you have commented
out in the previous question.
Now, recompile hello.c with -g option to create an executable file with additional
information for the debugger.

gcc -g -o hello hello.c
To run the debugger on the executable hello, run
gdb hello
You should see a prompt that says
(gdb)
You can now issue commands into gdb by typing on the prompt.
The first command we are going to issue is run, or its abbreviation, r.
(gdb) r

The debugger will now run hello. When a segmentation fault is received, the debugger
will display where the error occurs. What is the name of the function within which
segmentation fault occurs?

You might not recorgnize the function where the error occurs as it does not appear
inside the code hello.c at all. Some of the function calls we made in hello.c must
have lead to this function.

Run
(gdb) where

to print out the stack frame. Which library function we call in hello.c causes the
error?

(e) Now, lets trace through the code line-by-line, examining the variables to find out what
went wrong.

To examine the variables while the program is running, we need to first ”break” the
program. To do this, we set the breakpoint at the function main() with b command
and rerun the program.

(gdb) b main
(gdb) r

The debugger will now stop at main(). Let’s examine the content of the variable
argc and argv with the print command (abbreviated p).

(gdb) p argc
(gdb) p argv

Note down the output. What does the value argv means?

(f) The variable argv is an array of strings. Recall that each string in C is an array of
char. Note down the ouput of the following expression:

(gdb) p argv[0]
(gdb) p argv[0][1]

What does the expression argv[0][1] refer to?

(g) (gdb) p argv([i]

What do you get? Can you explain why running hello without command line argu-
ment leads to a segmentation fault error?

Page 8

5. Pointers. Now, let’s have some fun with pointers in C. Besides getting familiarize with the
meaning of operator * and &, You will see from this exercise that: (i) C treats both value
and address (int and int *) interchangably, (ii) with pointers you can modify the value of
other variables unintentionally.

Create a C program with the following code:

int main()
{
int *x;
int y;
x = 0;
y=0;
}

Compile the code with debugging option and load the resulting executable in a debugger.

Now, tell the debugger to break at line number 5 (the closing } of the function main()) and
run the program.

(gdb) b 5
(gdb) r

(a) Use the debugger to print out the values of the following. What do you see? What do
they mean?

(b) Now, we are going to use the debugger ”"set” command to change the values of these
variables.

(gdb) set x = &y
(gdb) set *x = 1

Use the debugger to print out the values of the following. What has changed? Why?

Page 9

(¢) Now, run the following
(gdb) set *(x+1) = 10
Use the debugger to print out the values of the following. What has changed? Why?
(Note: your answer might not be the intended answer if you use a machine other than

SunFire).

(d) (x) Now run the following
(gdb) set x = &y
(gdb) set y = x
Think about how it will change the values of the expression below. Use the debugger
to print out their values to see if you are right. What values do you see? Explain the

changes.

(e) Now, exit from the debugger, change your C program to the following, and re-compile

int main()

{
int *x = 0;
int y = x;

}

You should get a warning message. What causes the warning?

below.

THE END

Page 11

