
CS2106

National University of Singapore
School of Computing

Laboratory 2 Semester 1 11/12

This is another warm-up, ungraded, exercise. The goal of this exercise is to familiarize you
with C programming and its associate tools, which are essential for three of the subsequent
(graded) labs.

Platform

This exercise requires the Linux platform. You may use the Linux machines in the OS Lab. If
you want to use your own Linux machine, make sure that you have valgrind installed besides
make, gcc, and gdb.

If you use the Linux machines in the OS lab, please use the given personal account (the one
prefixed with user) to login. Your account has been assigned to you, please read the blog for
details. Please remember to (i) change you password with yppasswd the first time you login,
(ii) disable Firefox cache, and (iii) save and backup your files often.

There is NO need to ssh into SunFire to do this exercise.
If you are using MS Windows from home and would like to use SunFire for this exercise, it

is fine too, but you will not be able to test your program with valgrind.
Students have reported that they are able to complete the lab on Mac OS X and valgrind

works fine on Mac OS X.

Objective

In this exercise, you will program in C using pointers. You will get a chance to practice using
gdb. You will also learn about using make to automate the compilation process, using assert to
check for correctness of your program, and using valgrind to check for memory-related errors
in your code.

You will implement one of the most basic data structure, a queue, using a linked list, with five
functions, queue create, queue delete, queue enq, queue deq, and queue is empty. Queue
is a common data structure used in operating systems. We will use this structure when you
program a CPU scheduler later this semester. A quick review of linked list and queue from
CS1102 or CS1020 (or the equivalent course from polytechnic) might be useful for some of you.

Skeleton Code

A skeleton code has been given to you. You can download the skeleton code with the command:

wget http://www.comp.nus.edu.sg/~ooiwt/cs2106/1112s1/lab02.tar.gz

To unzip the file, run1.

tar -zxvf lab02.tar.gz

You should see a directory called lab02. Under the directory lab02, you will see four files:

• Makefile: a file that contains compilation instruction.

• queue.h: a header file that declares the structure of queue and functions that operate on
queue.

• queue.c: a partial and incorrect implementation of the queue data structure.

• queue test.c: a test program that illustrates how the queue data structure is used as
well as tests the correctness of the implementation.

1man gzip and man tar to find out what these options mean if you are interested



Compiling and Running

To compile, type

make

in your shell. The given skeleton code should compile, producing the executable file queue test.
Type

./queue_test

to run the test program. You should received a segmentation fault error due to bugs in
queue enq.

Makefile

Makefile is a text file that contains compilation instructions with information about dependen-
cies among the files. It is the default input to the make command. The nice thing about make

is that, it checks for dependencies for you and only modified files are re-compiled. For instance,
if you change queue test.c, then queue.c is not re-compiled when you run make. Interested
students can google and learn how to write your own Makefile yourself as we will not cover this
in CS2106.

Test Program: queue test.c

A good place to start for this exercise is to look at the file queue test.c. This shows how the
different APIs for queue will be used.

You may modify this file as much as you like to test your queue implementation. The given
file provides a good place to start.

assert

There are many calls to the assert macro in queue test.c assert aborts the execution if the
given statement is false, and is extremely handy in checking for invariants in a program.

Queue implementation: queue.c and queue.h

The next files you should read are queue.h, to understand the structure of a queue, and queue.c,
to understand the functions queue create and queue is empty.

You must NOT modify the structure and function declarations in anyway (e.g., add new
parameters, change return type).

Your Task

In queue.c, a buggy queue enq has been given to you. This function will cause a segmentation
fault when you run queue test. You should identify the bug and fix it. The gdb debugger
might be helpful to you here.

An empty queue deq and queue delete has been given to you. You should complete these
two functions according to the specification given in the code. Besides ensuring correct im-
plementation of the two functions, you should use free to deallocate any allocated memory
properly.

Page 2



Using valgrind

valgrind is a tool that is useful to track down memory errors (invalid memory access, memory
leaks etc.). To complete this exercise, not only should your solution pass all test defined in
queue test.c, it should run in valgrind without any memory leaks or other memory errors.
To run your executable in valgrind, type:

valgrind --tool=memcheck --leak-check=yes ./queue_test

The following site would be useful to learn more about valgrind:

http://www.cprogramming.com/debugging/valgrind.html

Tips

• Use gdb to help you debug. The commands you learnt from Lab 1 will be useful.

• Have a clear idea about what each variable is (Is it an int? A pointer to int?) and what
you want your program to do (e.g., what values to put into which box? what is the address
of the box? etc.) before you code . Walk through the steps in your mind or on paper
before you code. Do not use trial and error. If you find yourself doing trial and error
(Mmm.. x = y does not work, let me try *x = &y) then you should step away from the
keyboard and spend sometime thinking and reading.

THE END

Page 3


