National University of Singapore
School of Computing

CS2106 Laboratory 4 Semester 1 11/12

Deadline
16 September, 2011, Friday, 11:59pm.

Platform

This exercise should be done on a Linux machines in the OS Lab.

If you want to use your own Linux machines to work on the assignment, make sure you have
the GNU Readline library installed.

If you want to use sunfire to work on the assignment, make sure to test it on a Linux machine
in the OS Lab before submission (the OS and system calls have slightly different behaviour).
Further, to compile on sunfire, you need to use a different Makefile (Makefile.sunfire). Re-
name Makefile.sunfire to Makefile then run make as usual.

Submission

Your working directory should be named 1ab04-A000000X where AOO0000X is your matriculation
number. Create a tar ball named 1ab04-A000000X.tar containing your version of the source
code by:

tar cvf 1ab04-A000000X.tar 1ab04-A000000X/*
and submit the tar file into the IVLE workbin named Lab 4.
Tips

man and Google are your best friends. Use them effectively to learn about the functions and
system calls used in this lab exercise.
Start early!

Marks

This exercise is worth 10 marks.
Marks are deducted for the following;:

e 3 marks for not naming your file properly.

e 0.1 marks for every minute late after deadline.



After this lab exercise, you should be more familiar with how to use signals and and the
process management system calls fork(), waitpid(), and execve() in a program.

Your task in this lab exercise is to implement your own simple little shell called bush.

The shell prints a prompt for user to enter the name of a command and its arguments. Upon
receiving the command, the shell looks for the command at the system’s standard location (/bin
and /usr/bin) and executes the command with the given arguments.

If the last argument is the ”&” character, the command is executed in the background, i.e.,
the shell returns to the prompt immediately without waiting for the command to complete.
Otherwise, the shell waits until the command has finished execution before it returns to the
prompt and waits for the next command. In the latter case, we say that the command is
executed in the foreground. Note that there must be a white space before &.

User may enter a special command exit or the EOF character (Control-D) at the prompt,
upon which the shell exits normally.

A code skeleton has been given to you. You may download it from the URL http://
www.comp.nus.edu.sg/~cs2106/1ab04-A000000X.tar. Untar the downloaded file using the
command:

tar xvf 1ab04-A000000X.tar

A subdirectory 1ab04-A000000X is now created. As usual, rename the directory by replacing
the string 7 A000000X” with your matriculation number.

Inside the directory are a Makefile and a skeleton code, bush.c. You can compile the code
using the Makefile provided.

Skeleton Code

Read bush. c and understand the code provided. Note that the code uses the following functions:
readline(). bush. c uses the GNU readline library to simplify reading of commands and ar-
guments from the prompt. To use readline, we have included the header file readline/readline.h
and linked with the library 1ibreadline during compilation.
string functions. We use two string functions in bush.c. stremp() compares two strings
to see if they are equal, while strtok() tokenizes a string into substrings.

Your Tasks

Your tasks in this exercise are:
(a) (2 points) Create a child process to execute the command with the given arguments. You
should use execvp for this purpose. If execvp encounters an error (for instance, if a
command cannot be found), you should use the perror function to print out a message.

(b) (2 points) If the command is to be executed in the foreground (the variable run_in bg is
false), wait for the command to finish execution before return to the prompt and prompt
the user for the next command. Otherwise, return to the prompt immediately.

(c) (3 points) Make sure that the child process’s entry in the process table is removed after the
child process exits. Details on how to do this will be explained in the section “Preventing
Zombies”

(d) (3 points) Make sure that when bush exits normally, all child processes are killed. Details
on how to do this will be explained in the section “No Child Left Behind”.

Page 2


http://www.comp.nus.edu.sg/~cs2106/lab04-A000000X.tar
http://www.comp.nus.edu.sg/~cs2106/lab04-A000000X.tar

Preventing Zombies

To prevent child processes running in the background from turning into zombies, the the parent
process needs to call waitpid asynchronously after the child process has exited. Such asyn-
chronous execution can be accomplished with signals — the child sends the signal SIGCHLD to
the parent process when the child exits. The parent process can catch the SIGCHLD signal and
clean up by calling waitpid after the child process has exited.

There is one more complication. What if there are multiple child processes running in
the background, and not all have exited? The exit of one child causes the signal handler to
call waitpid, which causes the parent to block waiting for other child processes to finish. To
prevent the parent from blocking when multiple child processes are running, the parent should
call waitpid with WNOHANG as its third argument. the WNOHANG flag causes the caller to continue
without blocking. In other words, calling waitpid cleans up the process table for any child
process that has exited, but will not wait for child processes that are still running.

In summary, you should write and install a signal handler for SIGCHLD that calls waitpid
with WNOHANG as an option to prevent the background child processes from becoming zombies.

No Child Left Behind

A perculiar behaviour for bush is its “no child left behind” policy. When the shell exits normally,
its child processes running in the background have to terminate too.

A simple way to achieve this is to send the signal SIGHUP, which is a signal used to indicate
the termination of the controlling process, to the process group lead by bush.

There is one more minor detail we need to take care of. If the parent process sends a
SIGHUP signal to the process group, it will receive the signal too, causing it to terminate itself!
To prevent such suicidal result, the parent process should ignore the SIGHUP signal by calling
signal. Beware that signal needs to be called at the right moment to allow the parent process
to response to normal SIGHUP signal.

Missing Features

bush is a little brother of bash — many functionalities are not available. Notably, there are no
builtin commands except for exit. Commands such as cd, pwd etc. does not work. There is
no redirection nor pipe. You cannot run bush recursively (i.e., execute bush within bush).
Certain commands that deal with managing terminals would not work correctly (e.g., vim &
may not work). You may also see garbled screens when you run a command in the background
1s -1 & due to race conditions.

THE END

Page 3



