
Matriculation Number: CS2106

NATIONAL UNIVERSITY OF SINGAPORE

SCHOOL OF COMPUTING
MIDTERM EXAMINATION FOR

Semester 1 AY2011/2012

CS2106 Introduction to Operating Systems

October 2011 Time Allowed 1.5 hours

The tutorial group I regularly attend is: (please circle one)

1. Mon 0900

2. Mon 1000

3. Mon 1100

4. Mon 1400

5. Mon 1500

6. Mon 1600

7. Thu 1000

8. Thu 1100

INSTRUCTIONS TO CANDIDATES

1. This exam paper contains 13 questions and comprises 10 printed pages, including this page.

2. The total marks for this examination is 80. Answer ALL questions.

3. Write ALL your answers in the box provided. Please indicate clearly (with an arrow) if you
use any space outside the box for your answer.

4. Write succintly and clearly. If you make any additional assumption, please state your as-
sumption clearly.

5. This is an CLOSE BOOK examination, but you are allowed to bring in one sheet of
double-sided A4 size paper with notes.

6. Write your matriculation number in the boxes above and on the top-left corner of every page.

EXAMINER’S USE ONLY

Q1-10 40

Q11 10

Q12 15

Q13 15

TOTAL 80

Matriculation Number: CS2106

Part I

Multiple Choice Questions (40 points)

For each of the question below, select the most appropriate answer and write your answer in the
answer box. Each question is worth 4 points.

It is possible that none of the answers provided are appropriate. If you believe that NONE of the
answers are appropriate, put an X in the answer box.

It is also possible that multiple answers are equally appropriate. In this case, pick ONE and write
the chosen answer in the answer box. Do NOT write more than one answers in the answer box.

1. One decision that OS designers need to make is whether to implement a particular OS compo-
nent inside the user space or inside the kernel space. Which of the following is NOT a factor
to consider when making this decision?

A. The frequency of interaction between the component and the user applications

B. The frequency of interaction between the component and the rest of the kernel

C. The potential damage that a bug in the component can cause

D. The ease of use of the interface provided by the component

Answer:

Solution: D. Ease of use is a software engineering issue, and is orthogonal to which mode
to implement to component in.

2. Consider the following program.

int main()

{

int x = 1;

fork();

x = x + 1;

fork();

printf("%d ", x);

}

What will be printed by the program above when it is executed?

A. 2 2 2 2

B. 1 2 3 4

C. 2

D. 4

Page 2

Matriculation Number: CS2106

Answer:

Solution: A. We have four processes in total. Since x is copied everytime a child process
is created, we have the same value of x (which is 2) for all copies.

3. Which of the following statement is FALSE?

A. A process can create another process with fork()

B. A process can terminate another process with kill()

C. A process can block another process with wait()

D. A process can terminate itself with exit()

Answer:

Solution: C. A process blocks itself (waiting for child process to complete) with wait().

4. Consider two processes P and C in a Linux-based operating system, where P is the parent of
C.

Which of the following statement is FALSE?

A. If C calls exit() before P calls wait(), C becomes a zombie process.

B. If P calls exit() before C calls exit(), C becomes an orphan process.

C. If C calls exec(), P is no longer the parent process of C.

D. If C calls exit(), a SIGTERM signal is sent to P .

Answer:

Solution: C. Parent-child relationship remains after calling exec().

D. When C exits, it sends SIGCHLD to P , not SIGTERM.

5. You are implementing an application that needs to spawn off a number of tasks. You need to
make a decision to implement these tasks either as processes or as threads.

Which of the following statement is NOT a good guideline to making the decision?

A. If you have a large number of tasks, then using multiple threads is more efficient.

B. If the tasks share much common code, then using multiple threads is more efficient.

C. If the tasks involves executing potentially buggy code, then using multiple processes
is more robust.

D. If much communication is needed among the tasks, then using multiple processes is
more efficient.

Page 3

Matriculation Number: CS2106

Answer:

Solution: D. Using threads would make communications among tasks more efficient.

6. Consider the following different possible pseudocode taken from two processes, where A, B are
blocks of code, and S is a semaphore initialized to 0.

Which of the following sequence ensures that A always runs BEFORE B?

A. Process 1: Process 2:

A; up(S);

down(S); B;

B. Process 1: Process 2:

A; down(S);

up(S); B;

C. Process 1: Process 2:

down(S) down(S)

A; B;

up(S); up(S);

D. Process 1: Process 2:

up(S) down(S)

A; B;

Answer:

Solution: B. down(S) in Process 2 blocks the execution of B until A s executed and and
the semaphore S is up()-ed.

7. The following pseudocode shows a solution to the Dining Philosopher problem with N philoso-
phers, using an array of N semaphores (each initialized to 1) to represent N chopsticks (for
N > 2).

while (1)

think; // think

down(chopstick[i]); // pick up left chopstick

down(chopstick[i+1 \% N]); // pick up right chopstick

eat; // eat

up(chopstick[i]); // put down left chopstick

up(chopstick[i+1 \% N]); // put down right chopstick

Which of the following statements is TRUE?

A. The solution is deadlock-free.

B. The solution is starvation-free.

Page 4

Matriculation Number: CS2106

C. The solution ensures fairness among philosophers.

D. The solution ensures that no two philosophers eat at the same time.

Answer:

Solution: C. The solution does not biased against any philosopher.

8. Two computer systems, A and B, use the same round-robin scheduler and are exactly identical
(including the scheduler parameter and the set of processes running on the systems), except
that A has a faster I/O subsystem.

Which of the following statement is FALSE?

A. CPU utilization on A will be higher than B.

B. Throughput of A will be higher than B.

C. Average turnaround time of processes in A will be higher than B.

D. Average time a process spend waiting in queue will be lower in A than B.

Answer:

Solution: C. Processes run faster in A so turnaround time in A on average would be lower.

D. Since processes complete I/O faster, it joins the queue earlier, leading to longer queue
and so process spend more time waiting in queue in A then in B.

9. Which of the following statement is FALSE?

A. Round robin (RR) scheduler behaves like first-come first-serve (FCFS) scheduler for
infinitely large time quantum.

B. Multi-level feedback queue (MLFQ) scheduler behaves like round robin (RR) sched-
uler if there is only one priority level.

C. Shortest remaining time first (SRTF) scheduler behaves like shortest job first (SJF)
algorithm if the set of processes are fixed (no new process is created) and the processes
are completely CPU bound.

D. Multi-level feedback queue (MLFQ) scheduler behaves like round robin (RR) sched-
uler if the set of processes are fixed (i.e., no new process is created) and the processes
are completely CPU bound.

Answer:

Solution: D. RR has fixed time quantum but time quantum for MLFQ increases with
priority level.

Page 5

Matriculation Number: CS2106

10. There are two files A and B in your Linux home directory with identical content. After you
updated the content of file A; you noticed that the content of file B is updated as well (with
the same content of A). You deleted file A, but file B is still accessible.

What is the relationship between A and B?

A. A is a copy of B, created with cp command.

B. A is renamed from B, created with mv command.

C. A is hard link of B, created with ln command.

D. A is soft link of B, created with ln -s command.

Answer:

Solution: C or D. Note that if D says ”B is a soft link of A” then it would not be a correct
answer since delete A would make B inaccessible.

Part II

Short Questions (40 points)

Answer all questions in the space provided. Be succinct and write neatly.

11. (10 points) To ensure mutual exclusion of a critical region between two processes, Process 0
and Process 1, the following implementation of enter() and leave() are called before entering
and leaving a critical region respectively. Before entering a critical region, Process 0 calls
enter(0, 1), while Process 1 calls enter(1, 0). When leaving the critical region, Process 0
calls leave(0), while Process 1 calls leave(1). Both interest[0] and interest[1] are set
to 0 initially.

void enter(int self, int other) {

turn = other;

interest[self] = 1;

while (interest[other] == 1 && turn == other);

}

void leave(int self) {

interest[self] = 0;

}

The difference between this implementation and the original Peterson’s Algorithm is that the
code sets the turn variable first, before setting the interest variable.

Does the implementation above properly ensures mutual exclusion, i.e., no two processes will
enter the critical region at the same time?

Either argue why the mutual exclusion property is ensured, or give an example sequence of
execution that leads to a violation of that property.

Page 6

Matriculation Number: CS2106

Solution: Mutual exclusion is violated. Consider the following sequence with two processes
A and B.

turn = B;

turn = A;

interest[B] = 1;

while (turn == A && interest[A] == 1);

// B enters (since interest[A] != 1 yet)

interest[A] = 1

while (turn == B && interest[B] == 1);

// A enters (since turn != B)

12. (15 points) You are asked to implement two threads that share a bounded buffer. The first
thread, the producer, repeatedly produces one item to be stored in the buffer (by calling
produce()). The second thread repeatedly consumes one item from the buffer (by calling
consume()).

You recall that this scenario is exactly the producer-consumer problem you learnt in CS2106.
You look up your notes, and found the following solution to the problem.

semaphore free_slots = N

semaphore used_slots = 0

semaphore access_buffer = 1

Producer: Consumer:

while (true) while (true)

down(free_slots) down(used_slots)

down(access_buffer) down(access_buffer)

produce() consume()

up(access_buffer) up(access_buffer)

up(used_slots) up(free_slots)

Happily, you proceed to implement the pseudocode above, but found that, alas, the platform
you are using does not support semaphore! You only have access to a thread library that
provides the following operations for mutexes and condition variables, with the same semantics
as the mutex and condition variable API provided by the POSIX thread library.

mutex m // declare and initialize a mutex (initially unlocked)

lock(m) // lock the mutex m

unlock(m) // unlock the mutex m

cond c // declare and initialize a condition variable c

wait(c, m) // wait on condition variable c, unlocking m if m is locked

// while waiting; relocking m upon woken up.

signal(c) // wakes up a thread waiting on condition variable c

Page 7

Matriculation Number: CS2106

Rewrite the pseudocode for the producer-consumer threads above with mutex and
condition variables, using only the operations provided above. You need not worry
about creating and joining the threads. You may assume operations to check whether the buffer
is full or is empty is available.

Solution:

mutex m;

cond c, p

Producer: Consumer:

while (true) while (true)

lock(m) lock(m)

if (buffer is full) if (buffer is empty)

wait(p, m) wait(c, m)

produce() consume()

signal(c) signal(p)

unlock(m) unlock(m)

13. (15 points) (a) (2 points) Give an argument that favours the use of a large time quantum in
a pre-emptive scheduler.

Solution: fewer context switches

(b) (2 points) Give an argument that favours the use of a small time quantum in a pre-emptive
scheduler.

Solution: smaller response time

(c) (2 points) Explains how MLFQ attempts to achieve low turnaround time by approximat-
ing shortest job first algorithm.

Solution: When new job arrives, MLFQ treat it as a short job and give it the highest
priority. If the job turns out to be a long job, it will get preempted and its priority
will become lower. If the job turns out to be short, it will complete quickly before its
priority become very low. Thus, short jobs are prioritized over long jobs.

Page 8

Matriculation Number: CS2106

An operating system uses multi-level feedback queue (MLFQ) with two priority levels, high
and low, to schedule processes. Let’s call the algorithm the two-level feedback queue algorithm,
or 2LFQ for short.

2LFQ maintains two round-robin queues, one for each priority, and assigns the same time
quantum T to every process, regardless of the priority level. 2LFQ works as follows. A new
process enters the high priority queue. When a process at the high priority queue uses up its
time quantum, it is preempted and joins the low priority queue. When a process at the low
priority queue blocks for I/O, it joins the high priority queue. Otherwise, the process stays at
the same priority level.

2LFQ always run the process at the head of the queue at the high priority queue, unless the
queue is empty. In which case, the head of the queue at the low priority queue is chosen to run.

(d) (3 points) Suppose we use a smaller T for all processes in 2LFQ, would this result in less
or more processes (compare to a larger T) in the high priority queue?

Justify your answer.

Solution: Less. Lower T leads to more preemption, thus more movement from high
priority queue to low priority queue; but movement from low priority queue to high
priority queue remains the same (number of times processes block for I/O remains
constant).

(e) (3 points) MLFQ aims to give interactive processes higher priority than batch (non-
interactive) processes. Does 2LFQ achieve this objective?

Justify your answer. You may want to discuss your answer in relation to T .

Solution: Not if T is too small. Interactie processes would be frequently preempted
before they block for I/O and become low priority. T has to be large enough (larger
than CPU bursts of interactive processes) so that interactive processes block for I/O
most of the time and remain high priority.

(f) (3 points) Is 2LFQ a good approximation to the shortest job first algorithm? Justify your
answer.

Solution: No. We only have two levels of priority so any new processes that could
not finish its CPU burst within T will join the low priority queue. There is no further
distinction between short and long jobs at the low priority queue.

END OF PAPER

UNIX is basically a simple operating system, but you have to be a genius to understand the simplicity.
— Dennis Ritchie (1941–2011)

Page 9

