
CS2106

National University of Singapore
School of Computing

Tutorial 3 Semester 1 11/12

This tutorial contains a ? question. The ? questions (i) are challenging, (ii) are beyond
the scope of CS2106, and (iii) will be not discussed during tutorial. Interested students may
however email the solutions to the lecturer. Students who solve three ? questions correctly will
earn a coffee and enter CS2106 Hall of Fame.

1. To ensure mutual exclusion of a critical region between two processes, Process 0 and Pro-
cess 1, the following implementation of enter() and leave() are called before entering
and leaving a critical region respectively. Before entering a critical region, Process 0 calls
enter(0, 1), while Process 1 calls enter(1, 0). When leaving the critical region, Process
0 calls leave(0), while Process 1 calls leave(1). Both interest[0] and interest[1] are
set to 0 initially.

void enter(int process, int other)

{

interest[process] = 1;

while (interest[other] == 1);

}

void leave(int process)

{

interest[process] = 0;

}

(a) Does the implementation above properly ensures mutual exclusion, i.e., no two process
can enter the critical region simultaneously?

(b) Does the implementation above properly ensures progress, i.e., both processes will not
enter the loop and wait forever?

2. Argue how Peterson’s algorithm ensures the following:

(a) mutual exclusion, i.e., no two processes can enter the critical region simultaneously.

(b) progress, i.e., both processes will not enter the loop and wait forever.

(c) bounded waiting, i.e., no one process will dominate the entrance into critical region
(and the other process waits forever).

3. On a machine that does not support the TSL instruction, the following C equivalent of
test-and-set has been implemented:

int test_and_set(int *lock)

{

if (*lock) {

return 1;

} else {

*lock = 1;

return 0;

}

}

To use it in enter() and leave() functions:

void enter() {

while (test_and_set(&lock));

}



void leave() {

lock = 0;

}

(a) Since the above software implementation of test and set is not atomic, the imple-
mentation of enter() and leave() does not ensure mutual exclusion. Explain why.

(b) Suggest steps that the operating system can do before and after calling test and set

to make this implementation atomic.

4. (?) Extend Peterson’s algorithm for mutual exclusion to 3 processes. Proof that your
solution correctly ensures mutual exclusion, progress, and bounded waiting.

Page 2


