
CS2106

National University of Singapore
School of Computing

Tutorial 4 Semester 1 11/12

This tutorial contains a ? question. The ? questions (i) are challenging, (ii) are beyond
the scope of CS2106, and (iii) will be not discussed during tutorial. Interested students may
however email the solutions to the lecturer. Students who solve three ? questions correctly will
earn a coffee and enter CS2106 Hall of Fame.

1. This question concerns the solution to the dining philosophers problem from the textbook
(Figure 2-46).

Does this solution ensure that no philosopher will starve? If yes, argue why it is so. Oth-
erwise, provide a sequence of executation that will starve a philosopher.

2. Figure 2-45 shows an incorrect solution to the dining philosophers problem that leads to
deadlock. In this solution, all philosophers are left-handed – they try to pick up the left
fork first when they want to eat.

Suppose there is one philosopher at the table that is right-handed and always try to pick
up the right fork first (i.e., swap the order of take fork(i) and take fork((i+1)%N)).

Will deadlock still occur? Explain.

3. The Dining Savages problem (Adapted from CS2106 Final 2009/10 Semester 2)

A tribe has N savages and a cook. The savages eat communcal dinner from a large pot
that can hold M servings of stewed meat. When a savage wants to eat, he helps himself
from the pot with a single serving, unless it is empty. If the pot is empty, the savage wakes
up the cook and then waits until the cook has refilled the pot. When woken up, the cook
refills the pot with M servings of stewed meat, and goes back to sleep. The behavior of
these characters repeats infinitely.

Sketch the pseudocode for the savages and the cook. Use semaphores to synchronize be-
tween the actions of the savages and the cook. Note that the only allowed operations on
semaphores are initialization (the ”=” operator) and the operations up() and down().

4. (?) Section 2.3.9 of the textbook describes an abstraction called barrier. A barrier is as-
sociated with a set of N processes. The barrier is locked and it does not let any process
through until all N processes are at the barrier. In other words, a process will be blocked
at the barrier, until all N processes are blocked. When all N processes are blocked, the
barrier will unlock and all N processes can continue execution.

A repeatable barrier is a barrier that will lock itself after all the processes pass through the
barrier. Thus, a repeatable barrier can be used in a loop.

Implement a repeatable barrier using semaphores.


