
CS3283/4
Media Tech Projects

Lecture 1
Overview

14 Jan 2017

About MTP

• Software engineering project with a
media focus

• Team of 4-5 students

• Apply CS2103 to build a cool large-
scale software

At the end of the project, you should be
able to

• apply rigorous and principled software
development methodologies and
techniques to develop user-friendly,
robust, secure, and efficient
software systems

• demonstrate strong communication
and teamwork skills

• apply CS principles to analyse and
formulate a problem, and to design +
implement + evaluate the solution to
the problem.

Workload

• 8 MCs = 20 hours per week per
person

• Produce 100 hours of work per week

Schedule

• Week 2 - 4: Analysis and Design

• Week 5 - 9: Implementation and
Testing

• Week 10 - 13: Evaluation and Report

Assessment
CA Week Individual Team

CA1 1 - 4 0% 20%

CA2 5 - 9 40% 0%

CA3 10 - 13 20% 20%

Overall 60% 40%

Assessment
• Quality and amount of work done

• For individual: weekly work log and code
commits

• For team: requirement and design
documents, final report, presentation,
videos, etc.

• Peer reviews

Contact Time

• Weekly lecture (1st half)

• Team meeting (twice a week)

• Project session (10 hours a week)

Website

• https://nus-mtp.github.io/1617

• Follow the repo https://github.com/
nus-mtp/1617 for changes

https://nus-mtp.github.io/1617
https://github.com/nus-mtp/1617

GitHub Repo
• Wiki for documentation / work log

• Projects for task management

• Issues for bug tracking

• Pull request for code review

• Code commit history for assessment

GitHub Repo
• Wiki for documentation / work log

• Projects for task management

• Issues for bug tracking

• Pull request for code review

• Code commit history for assessment

Schedule

• Week 2 - 4: Analysis and Design

• Week 5 - 9: Implementation and
Testing

• Week 10 - 13: Evaluation and Report

Development Process

Software as a Service

• Continuous deployment

• Continuous integration

• Test-driven development

• Multiple sprints

Software Requirement
• What your software will do (not how)

• Finish a draft by end of your 2nd
session next week

• Continue to iterate through the rest of
the semester

• Week 4 version will be graded

Software Requirement
• Talk to your users / client

• Do a survey

• Study similar software

• Come up with functional / non-functional
requirements

• Document them

Design / Architecture
• How to meet the requirements

• First draft by end of second session in
Week 3

• Continue to iterate through the rest of
the semester

• Week 4 version will be graded

Design / Architecture
• What framework/language/algorithm/

etc to use

• Database schemas

• Software components and their
interaction

• UI design

Project Planning
• Organized into (at least) 5 weekly

sprints

• Prioritize the features

• Estimate the time needed

• No plan is perfect: adjust as you go

Coding
• Write code

• Test code

• Review code

• Deploy

• Repeat

Tools

• Github for code review

• Linting tools for static analysis

• Travis for continuous integration

• Heroku for continuous deployment

Evaluation
• Robust: integration testing, load

testing, etc

• Secure: penetration testing, etc

• Efficient: profiling and optimization

• User-friendly: Nielsen’s heuristic,
think-aloud protocol, etc.

Deliverables
• GitHub webpage

• Explainer video

• Developer’s guide

• STePS poster and presentation

• Oral examination and demonstration

Software
Requirements

Functional
vs.

Non-functional

1.
Define the goals

of the project

2.
Communicate among team

members and with customers

3.
Leads to test cases and

evaluation criteria

4.
Helps to plan project and

schedule tasks

5.
Reduce bugs

7
Better software design

8.
Serves as contract

Properties of Good
Software Requirements

1.
Correct

2.
Valuable

3.
Easy to Read

4.
Design Free

5.
Attainable

6.
Complete

7.
Consistent

8.
Unambiguous

9.
Verifiable

10.
Atomic

Use Case
vs.

User Stories

Use Case
• System: X
• Actor: Manager
• Precondition: Manager has logged in
• Gurantees: Module is added to student registration record
• MSS:

• 1. Manager enters student number
• 2. Manager enters the module code
• 3. Manager clicks add
• 4. System reports that module is added to student’s record

• Extensions:
• 4.1 Systems reports that module is full

• 4.1.1 Manager clicks OK
• 4.2. Systems reports that student does not have one of the prerequisite.

• 4.2.1 Manager clicks “overwrite” to add the module to student’s record anyway

User Stories

• As a manager, I want to register a
module to a student so that the module
appears in the student’s record if the
module is not full and student meets the
prerequisite of the module (but the
prerequisite can be overridden)

Next Week
• Decide the functional and non-

functional requirements

• Write it down in GitHub

Tips
• Use the members’ time effectively

• Use the meeting time effectively
(remember the 10-10 split in workload)

