
Lecture 11
Networked Game Traffic and

Transport Protocol

Assignment 1

isolate traffic
payload size
histogram

activity pattern
periodic pattern

MOBA
RTS
FPS
RPG

UDP

bandwidth
in: 40 - 160 kbps
out: 15 - 40 kbps

payload size
in: 100 - 450 bytes
out: 50 - 150 bytes

packet rate
25 - 30 packets/seconds

gap in between: 30-40ms

TCP

lower bandwidth
in: 4.8 kbps
out: 6 kbps

an order of magnitude
smaller than MOBA!

payload size
< 25 bytes

an order of magnitude
smaller than MOBA!

packet rate
~10 packets/seconds

UDP

bandwidth
in: 20 - 100 kbps
out: 8 - 100 kbps

comparable to MOBA,
with higher outgoing throughput

slightly larger payload size
in: 50 - 300 bytes

out: 30 - 100 bytes

smaller packet rate
in: 20 - 120 packets/seconds

out: 10 - 90 packets / seconds

I expected this to be smaller

RPG

TCP

much lower bandwidth
in: 5 - 16 kbps
out: 1 - 8 kbps

larger payload size
in: 100 - 300 bytes
out: 20 - 160 bytes

smaller packet rate
in: 1 - 15 packets/seconds

out: 1 - 15 packets / seconds

1.6 packet / second 2 packet / second

What you found:

RPG have smaller packets and
smaller update rate.

what about periodicity?

For many games, server
updates are periodic.
(50 - 200ms interval)

Summary

low bandwidth
small packets
low frequency

predictable

Both
UDP and TCP

are used

TCP or UDP ?

Why use TCP?

• TCP provides reliable, in-order delivery

• TCP goes through most firewalls, UDP does
not

• TCP manages connection for us

Why not to use TCP?

• TCP incurs higher latency

• Don’t always need reliability and in-order
delivery

• High header overhead

position = 10
position = 13
position = 15

X

Updated position not delivered to application
until (outdated) lost packet

is received

A’s position = 10
B’s position = 13
C’s position = 15

X

Some messages need not be delivered in
sequence.

Gestures from someone far away need
not be received reliably.

TCP header is >= 20 bytes
high overhead for

small packets
(46% in Shenzhou Online)

https:// /lsalzman/enet

Example of a library that provides
reliability, sequencing, connection

managements over UDP

Delivery can be
stream-oriented (like TCP) or
message-oriented (like UDP)

Supports partial reliability

enet_packet_create (“abc”,
4, ENET_PACKET_FLAG_RELIABLE)

Retransmission triggered by
timeout-based on RTT

Data in queue are bundled into
one packet if there is space

enet

Portable, easy to use, but
still, most firewalls block

UDP traffic

Need to study the use of
TCP for networked

games

Lessons are still useful to
build enet-like UDP

library

How slow is TCP, really?

Which part of TCP is the root
of slowness?

Can we fix TCP?

A Quick Review of TCP

s=100
s=200
s=300
s=400 a=300

a=500

TCP Delayed ACK

TCP Spec: max 500ms delay
Most implementation: 200ms

X

s=100
s=200
s=300
s=400
s=500

s=200

a=200

a=200
a=200
a=200

3 dup ACKs within RTO - RTT: TCP Fast Retransmission

Definition of Dup ACKs in
4.4BSD and Stevens:
“pure ACK with no data”

TCP Timeout + Exponential Back-off

X

X

RTO

2xRTO

Spurious Retransmission

RTO

RTO estimation

Ei = 7Ei-1/8 + RTT/8
Vi = 3Vi-1/4 + |RTT-Ei-1|/4
RTO = max(Ei + 4Vi, 1s)

Linux’s RTO estimation

Ei = 7Ei-1/8 + RTT/8
Vi = 3Vi-1/4 + |RTT-Ei-1|/4
Wi = min(Vi, 50ms)
RTO = max(200ms, Ei+Wi)

delayed ACK

increase RTT

increase RTO

Congestion Control

Window Size

Time

Packet Loss

TCP Congestion Control

Congestion window
resets to 2 after an idle

period (> RTO)

What does real game
traffic look like?

low packet rate
small packet size

“Thin Streams”

Max Application Delay

Max RTT

Avg RTT
250ms

About 4 packets / sec

Average Payload:
100 Bytes

Loss Rate 1%

But some experience 6
retransmissions

Shen Zhou Online
http://tjgame.enorth.com.cn/images/200307/0903-1.jpg

http://www.marquette.edu/polisci/Syllabi/182McCormick/gaming/counter-strike%20game%20view.jpg

Findings 1:
Fast retransmission

rarely triggered

In ShenZhou Online traces, fail to
trigger fast retransmission

because
insufficient dup ACK (50%)
interrupted by data (50%)

Findings 2:
Delay due mostly to

timeout

Findings 3:
Congestion window

reset is frequent

12% - 18% of packets
faces window reset

think..
think..
think..
click (tank attack here)
click (missile launch there)
click (charge soldiers)

The last command is delayed as congestion
window = 2

How to make TCP (or,
transport protocol) go
faster in these games?

1. Remove exponential
backoff

TCP Timeout

X

X

TO

TO

2. Make RTO Smaller

make sure minimum
RTO is not 1s

spurious retransmission
is not disastrous

3. Make Fast Retransmit
Faster

X

s=100
s=200
s=300
s=400
s=500

s=200

a=200

a=200
a=200
a=200

Retransmit after one duplicate ACK

4. Retransmission
Bundling

X

Retransmit all unacknowledged data in queue

5. Redundant Data
Bundling

a=300

a=500

Send any unacknowledged segment in queue
as long as there is space. Lost data gets

recovered in the next transmission before
retransmission.

X

6. Turn off or reduce
Delayed ACKs

Packet interarrival time
on average > 200ms (can’t
combine two ACKs into one anyway)

7. Combine Thin
Streams into Thicker

Stream

Server

Proxy

TCP for Games

• remove exponential backoff

• reduce RTO

• make fast retransmit faster

• retransmit aggressively

• don’t delay ACK

• combine into thick streams

With Linux kernel,
TCP_THIN_LINEAR_TIMEOUTS

TCP_THIN_DUPACK

