Lecture 3

Prediction and Compensation

Let’s focus on inconsistency on players’ position.

O~ 0O O
O
move east at Tm/s
A
“you should be here”
server

block

calculating the correct position gets tricky in twitch games

O~ 2
O

move east at Tm/s

A >

“you should be here at time t”

o

server >
block

Unreal Tournament’s
lock-step predictor/
corrector algorithm for
player’s movement

Player re-executes its move to find updated position.

R
Q A > O

move east at Tm/s

server >
block

How to fix position error:
Convergence

naive approach: player updates its position
immediately -- teleporting to the correct position,
causing visual disruption.

(zero order convergence)

naive approach: player updates its position
immediately -- teleporting to the correct position,
causing visual disruption.

(zero order convergence)

Convergence allows player to move to the correct
position smoothly. First pick a convergence period t, and
compute the correct position after time t.

Correct position t seconds later.

-~
‘_// \
1 1
S’

Convergence allows player to move to the correct
position smoothly. First pick a convergence period t, and
compute the correct position after time t.

Move to that position in a straight line.

(linear convergence)

Curve fitting techniques can be used
for smoother curves.

Visual disruption can still occur with convergence.

server

move east at Tm/s

*

“
*
’0
*

block

Based on:
A’s state?
B's state?
server’s state?
at the time when:
B sends the message?
server receives the message?

Easy to decide at B, but can't
trust B. Have to decide at server.
(permissible server architecture)

Finding B’s state is harder.

Finding when B sends the
message Is easier.

ldea:
Lag Compensation
or
Time Warp

Based on server’s state at the
time when B sends the message

1. estimatet=RTT/2

2. rewind server’s stateto t
seconds ago

3. resolve hit/miss

4. play forward to now

server

move east at Tm/s

*

“
*
’0
*

block

Half-Life® 2: Episode One

Half-Life 2: Episode One The first in a trilogy of episodic games, Episode One reveals the aftermath of Half-Life 2 and
launches a yjoumney beyond City 17. Episode One does not require Half-Life 2 to play and also includes a first look at
Episode Two.

GET HALF-LIFE 2: EPISODE ONE NOW! «°

Half-Life® 2

Half-Life 2 defines a new benchmark in gaming with startling realism and responsiveness. Powered by Source™ technology,
Half-Life 2 features the most sophisticated in-game characters ever witnessed, advanced Al, stunning graphics and physical
gameplay.

(o)

Counter-Strike™: Source™

Counter-Strike: Source blends Counter-Strike's award-winning teamplay action with the advanced technology of Source™
technology. Featuring state of the art graphics, all new sounds, and introducing physics, Counter-Strike: Source is a must-have
for every action gamer.

Half-Life: Source

Winner of over 50 Game of the Year awards, Half-Life set new standards for action games when it was released in 1998.
Half-Life: Source is a digitally remastered version of the critically acclaimed and best selling PC game, enhanced via Source
technology to include physics simulation, enhanced effects, and more.

Source Multuplayer Game Engine

RTT/2 seconds after B shoots

What B sees now ~_red: What B saw RTT/2 seconds ago

blue: What server thinks B saw RTT/2 seconds ago

http://developer.valvesoftware.com/wiki/Source_Multiplayer Networking

http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking

events server events
| —~ l
Collect] N Simulate o (Collect
Events J Games L Events
4 \ l states 4 ™
Wait Wait
\ Y, - J
Update Update
State State
Game Game pend
Render States States SIS
{ Wait J [Wait J

Players send move command. Server replies
with new positions periodically.

Player A _— _

27

Server __ .

AN\

PlayerB — —

Issues:

1. Message overhead
2. Delay jitter

Delay jitter causes player’s movement to appear
erratic.

remote

local

Demo:
2 Player Pong

events server events
| —~ l
Collect] N Simulate . (Collect
Events J Games L Events
4 \ l states 4 ™
Simulate Simulate
Games Games
\ Y, - J
Update Update
State State
Game Game pand
Render States States SIS
{ Wait J [Wait J

Suppose the velocity remains constant, then we
can predict every position at all time.

predicted position

remote

(é local

> time

position of entity at time t

velocity of the entity

tic1|+vXx(t; —t;_1)

We send over the initial position x[t], t, and
velocity. (Why do we need to send t?)

predicted position

W remote

/

z|t|, t, v
(é local

> time

But velocity may change (e.g. a car accelerating).
To counter this, we send position, velocity, and
acceleration as update.

e

x|t position of entity at time't

p Vvelocity of the entity

a acceleration of the entity

r(t;] = x|t;—1| +v(t; —t;—1) ;Cb(ti —t;1)°

local states are updated continuously at player

A s

move east at Tm/s ok!

We will still need substantial number of updates
if the direction changes frequently (e.g. in a FPS
game).

B
remote

? 070
éo CZOJ local

> time

events server events
| —~ l
Collect] N Simulate . (Collect
Events J Games L Events
4 \ l states 4 ™
Simulate Simulate
Games Games
\ Y, - J
Update Update
State State
Game Game pand
Render States States SIS
{ Wait J [Wait J

|dea:
Dead Reckoning

Trade off message overhead
with position accuracy --
(no update if error is small)

remote

/ error threshold

local

remote

/ local

remote

local

(O predicted position

(O local version of the predicted position

~
~
- ~
—————— ~
M ~
\ ~
. ~
~ . ~
Seao__-" R
~
~
~
~
~
~
~
\ Oca
P
. RN
4 ~
’ N
.
------ e S
~
-
.

> time

local and predicted position are now too far apart.
Update remote host with the new velocity and
position.

remote

local

> time

The remote host converges the entity
to the correct position smoothly.

-~ P
’ A ’
\ ! \
remote

> time

For the local to know the predicted
position, it needs to simulate the
remote view of the entity location.

Space inconsistency: due to error threshold and
convergence

Time inconsistency: due to message delay and
clock asynchrony

remote

local

> time

What is the difference between the
actual and predicted position ?

How long does the difference last?

Dead Reckoning
Error Analysis
(in 1D)

O Actual O Predicted

0

9

8

7

6

5

4

3

2

I . .

0 : : :

I 2 3 4 5 6 7 8 9 10 |1 12
inform/v reclive c>ne

remotehost newinfo convergence

O Actual (Local) O Predicted (Local) © Actual (Remote)

0

9

8

7

6

5

4

3

2

I . .

0 : : :

I 2 3 4 5 6 7 8 9 10 |1 12
inform/v reclive c>ne

remotehost newinfo convergence

higher CPU cost

(needs to simulate other players)

unfair
(higher latency leads to larger error)

how to determine
the error threshold?

Demo:
2 Player Pong

