
14/15 S2

Lecture 3
Prediction and Compensation

14/15 S2

server

A
move east at 1m/s

Let’s focus on inconsistency on players’ position.

block

“you should be here”

14/15 S2

server

A
move east at 1m/s

calculating the correct position gets tricky in twitch games

block

“you should be here at time t”

?

14/15 S2

Unreal Tournament’s
lock-step predictor/

corrector algorithm for
player’s movement

14/15 S2

server

A
move east at 1m/s

Player re-executes its move to find updated position.

block

?

14/15 S2

How to fix position error:
Convergence

14/15 S2

(zero order convergence)

naive approach: player updates its position
immediately -- teleporting to the correct position,
causing visual disruption.

14/15 S2

(zero order convergence)

naive approach: player updates its position
immediately -- teleporting to the correct position,
causing visual disruption.

14/15 S2

Convergence allows player to move to the correct
position smoothly. First pick a convergence period t, and
compute the correct position after time t.

Correct position t seconds later.

14/15 S2

Convergence allows player to move to the correct
position smoothly. First pick a convergence period t, and
compute the correct position after time t.

14/15 S2

Move to that position in a straight line.

(linear convergence)

14/15 S2

Curve fitting techniques can be used
for smoother curves.

14/15 S2

Visual disruption can still occur with convergence.

14/15 S2

server

A
move east at 1m/s

block

?

B

14/15 S2

Based on:
 A’s state?
 B’s state?
 server’s state?
at the time when:
 B sends the message?
 server receives the message?

14/15 S2

Easy to decide at B, but can’t
trust B. Have to decide at server.
(permissible server architecture)

14/15 S2

Finding B’s state is harder.

Finding when B sends the
message is easier.

14/15 S2

Idea:
Lag Compensation

or
Time Warp

14/15 S2

Based on server’s state at the
time when B sends the message

14/15 S2

1. estimate t = RTT/2
2. rewind server’s state to t

seconds ago
3. resolve hit/miss
4. play forward to now

14/15 S2

server

A
move east at 1m/s

block

?

B

14/15 S2

Source Multuplayer Game Engine

14/15 S2

http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking

What B sees now
RTT/2 seconds after B shoots
red: What B saw RTT/2 seconds ago

blue: What server thinks B saw RTT/2 seconds ago

http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking

14/15 S2

states

server

Wait

WaitGame
States

Simulate
Games

Collect
Events

Render

Update
State

events

Game
States

events

Wait

Wait

Collect
Events

Render

Update
State

Game
States

14/15 S2

Player A

Players send move command. Server replies
with new positions periodically.

Player B

Server

14/15 S2

Issues:

1. Message overhead
2. Delay jitter

14/15 S2

Delay jitter causes player’s movement to appear
erratic.

local

remote

time

14/15 S2

Demo:
2 Player Pong

14/15 S2

states

server

Wait

Simulate
GamesGame

States

Simulate
Games

Collect
Events

Render

Update
State

events

Game
States

events

Wait

Simulate
Games

Collect
Events

Render

Update
State

Game
States

14/15 S2

Suppose the velocity remains constant, then we
can predict every position at all time.

local

remote

time

predicted position

14/15 S2

x[ti] = x[ti�1] + v ⇥ (ti � ti�1)

x[t]
v

position of entity at time t

velocity of the entity

14/15 S2

We send over the initial position x[t], t, and
velocity. (Why do we need to send t?)

local

remote

time

predicted position

14/15 S2

But velocity may change (e.g. a car accelerating).
To counter this, we send position, velocity, and
acceleration as update.

time

local

remote

14/15 S2

x[t]
v

position of entity at time t

velocity of the entity

x[ti] = x[ti�1] + v(ti � ti�1) +
1
2
a(ti � ti�1)2

a acceleration of the entity

14/15 S2

server

A

move east at 1m/s ok!

local states are updated continuously at player

14/15 S2

B

time

We will still need substantial number of updates
if the direction changes frequently (e.g. in a FPS
game).

local

remote

14/15 S2

states

server

Wait

Simulate
GamesGame

States

Simulate
Games

Collect
Events

Render

Update
State

events

Game
States

events

Wait

Simulate
Games

Collect
Events

Render

Update
State

Game
States

14/15 S2

Idea:
Dead Reckoning

14/15 S2

Trade off message overhead
with position accuracy --

(no update if error is small)

14/15 S2

time

local

remote

error threshold

14/15 S2

time

local

remote

14/15 S2

time

local

remote

14/15 S2

time

predicted position

local version of the predicted position

local

remote

14/15 S2

time

local and predicted position are now too far apart.
Update remote host with the new velocity and
position.

local

remote

14/15 S2

time

The remote host converges the entity
to the correct position smoothly.

local

remote

14/15 S2

For the local to know the predicted
position, it needs to simulate the
remote view of the entity location.

14/15 S2

time

Space inconsistency: due to error threshold and
convergence

Time inconsistency: due to message delay and
clock asynchrony

local

remote

14/15 S2

What is the difference between the
actual and predicted position ?

How long does the difference last?

14/15 S2

Dead Reckoning
Error Analysis

(in 1D)

14/15 S2

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10 11 12

Actual Predicted

inform
remote host

receive
new info

done
convergence

14/15 S2

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10 11 12

Actual (Local) Predicted (Local) Actual (Remote)

inform
remote host

receive
new info

done
convergence

14/15 S2

higher CPU cost
(needs to simulate other players)

unfair
(higher latency leads to larger error)

14/15 S2

how to determine
the error threshold?

14/15 S2

Demo:
2 Player Pong

