
14/15 S2

"If a tree falls in a forest
and no one is around to
hear it, does it make a

sound?"

14/15 S2

If no one is around the
tree, no one cares!

14/15 S2

Lecture 6
Interest Management

aka Relevance Filtering
aka Data Distribution Management

14/15 S2

Continuous state update:
each event triggers updates to all other players

14/15 S2

Periodic state update:
consolidated state updates sent to players periodically

14/15 S2

Problem: cannot scale to a
large number of players

14/15 S2

Idea: only need to update
another player p if the
update matters to p.

14/15 S2

Question: which update
matters to which player?

14/15 S2

The
Aura-Nimbus

Information Model

14/15 S2

Aura

14/15 S2

Nimbus / Area of
Interest (AOI)

(space where a player can perceive)

14/15 S2

Update of p matters to q if the aura
of p intersects nimbus of q.

Updated 10 Sept 2012

14/15 S2

The
Publish/Subscribe

Communication Model

14/15 S2

Entity publishes updates
Players subscribe to entities

14/15 S2

Multicast: send a message to a
set of subscribers

14/15 S2

Group: a channel to
 publish messages

14/15 S2

A client can subscribe to/join a
group to start receiving

messages from that group.

14/15 S2

A client can unsubscribe from/
leave a group to stop receiving

messages from that group.

14/15 S2

Anyone can send a
message to a group (need

not be a subscriber).

14/15 S2

 a group a subscriber

14/15 S2

Distance-based
Interest Management

14/15 S2

Update of p matters to q if p and q
are within certain distance from

each other

14/15 S2

Naive O(n2) implementation
each player is a group
for each player p
 for each player q
 if p and q are close
 add p to q’s subscriber
 add q to p’s subscriber

14/15 S2

Possible to use advanced
algorithms / data structure

to improve the
performance,

but

14/15 S2

observation: it is OK to send
extraneous updates to a

player

14/15 S2

Cell-based
Interest Management

14/15 S2

Approximate distance-based IM with rectangular cells

14/15 S2

Each cell is a group.

 a group

14/15 S2

Naive O(n) implementation
each cell is a group
for each player p
 for each nearby cell c
 if p’s AOI overlaps with c
 add p to c’s subscribers
 add p to c’s publishers

Updated 10 Sept 2012

14/15 S2

Large cell: More extraneous messages.
Small cell: Large management overhead.

14/15 S2

The white player will receive many
messages he/she is not interested in.

14/15 S2

Idea: adaptive cell size: partition the cells into
smaller ones as needed.

14/15 S2

Quad Tree: Partitioning a cell into four smaller
cells until entity density is small enough.

Each leaf node is a group

14/15 S2

Publish/subscribe decision is done
hierarchically.

if overlaps with parent, check
if overlaps with children

14/15 S2

Cell-based IM does not
consider occlusion common

in FPS games

14/15 S2

Visibility-Based
Interest Management

14/15 S2

Update of p matters to q if q can
see p, and pq are within certain

distance from each other

14/15 S2

Without considering visibility

14/15 S2

With visibility constraint,
updates from white entities are not sent.

14/15 S2

Ray Visibility
Interest Management

14/15 S2

Object-to-Object Visibility

1. Expensive
2. Frequent re-calculations.

but gives exact visibility.

14/15 S2

Update of p matters to q if q can
see p’s cell, and pq are within

certain distance from each other

14/15 S2

Object-to-Cell Visibility

14/15 S2

Object-to-Cell Visibility

1. Less expensive
2. Less frequent re-calculations
3. Less accurate

14/15 S2

When player moves, still
need to recompute visible

cells.

14/15 S2

Update of p matters to q if q’s cell
can “see” p’s cell, and pq are within
certain distance from each other

14/15 S2

i.e., there exists a point in
p’s cell that can see a point
in q’s cell, and q is near p.

14/15 S2

Cell-to-Cell Visibility

14/15 S2

Cell-to-Cell Visibility

1. Much Less expensive
2. Calculate once!

but even less accurate.

14/15 S2

Computing
Cell-to-Cell Visibility

14/15 S2

Check if there exist two points, one in each cell,
that can see each other (can draw a line

without passing through occlusion)

14/15 S2

Trivial case: if two cells are adjacent and the
boundary is not completely occluded.

14/15 S2

Build a graph of cells -- connect two vertices
if they share a boundary and is visible to each other.

14/15 S2

if two cells are not-adjacent, then for them to
be visible to each other, there should exists a

path between them, and ...

14/15 S2

consider the non-occluded boundaries along
path..

14/15 S2

The set of points on the left L and right R can be
separated by a line.

14/15 S2

The set of points on the left L and right R can be
separated by a line.

14/15 S2

Linearly Separable Point Sets

no yes

14/15 S2

We can model this problem as a set
of linear equations.

(x1,y1)

(x2,y2)

ax + by - c = 0

14/15 S2

Find a solution (a, b, c) for the following:

ax1 + by1 - c > 0 for all (x1,y1) in L
ax2 + by2 - c < 0 for all (x2,y2) in R

The line that separates is ax + by - c = 0

(x1,y1)

(x2,y2)

ax + by - c = 0

14/15 S2

Two non-adjacent cells are visible to each other if there exists a
path between them, and the set of points constituting the L
and R sides of the portals between cells are linearly separable.

14/15 S2

We can break into smaller cells
if occlusion is not aligned with boundary of cells.

14/15 S2

(Irregular) triangular cells can adapt to
any polygonal occlusions.

14/15 S2

Note: Rendering engine
usually computes visibility
information, which we may
be able to reuse in the
Interest Management
module.

14/15 S2

Generalized Interest
Management

14/15 S2

Update of p matters to q if q is
“interested” in p based on a set of

attributes

Updated 10 Sept 2012

14/15 S2

Example: Interested in
(i) objects around avatar
(ii) buildings in a region
(iii) the opponent’s avatar

14/15 S2

Subscription can be based on
any attribute (not just position)

14/15 S2

We can view each object as
publishing into a k-
dimensional space (each
attribute is a dimension) call
update region.

14/15 S2

A subscription specifies a region
in the same space.

Messages from an update
region u is sent to a subscription
region s if s and u overlaps.

14/15 S2

Example in 2D with rectangular aura (update
region) and nimbus (subscribe region)

14/15 S2

How to test if two regions
overlap in k-dimensional
space?

14/15 S2

Dimensional Reduction

If two regions overlap, then
they overlap in each of the
individual dimension.

14/15 S2

14/15 S2

Naive O(nm) implementation
each entity is a group
for each update region p
 for each subscribe region q
 for each dimension d
 check if p, q overlap in d-th dimension
 if p and q overlap in every dimension
 send published message of p to q

14/15 S2

Sort-based DDM Algorithms

14/15 S2

For each dimension,

Step 1: Sort all end points
and put into a list L

14/15 S2

14/15 S2

Step 2: Scan from left to right.
Remember all active
subscription regions S and all
active update regions U.

14/15 S2

Active Subscriptions: S1

S1

14/15 S2

Active Subscriptions: S1, S2

S1

S2

14/15 S2

Active Subscriptions: S1, S2
Active Update Regions: U1

S1

S2

U1

14/15 S2

We can determine the
overlaps when we process
the endpoint of a region.

14/15 S2

Active Subscriptions: S2
Active Update Regions: U1

S1 overlaps U1

S1

S2

U1

14/15 S2

Active Subscriptions: none
Active Update Regions: U1

S2 overlaps U1

S1

S2

U1

14/15 S2

14/15 S2

If we encounter the endpoint of a
subscription region, then it overlaps
with all active update regions.

If it is the endpoint of an update
region, then it overlaps with all
active subscription region.

14/15 S2

O((n + m)log (n + m))
 for sorting

O(n + m)
 to scan

Updated 10 Sept 2012

14/15 S2

Note: storing overlap
information still takes O(nm)
since in the worst case there
are O(nm) overlaps.

14/15 S2

Temporal Coherence

Changes to value of an attribute
is small between two
consecutive time steps.

14/15 S2

O((n+m) log (n+m))
 to pre-sort the data
O(n + m)
 for sorting (insertion sort)
O(n + m)
 to scan

Updated 10 Sept 2012

14/15 S2

Only regions that are
swapped during insertion
sort need to update their
overlap set.

14/15 S2

