
14/15 S2

Lecture 7
Interest Management

without Server

14/15 S2

Point-to-Point
Architecture

14/15 S2

Problem: Communication
between every pair of players

14/15 S2

Idea: A player p only needs to
communicate with another
player q if p is relevant to q

14/15 S2

Recall: In C/S Architecture, the
server has global information and
decides who is relevant to who.

14/15 S2

Challenge: No global
information in P2P architecture.

14/15 S2

Naive Solution: Every player
keeps global information
about all other player and
makes individual decision.

14/15 S2

Maintaining global
information is expensive (and
that’s what we want to avoid in
the first place!)

14/15 S2

Smarter solution: exchange
position, then decide when
should the next position
exchange be.

14/15 S2

Idea: Assume B is static. If A knows B’s
position, A can compute the region which
is irrelevant to B. Need not update B if A
moves within that region.

B

A

14/15 S2

what if B moves?

14/15 S2

It still works if B also knows A
position and computes the
region that is irrelevant to A.

14/15 S2

Position exchanges occur once
initially, and when a player
moves outside of its irrelevant
region wrt another player.

14/15 S2

Frontier Sets
cell-based, visibility-based IM

14/15 S2

Previously, we learnt how to
compute cell-to-cell visibility.

14/15 S2

Frontier for cells X and Y
consists of

two sets FXY and FYX

14/15 S2

No cell in FXY is visible from a
cell in FYX, and vice versa.

14/15 S2

FXY and FYX are disjoint
if X and Y are not mutually visible.

14/15 S2

FXY and FYX are empty
if X and Y are mutually visible.

14/15 S2

Suppose X and Y are not
mutually visible, then

a simple frontier is

FXY = {X} FYX = {Y}

(many others are possible)

14/15 S2

A B C

D E F

G H I

14/15 S2

A B C

D E F

G H I

14/15 S2

A B C

D E F

G H I

14/15 S2

A B C

D E F

G H I

14/15 S2

A B C

D E F

G H I

14/15 S2

Position exchanges occur once
initially, and when a player
moves outside of its irrelevant
region wrt another player.

14/15 S2

Initialize:
Let player P be in cell X
For each player Q
 Let cell of Q be Y
 Compute FXY (or simply FQ)

14/15 S2

Move to new cell:
Let X be new cell
For each player Q
 If X not in FQ
 Send location to Q

14/15 S2

Receive Update:
(location from Q)
Send location to Q
Recompute FQ

14/15 S2

A B C

D E F

G H I

Update is triggered.

14/15 S2

A B C

D E F

G H I

New Frontier.

14/15 S2

A B C

D E F

G H I

Update triggered.

14/15 S2

A B C

D E F

G H I

New frontier (empty since E can see G)

14/15 S2

How to compute frontier?

14/15 S2

A good frontier is as large as
possible, with two almost

equal-size sets.

14/15 S2

A B C

D E F

G H I

Build a visibility graph. Cells are vertices. Two cells are
connected by an edge if they are visible to each other
(EVEN if they don’t share a boundary)

14/15 S2

Let dist(X,Y) be the shortest
distance between two cells X
and Y on the visibility graph.

14/15 S2

A B C

D E F

G H I

0 1 1

2 1 2

2 3 3

14/15 S2

Theorem
FXY = { i | dist(X,i) <= dist(Y,i) - 1}
FYX = { j | dist(Y,j) < dist(X,j) - 1}

are valid frontiers.

14/15 S2

A B C

D E F

G H I

0 1 1

2 1 2

2 3 3 011

422

333

14/15 S2

A B C

D E F

G H I

0 1 1

2 1 2

2 3 3 011

422

333

14/15 S2

A B C

D E F

G H I

0 1 1

2 1 2

2 3 3 011

422

333

14/15 S2

A B C

D E F

G H I

14/15 S2

Theorem
FXY = { i | dist(X,i) <= dist(Y,i) - 1}
FYX = { j | dist(Y,j) < dist(X,j) - 1}

are valid frontiers.

14/15 S2

FXY = { i |dist(X,i) <= dist(Y,i) - 1}
FYX = { j |dist(Y,j) < dist(X,j) - 1}

Proof (by contradiction)
Suppose there are two cells, C in FXY
and D in FYX, that can see each other.

14/15 S2

FXY = { i |dist(X,i) <= dist(Y,i) - 1}
FYX = { j |dist(Y,j) < dist(X,j) - 1}

dist(X,C) <= dist(Y,C) - 1
dist(Y,D) < dist(X,D) - 1
dist(C,D) = dist(D,C) = 1

14/15 S2

dist(X,C) <= dist(Y,C) - 1
dist(Y,D) < dist(X,D) - 1
dist(C,D) = dist(D,C) = 1

We also know that
dist(X,D) <= dist(X,C) + dist(C,D)
dist(Y,C) <= dist(Y,D) + dist(D,C)

14/15 S2

1. dist(X,C) <= dist(Y,C) - 1
2. dist(Y,D) < dist(X,D) - 1
3. dist(C,D) = 1
4. dist(X,D) <= dist(X,C) + dist(C,D)
5. dist(Y,C) <= dist(Y,D) + dist(D,C)

From 4, 1, and 3:
dist(X,D) <= dist(Y,C) - 1 + 1
From 5:
dist(X,D) <= dist(Y,D) + 1

14/15 S2

1. dist(X,C) <= dist(Y,C) - 1
2. dist(Y,D) < dist(X,D) - 1
3. dist(C,D) = 1
4. dist(X,D) <= dist(X,C) + dist(C,D)
5. dist(Y,C) <= dist(Y,D) + dist(D,C)

We have
 dist(X,D) <= dist(Y,D) + 1
Which contradict 2
 dist(X,D) > dist(Y,D) + 1

14/15 S2

How good is the idea?

(How many messages can we save
by using Frontier Sets?)

14/15 S2

https://github.com/id-Software/Quake-2

https://github.com/id-Software/Quake-2

14/15 S2

q2dm3 q2dm4 q2dm8

Max dist() 4 5 8

Num of cells 666 1902 966

14/15 S2

Frontier Density:
% of player-pairs with
non-empty frontiers.

14/15 S2

q2dm3 q2dm4 q2dm8

Frontier
Density 83.9 93 84.2

14/15 S2

Frontier Size:
% of cells in the frontier on
average

14/15 S2

q2dm3 q2dm4 q2dm8

Frontier
Size 38.3% 67.3% 68.2%

14/15 S2

Compare with
1. Naive P2P
2. Perfect P2P

14/15 S2

Naive P2P
Always send update to 15
other players.

14/15 S2

Perfect P2P
Hypothetical protocol that
sends messages only to visible
players.

14/15 S2

q2dm3 q2dm4 q2dm8

NPP 15 15.7 14.4

PPP 3.7 1.9 4.2

Frontier 5.4 2.6 5.9

Number of messages per frame per player.

14/15 S2

Space Complexity
Let N be the number of cells. If
we precompute Frontier for
every pair of cells, we need

O(N3)
space.

14/15 S2

If we store visibility graph and
compute frontier as needed,
we only need

O(N2)
space.

14/15 S2

Frontier Sets
cell-based, visibility-based IM

14/15 S2

Limitations

14/15 S2

Works badly if there’s little
occlusion in the virtual world.

14/15 S2

Still need to exchange
locations with every other

players occasionally.

14/15 S2

Voronoi Overlay Network:
Distance-based Interest

Management

14/15 S2

Diagrams and plots in the sections
are taken from presentation slides

by
Shun-yun Hu, available on

http://vast.sf.net

http://vast.sf.net

14/15 S2

Keep a list of AOI-neighbors and
exchange messages with AOI-neighbors.

14/15 S2

Q: How to initialize AOI-neighbors?

14/15 S2

Q: How to update AOI-neighbors?

14/15 S2

14/15 S2

Case 1: Another player exists
in the overlap area.

14/15 S2

Hello, p and q. You are
entering each other’s AOI.

14/15 S2

Case 2: No player exists
in the overlap area.

14/15 S2

Players need to communicate with each other
even if they are not in AOI

14/15 S2

Challenge: Figure out who to communicate
with without global information.

14/15 S2

Voronoi Diagram

14/15 S2

Every node is in charge of a
region in the virtual world.

The region contains points
closest to the node.

14/15 S2

Voronoi Diagram

14/15 S2

AOI Neighbors:
Neighbors in AOI

14/15 S2

Enclosing
Neighbors:
Neighbors in
adjacent region.

(may or may not
be in AOI)

14/15 S2

Boundary
Neighbors:
Neighbors whose
region intersect
with AOI.

(may or may not
be in AOI)

14/15 S2

Boundary and
Enclosing
Neighbor

14/15 S2

Regular AOI
Neighbor:
Non-boundary
and non-
enclosing
neighbor in AOI

14/15 S2

Unknown nodes
(not neighbors!)

14/15 S2

Type in AOI? intersect? adjacent?

Regular yes no no

Enclosing maybe no yes

Boundary maybe yes no

Enclosing
+Boundary maybe yes yes

14/15 S2

A node always
connects to its
enclosing neighbors,
regardless of whether
they are in the AOI.

14/15 S2

A node connects and
exchanges updates
with all neighbors.

14/15 S2

A node maintains
Voronoi of all
neighbors
(regardless of inside
AOI or not)

14/15 S2

Suppose a player X wants to
join. X sends its location to any
node in the system.

14/15 S2

X join request is forwarded to the node
in charge of the region (i.e., closest
node to X), called acceptor.

14/15 S2

Forwarding is done greedily
(at every step, forward to neighbor closest to X)

14/15 S2

Acceptor informs the joining node X of its neighbors.
Acceptor, X, and the neighbors update their Voronoi
diagram to include the new node.

14/15 S2

When X moves, X learns about new
neighbors from the boundary neighbors.

14/15 S2

Boundary neighbors’ enclosing neighbors
may become new neighbors of X.

14/15 S2

When a node disconnects, Voronoi diagrams are
updated by the affected nodes. New boundary
neighbors may be discovered.

14/15 S2

VON Properties:

Number of connections
depends on size of AOI, not size
of virtual world

14/15 S2

VON Properties:

Maintain a minimal number of
enclosing neighbors when the
world is sparse to ensure
connectivity.

14/15 S2

VON Properties:

Boundary neighbors ensure
that new neighbors are
discovered.

14/15 S2

VON Properties:

Inconsistency may occur (e.g.
with fast moving nodes)

14/15 S2

