Lecture 7

Interest Management
without Server

Point-to-Point
Architecture

Problem: Communication
between every pair of players

ldea: A player p only needs to
communicate with another
player g if p is relevant to g

Recall: In C/S Architecture, the
server has global information and
decides who is relevant to who.

Challenge: No global
information in P2P architecture.

Naive Solution: Every player
keeps global information
about all other player and
makes individual decision.

Maintaining global
information is expensive (and
that’s what we want to avoid in
the first place!)

Smarter solution: exchange
position, then decide when
should the next position
exchange be.

ldea: Assume Biis static. If A knows B’s
position, A can compute the region which
is irrelevant to B. Need not update Bif A
moves within that region.

what if B moves?

It still works if B also knows A
position and computes the
region that is irrelevant to A.

Position exchanges occur once
initially, and when a player
moves outside of its irrelevant
region wrt another player.

Frontier Sets
cell-based, visibility-based IM

Previously, we learnt how to
compute cell-to-cell visibility.

Frontier for cells Xand Y
consists of
two sets Fxy and Fyx

No cell in Fxy is visible from a
cell in Fyx and vice versa.

Fxy and Fyx are disjoint
if Xand Y are not mutually visible.

Fxy and Fyxare empty
if Xand Y are mutually visible.

Suppose X and Y are not
mutually visible, then
a simple frontier is

Fxy ={X} Fyx=1{Y}

(many others are possible)

Position exchanges occur once
initially, and when a player
moves outside of its irrelevant
region wrt another player.

Initialize:
Let player P be in cell X
For each player Q

Let cell of Q be Y
Compute Fxy (or simply Fq)

Move to new cell:
Let X be new cell
For each player Q

If X notin Fq

Send location to Q

Receive Update:
(location from Q)
Send location to Q
Recompute Fq

Update is triggered.

B C
O
E F
H I
O

New Frontier.

Update triggered.

B C
O
E F
H I
O

New frontier (empty since E can see G)

A B C
O
D E F
G H I
O

How to compute frontier?

A good frontier is as large as
possible, with two almost
equal-size sets.

Build a visibility graph. Cells are vertices. Two cells are
connected by an edge if they are visible to each other
(EVEN if they don't share a boundary)

v

Let dist(X)Y) be the shortest
distance between two cells X
and Y on the visibility graph.

IOFONG
()L =
IOFOFO

Theorem
Fxy ={i | dist(X,i) <=dist(Y,i) - 1}
Fyx ={j | dist(Y} <d|st(J) -1

are valid frontiers.

IOSONO.
(=) X)) =
IOROFO

IOSONS.
(=) 1) =
IOROFO

IOSONS,
=) 1) =
IOROFO

Theorem
Fxy ={i | dist(X,i) <=dist(Y,i) - 1}
Fyx ={j | dist(Y} <d|st(J) -1

are valid frontiers.

Fxy ={i |dist(X,i) <=dist(Y,i) - 1}
Fyx =1{j |dist(Y,] <dISt(XJ) 1}

Proof (by contradiction)
Suppose there are two cells, Cin Fxy
and D in Fyx, that can see each other.

Fxy ={i |dist(X,i) <=dist(Y,i) - 1}
Fyx =1{j |dist(Y,] <dISt(XJ) 1}

dist(X,C) <=dist(Y,C) - 1
dist(Y D) < dist(X,D) - 1
dist(C,D) =dist(D,C) = 1

dist(X,C) <=dist(Y,C) - 1
dist(Y D) < dist(X,D) - 1
dist(C,D) =dist(D,C) = 1

We also know that
dist(X,D) <= dist(X,C) + dist(C,D)
dist(Y C) <=dist(Y D) + dist(D,C)

From 4, 1, and 3:

dist(X,D) <=dist(Y,C)-1+1
From 5:

dist(X,D) <=dist(Y,D) + 1

1. dist(
2. dist(
3. dist(
4. dist(
5. dist(

X,C) <=dist(YC) -1

Y,D) < dist(X,D) - 1

CD)=1

X,D) <=dist(X,C) + dist(C,D)
Y,C) <=dist(Y,D) + dist(D,C)

We have
dist(X,D) <=dist(Y,D) + 1
Which contradict 2
dist(X,D) > dist(Y,D) + 1

How good is the idea?

(How many messages can we save
by using Frontier Sets?)

https://github.com/id-Software/Quake-2

https://github.com/id-Software/Quake-2

g2dm3 g2dm4 gq2dms8

Max dist() 4 > 3

Numofcells 666 1902 966

Frontier Density:
% of player-pairs with
non-empty frontiers.

g2dm3 g2dm4 qg2dm8

ontier: 339 93 84.2

Density

Frontier Size:
% of cells in the frontier on
average

q2dm3 gq2dm4 g2dm3

Frontier 38.3% 6/7.3% 68.2%

Size

Compare with
1. Naive P2P
2. Perfect P2P

Naive P2P
Always send update to 15
other players.

Perfect P2P

Hypothetical protocol that
sends messages only to visible
players.

Number of messages per frame per player.

g2dm3 qg2dm4 g2dm8

NPP 15 15.7 144

PPP 3.7 1.9 4.2

Frontier| 5.4 2.6 5.9

Space Complexity

Let N be the number of cells. If
we precompute Frontier for
every pair of cells, we need

O(N3)

space.

If we store visibility graph and
compute frontier as needed,
we only need

O(N>?)
space.

Frontier Sets
cell-based, visibility-based IM

Limitations

Works badly if there’s little
occlusion in the virtual world.

Still need to exchange
locations with every other
players occasionally.

Voronoi Overlay Network:

Distance-based Interest
Management

Diagrams and plots in the sections
are taken from presentation slides
by
Shun-yun Hu, available on
http://vast.sf.net

http://vast.sf.net

Keep a list of AOI-neighbors and
exchange messages with AOIl-neighbors.

Q: How to initialize AOI-neighbors?

Q: How to update AOI-neighbors?

14/1552

Case 1: Another player exists
in the overlap area.

N

Hello, p and g. You are
entering each other’s AOI.

Case 2: No player exists
in the overlap area.

Players need to communicate with each other
even if they are not in AOI

Challenge: Figure out who to communicate
with without global information.

Voronoi Diagram

Every node is in charge of a
region in the virtual world.

The region contains points
closest to the node.

g 2
8 c
£ v
D 5
v O
= C
— O
O o
< =

Enclosing
Neighbors:
Neighbors in
adjacent region.

(may or may not
be in AOI)

Boundary
/ Neighbors:
Neighbors whose

region intersect
with AOI.

(may or may not
be in AOI)

Regular AOI
Neighbor:
Non-boundary
and non-

enclosing
neighbor in AOI

Type in AOI? intersect? adjacent?
Regular yes no no
Enclosing maybe no yes
Boundary maybe yes no
Enclosing

maybe yes yes

+Boundary

A node always

- connectsto its
enclosing neighbors,
regardless of whether
they are in the AQI.

A node connects and
exchanges updates
with all neighbors.

A node maintains
Voronoi of all
neighbors

(regardless of inside
AQOI or not)

Suppose a player X wants to
join. X sends its location to any
node in the system.

X join request is forwarded to the node
in charge of the region (i.e., closest
node to X), called acceptor.

L

Forwarding is done greedily
(at every step, forward to neighbor closest to X)

v

Acceptor informs the joining node X of its neighbors.
Acceptor, X, and the neighbors update their Voronoi
diagram to include the new node.

When X moves, X learns about new
neighbors from the boundary neighbors.

Boundary neighbors’enclosing neighbors
may become new neighbors of X.

When a node disconnects, Voronoi diagrams are
updated by the affected nodes. New boundary
neighbors may be discovered.

VON Properties:

Number of connections
depends on size of AQOI, not size
of virtual world

VON Properties:

Maintain a minimal number of
enclosing neighbors when the
world is sparse to ensure
connectivity.

VON Properties:

Boundary neighbors ensure
that new neighbors are
discovered.

VON Properties:

Inconsistency may occur (e.qg.
with fast moving nodes)

ImonCloud*

Home = LCpa% Em 1k X LN 1" BERN

ImonCloud
EPemiE - BERIRTA

R CEI\FARIRIR
L ER R 5 TE
M2 DB AEEGEE
e {EC 0 B e 58 P A
BRI K521
B ERVIRETE

= rI=im BT

FEFERYE) (ImonCloud) 2 —E A XJRMANFEEHAFAERS, HEHNBFEMEYFERBEINTAT, BEXJIAELRABNRIEFES
(Platform-as-a-Service, PaaS), BRfINBERZH. EMH. ROER LHLERERS REZFHFHRNME £ NEATKEMEIFTIRAZ AL
fiRobE I S FE FE RV SR

