Centralized Server
Architecture

-

Simulate
Game

~N

states

!
(

Game
States

events L

Collect Events J

Render }\

Wait

J

Game
States

Consistency

Synchronization
Protocols

Causal Order
of Events

Suppose there is no delay. We can take the order
of events generated and order of events received as
the consistent order.

Even if there is delay, as long as delay is fixed, we can
take the order of events generated and order of
events received as the consistent order.

- \/ﬂé

What if delay varies? Should the server follow
the order of events received?! or order of events
generated!

.

“received-order delivery” : Server executes
events as they are received.

Player A —

Server —

Player B —

Players see events in the same order as long as
underlying network deliver messages in order.

Player A —

Server —

Player B —

10

s it fair to Player B?
What if the state is continuous?

Player A — | [] >

Server —

Player B —

Suppose player B aims and shoots at A. When
B’s message reaches the server, A already
moved away.

Did B hit A?

Server — >

/

Player B — >

-
-
-
-
-
-
-
-

Player

Server

O O Player

RTT/2 later, server is notified

"”

O O Server

Lag Compensation
or
Time Warp

GET HALF-LIFE 2: EFISODE ONE HOWI

GET HALF-LIFE 2 HOW!I u‘ﬁ"'

GET COUNTER-STRIKE:SOURCE HOW! u‘ﬁ'

GET HALF-LIFE:50OURCE HOWI uﬂ

Server estimates the
latency between itself
and Player B.

Let the latency be t.

Server “‘rewinds’ to t
seconds ago.

Server
(now - t)

Server
(now)

19

Check if hit or miss.

Play forward to now.

http://developer.valvesoftware.com/wiki/Source_Multiplayer _Networking

http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking

How to estimate
one-way delay!

Measure RT T, take RTT/2

RTT

Player A —

\/

Server —

Server executes in the order of events received,
but on the state at the time events are generated
(approximately). (Does this always work?)

.

24

In received-order delivery, with/without lag
compensation, inconsistency may still arise. Some
operation might not be permitted by server.

Player A — | N

/

Server — >

“oops, can’t
execute this
anymore”

Player B — | —

25

Permissible Client/
Server Architecture

Problem: decrease responsiveness

lag
Player A — (_)| [] >
Server — E/(L >
Player B — | [] >

lag

Problem: unfair to player with higher latency

lag
Player A — (_)| [] >
/ 4
Server — E(L >
\
Player B — i |)- >

lag

Improving Fairness

Problem: unfair to player with higher latency

lag
Player A — (_)| [] >
/ 4
Server — E(L >
\
Player B — i |)- >

lag

Try: improve fairness by artificial delay at the
server. (longer delay for “closer” player)

Player A — | >

Server —

Player B —

Problem: responsiveness is bounded by the
slowest player

Player A — | >

Server —

Player B —

Improving
Responsiveness

Try: Short circuiting -- execute action
immediately locally. But inconsistency arises.

Player A —] >
]

Server —

Player B — >

Recall: server is the authority and maintains
the correct states.

Player A — | >

Server —

Player B — >

35

We can fixed the inconsistency later using the
states from the server.

Player A —

[]
\/ .
Server — >
X\
Player B — [] >

STATES

: ¢

e« (Collect Events J

Game

Game
States

(Simulate Game

J
Game (Render }\
States

Wait J

Slight delay in response might be OK. Idea:
introduce local lag -- wait for some time t
before update states.

Player A — >

[]
]

Xk
Player B — [] >

Effectively we are trading off responsiveness
with consistency.

lag

Player A —

[]
Server — \/ L >
Player B — %/] >

) v g

Trade-off responsiveness
with consistency

Do first, fix later
(optimistic)

How responsive should the game be!
How consistent should the game be!

How to ‘“‘fix later’ ?

User Studies: Effects of
Network on Games

Goal: How much
network latency is
tolerable?

Method: Analyze

game servers log for
Quake Il Arena

Frags/minutes

A

3 4

. |
I L])

50 400
Median Ping (ms)

Yes, latency does affect
playability..

Question: what’s the
annoyance threshold?

Method: User studies

using Unreal
Tournament 2003

Clients

o

O

Router Server

Game Activity:
move and shoot

Movement Test:
Construct obstacle
course

Over 200 users

Time to complete course (s)

A

50 T

Induced latency (ms)

400

Perhaps UT 2003 is using short circuiting for
movement!

Player A — | >
]

Server —

y
s

Shooting Test:
2 players shooting at
each other using
precision weapon

Hit Fraction

A

0.5 1

N

0 300
Induced latency (ms)

0.2 1

latency as low as 100 ms were
noticeable and latencies around

200 ms were annoying

Read the paper for
complete results.

Other conclusion: loss rate
up to 5% has no
measurable effects.

How responsive should the game be!
How consistent should the game be!

How to ‘“‘fix later’ ?

Are we done!

Method: User Studies
using Warcraft Il

Game Activity:
build, explore, fight!

Finding: Players with
larger delays see exactly
the same events as players
with smaller delays, only at
a later time.

Possible communication architecture!?

Player A — |

Server —

Player B —

66

Finding: Latency of up to
800 ms has negligible effect

on the outcome of
Warcraft lll.

Finding: Latency of up to
500 ms can be compensate
by the players

Finding: Latencies
between 500 and 800 ms
degrades game experience.

Finding: Players that

micro-manage units in

combat feel the latency

more than players who
don't.

Strategy is more
important in RTS games,
not reaction time.

Q: How responsive and consistent
should the game be!

A: Depends on the
characteristics of game.

Important.
understand user
requirements

How responsive should the game be!
How consistent should the game be!

How to “fix later” ?

We can fix the inconsistency later using the
states from the server.

Player A —

[]
\/ .
Server — >
X\
Player B — [] >

State: positions
Event: movements

Unreal Tournament’s
lock-step predictor/
corrector algorithm for
player’s movement

Player

Server

> Player

Player moves

Server

® .

Player updates server

“I am moving east at 5m/s”

O

Player

Server

80

O Player

RTT/2 later, server is notified

“Player A is moving east at 5m/s”

O Server

O\ /‘ Player

Player might moves again

O Server

Server simulates player and updates player
“You are here at time t”

82

O
Player

RTT/2 later, player learns its actual position
sometime in the past.

83

Player

Player re-executes its moves to find
Its proper position now.

84

Convergence

If no convergence is used, player updates its
position immediately -- in effect teleporting
to the correct position, causing visual disruption.

(zero order convergence)

86

If no convergence is used, player updates its
position immediately -- in effect teleporting
to the correct position, causing visual disruption.

(zero order convergence)

87

Convergence allows player to move
to the correct position smoothly. First
pick a convergence period t,and compute the correct
position after time t.

88

Convergence allows player to move
to the correct position smoothly. First
compute the correct position after time t.

89

Move to that position in a straight line.

(linear convergence)

90

Curve fitting techniques can be used
for smoother curves.

91

Visual disruption can still occur with convergence.

92

Recall:With short-circuit, we may need to fix
inconsistency later using the server states.

Player A —

] >

Server —

\

Player B —

] >

Inconsistent

93

Can we fix all
inconsistency!

A shoots B, B killed B shoots C

| |

Player A —] /

Server —

Player B —

B shoots C, C killed

A dead man that shoots

Short-circuiting not
suitable for all cases.

Besides, important events
like “hit” should be
decided by the server.

B shot &
A shoots B killed C

l | Kills B

Player A — 7} / >

Server — >

Player B —

B shoots C killed by A
C killed

Games can use audio/visual
tricks to hide the latency
between shooting and
hitting.

Responsive
Consistent
Cheat-Free
Fair
Scalable
Efficient
Robust

Simple

