Interest Management

Previously

- Motivation for Interest Management
- Aura-based / Cell-based / General IM
- Publish / Subscribe Abstractions
- IP Multicast

Cell-based

Is rectangle the best shape for a cell?

Hexagonal cells approximate a circle better.

Require less subscribe/unsubscribe when moving.

Assume a player is interested in it's current cell and surrounding cell.

Assume a player is interested in it's current cell and surrounding cell.

and moves to a neighboring cell with equal probability.

and moves to a neighboring cell with equal probability.

Every move requires **3** new subscriptions and **3** un-subscriptions.

Moving horizontally/vertically requires **3** new subscription and **3** unsubscriptions.

Moving diagonally requires **5** new subscription and **5** unsubscriptions.

Hexgonal cells is better 1. rounder 2. less group join/leave

Ideally one should consider occlusion (we focus on visual occlusion)

A player P is interested in (events generated by) an entity Q if P can see Q, and Q is near P.

Ideally one should consider occlusion (we focus on visual occlusion)

need not be binary: can generalize to multilevel of interest depending on distance

Ray Visibility Interest Management

Object-to-Object Visibility

Expensive
Frequent re-calculations.

but gives exact visibility.

A player P is interested in (events generated by) an entity Q if P can see Q's cell, and Q is near P.

Object-to-Cell Visibility

Object-to-Cell Visibility

- I. Less expensive
- 2. Less frequent re-calculations
- 3. Less accurate

When player moves, still need to recompute visible cells.

A player P is interested in (events generated by) an entity Q if P's cell can "see" Q's cell, and Q is near P.

i.e., there exists in a point in P's cell that can see a point in Q's cell, and Q is near P.

Cell-to-Cell Visibility

Cell-to-Cell Visibility

Much Less expensive
Calculate once!

but even less accurate.

Computing Cell-to-Cell Visibility

Check if there exist two points, one in each cell, that can see each other (can draw a line without passing through occlusion)

Trivial case: if two cells are adjacent and the boundary is not completely occluded.

Build a graph of cells -- connect two vertices if they share a boundary and is visible to each other.

if two cells are not-adjacent, then for them to be visible to each other, there should exists a path between them, and ...

consider the non-occluded boundaries along path..

The set of points on the left L and right R can be separated by a line.

The set of points on the left L and right R can be separated by a line.

Linearly Separable Point Sets

We can model this problem as a set of linear equations.

Find a solution (a, b, c) for the following:

ax + by - c = 0axI + byI - c > 0 for all (xI,yI) in L $ax^2 + by^2 - c < 0$ for all (x^2, y^2) in R (xI,yI) ax + by - c = 0**(x2,y2)**

We can break into smaller cells if occlusion is not aligned with boundary of cells.

(Irregular) triangular cells can adapt to any polygonal occlusions.

Note: Rendering engine usually compute visibility information which we may be able to reuse in the Interest Management module.

Recap: Shape of cells Visibility-based IM Pre-computing C2C Visibility

Generalized Interest Management

Example: Interested in (i) objects around avatar (ii) buildings in a region (iii) the opponent's avatar

Subscription can be based on any attributes (not just position)

We can view each object as occupying a multidimensional space (each attribute is a dimension)

A subscription specify a region in the same space.

When an **update region** of an entity P intersects the subscription region of entity Q, updates of P is sent to Q.

How to test if two regions overlap in k-dimensional space?

Naive approach: O(nm) for *n* update region and *m* subscription region.

Dimensional Reduction

If 2 regions overlap, then they overlap in each of the individual k dimension.

, 1 1	 	1
1 1 1		
1 1 1	, 	

How to test if two intervals overlap?

Step I: Sort all end points and put into a list L

Step 2: Scan from left to right. Remember all active subscription regions **S** and all active update regions **U**.

Active Subscriptions: S1, S2 Active Update Regions: U1

S2

SI

We can determine the overlaps when we process the endpoint of a region.

S2 SI Active Subscriptions: S2 Active Update Regions: UI **SI overlaps UI**

If we encounter the endpoint of a subscription region, then it overlaps with all active update regions.

If it is the endpoint of an update region, then it overlaps with all active subscription region.

Exercise: trace through the small example and convince yourself that it works..

Sort-based approach: O(n log n + m log m) for sorting

O(n + m) to scan **Note:** storing overlap information still takes O(nm) since in the worst case there are O(nm) overlaps.

Temporal Coherence

Changes to value of an attribute is small between two consecutive time steps.

Sort-based approach: $O(n \log n + m \log m)$ to pre-sort the data O(n + m)for sorting (insertion sort) O(n + m)to scan

In fact, only regions which are swapped during insertion sort need to update their overlap set.

