
Interest Management

Previously

• Motivation for Interest Management

• Aura-based / Cell-based / General IM

• Publish / Subscribe Abstractions

• IP Multicast

Cell-based

Is rectangle the best
shape for a cell?

Hexagonal cells approximate a circle better.

Require less subscribe/unsubscribe when moving.

Assume a player is interested in
it’s current cell and surrounding cell.

Assume a player is interested in
it’s current cell and surrounding cell.

and moves to a neighboring cell with equal probability.

and moves to a neighboring cell with equal probability.

Every move requires
3 new subscriptions and 3 un-subscriptions.

unsubscribe

subscribe

Moving horizontally/vertically requires
3 new subscription and 3 unsubscriptions.

Moving diagonally requires
5 new subscription and 5 unsubscriptions.

Hexgonal cells is better
1. rounder
2. less group join/leave

Ideally one should consider occlusion
(we focus on visual occlusion)

A player P is interested in
(events generated by) an

entity Q if P can see Q, and
Q is near P.

Ideally one should consider occlusion
(we focus on visual occlusion)

need not be binary:
can generalize to multi-

level of interest
depending on distance

Ray Visibility
Interest Management

Object-to-Object
Visibility

1. Expensive
2. Frequent re-calculations.

but gives exact visibility.

A player P is interested in
(events generated by) an
entity Q if P can see Q’s

cell, and Q is near P.

Object-to-Cell Visibility

Object-to-Cell
Visibility

1. Less expensive
2. Less frequent re-calculations
3. Less accurate

When player moves,
still need to recompute

visible cells.

A player P is interested in
(events generated by) an

entity Q if P’s cell can “see”
Q’s cell, and Q is near P.

i.e., there exists in a point
in P’s cell that can see a
point in Q’s cell, and Q is

near P.

Cell-to-Cell Visibility

Cell-to-Cell Visibility

1. Much Less expensive
2. Calculate once!

but even less accurate.

Computing
Cell-to-Cell Visibility

Check if there exist two points, one in each
cell, that can see each other (can draw a line

without passing through occlusion)

Trivial case: if two cells are adjacent and the
boundary is not completely occluded.

Build a graph of cells -- connect two vertices
if they share a boundary and is visible to each other.

if two cells are not-adjacent, then for them to
be visible to each other, there should exists a

path between them, and ...

consider the non-occluded boundaries along
path..

The set of points on the left L and right R can
be separated by a line.

The set of points on the left L and right R can
be separated by a line.

Linearly Separable Point Sets

no yes

We can model this problem as a set
of linear equations.

(x1,y1)

(x2,y2)

ax + by - c = 0

Find a solution (a, b, c) for the
following:

ax + by - c = 0
ax1 + by1 - c > 0 for all (x1,y1) in L
ax2 + by2 - c < 0 for all (x2,y2) in R

(x1,y1)

(x2,y2)

ax + by - c = 0

We can break into smaller cells
if occlusion is not aligned with boundary of cells.

(Irregular) triangular cells can adapt to
any polygonal occlusions.

Note: Rendering
engine usually compute
visibility information
which we may be able to
reuse in the Interest
Management module.

Recap:
Shape of cells
Visibility-based IM
Pre-computing C2C Visibility

Generalized Interest
Management

Example: Interested in
(i) objects around avatar
(ii) buildings in a region
(iii) the opponent’s avatar

Subscription can be
based on any attributes
(not just position)

We can view each
object as occupying a
multidimensional space
(each attribute is a
dimension)

A subscription specify a
region in the same
space.

When an update region
of an entity P intersects
the subscription region
of entity Q, updates of P is
sent to Q.

How to test if two regions
overlap in k-dimensional
space?

Naive approach: O(nm)
for n update region and m
subscription region.

Dimensional Reduction

If 2 regions overlap, then
they overlap in each of the
individual k dimension.

How to test if two intervals
overlap?

Step 1: Sort all end points
and put into a list L

Step 2: Scan from left to
right. Remember all active
subscription regions S and all
active update regions U.

Active Subscriptions: S1

S1

Active Subscriptions: S1, S2

S1

S2

Active Subscriptions: S1, S2
Active Update Regions: U1

S1

S2

U1

We can determine the
overlaps when we process
the endpoint of a region.

Active Subscriptions: S2
Active Update Regions: U1

S1 overlaps U1

S1

S2

U1

Active Subscriptions: none
Active Update Regions: U1

S2 overlaps U1

S1

S2

U1

If we encounter the endpoint of a
subscription region, then it overlaps
with all active update regions.

If it is the endpoint of an update
region, then it overlaps with all
active subscription region.

Exercise: trace through the small
example and convince yourself that it works..

Sort-based approach:
O(n log n + m log m)
	 for sorting

O(n + m)
	 to scan

Note: storing overlap
information still takes O(nm)
since in the worst case there
are O(nm) overlaps.

Temporal Coherence

Changes to value of an
attribute is small between
two consecutive time steps.

Sort-based approach:
O(n log n + m log m)
	 to pre-sort the data
O(n + m)
	 for sorting (insertion sort)
O(n + m)
	 to scan

In fact, only regions which
are swapped during insertion
sort need to update their
overlap set.

