
DHT-based
P2P Architecture

1

DHT:
Distributed Hash Table

2

Hash Table

insert (key, object)
delete (key)

obj = lookup (key)

3

Distributed Hash Table

insert (key, object)
delete (key)

obj = lookup (key)

4

DHT:
Objects can be stored

in any node in the
network.

5

Example:
Given a torrent file, find
the list of peers seeding
or downloading the file.

6

Implementation:
A centralized directory of
which node stores which
key (object).

7

How to do this in a fully
distributed manner?

8

Idea: Have a set of
established rules to decide
which key (object) is stored
in which node.

9

Rule: Assign IDs to nodes
and objects. An object is
stored in the node with
closest ID.

10

How to assign ID?

Given a object, how to find
the closest node?

11

Pastry

12

To assign ID, we can use a
hash (e.g. into a 128 bit
string).

e.g., hash IP address, URL,
name etc.

13

To find the closest node to
a given object, each node
can store the list of all
other nodes.

But this is not scalable.

14

More scalable solution: Each
node only knows a small,
constant number of nodes, in
a routing table.

15

Suppose an ID is of the form

 	 	 	 	 d1 d2 d3 ... dm

with digit di = {0, 1, 2, ... n}

16

Suppose an ID is of the form
 	 	 	 	 d1 d2 d3 ... dm

with digit di = {0, 1, 2, ... n-1}

e.g., n = 10, m = 4, then ID
looks like 0514, 2736, 4090
etc.

17

Suppose an ID is of the form
 	 	 	 	 d1 d2 d3 ... dm

with digit di = {0, 1, 2, ... n-1}

e.g., n = 3, m = 4, then ID
looks like 1210, 1102, 2011
etc.

18

A node knows (m)x(n-1)
neighbors -- m groups, each
group with n-1 entries.

19

0121 137.12.1.0

2001 22.31.90.9

1021 45.24.8.233

1121 :

1210 :

1222 :

1200 :

- -

Routing Table for Node 1201

20

Each node i keeps a table

next(k,d) = address of node j such that

1. i and j share prefix of length k
2. k+1 digit of j is d
3. node j is the “physically closest” match

21

In addition, each node knows
L other nodes with closest
ID. (L/2 above, L/2 below)

22

1122 2.12.1.0

1200 12.30.99.90

1202 78.8.73.231

Leaf Set for Node 1201

23

Visualizing Pastry

24

00002222

25

00002222

26

00002222

Any object whose IDs that falls within the
blue region is stored in node A.

A

27

Leaf Sets

28

Example Routing Table

1201

0121

2101

1021
1121

29

Recall that we want to find
the node with ID closest to
the ID of a given object.

node = route(object_id)

30

route(0212) issued at node 1211.
1211 forward the request to next(0,0).

1211

0100

31

route(0212) received at 0100.
0100 forward the request to next(1,2).

1211

0100
0201

32

1211

0100
0201

0210

route(0212) received at 0201.
0201 forward the request to next(2,1).

33

1211

0100
0201

0210

0211

0201 found that it is within the range of its
leaf set, and forward it to the closest node.

34

After 4 lookups, we found
the node closest to 0212 is
0211.

35

We can now implement the
following using route()

insert (key, object)
delete (key)

obj = lookup (key)

36

Scribe
Application-Level Multicast over Pastry

37

Recall: IP multicast is not
deployed. We therefore need

an alternative multicast solution.

38

In Application-Layer Multicast,
nodes duplicate and forward

messages at the application layer.

39

Nodes need not be a subscriber
of a group to forward messages

for the group.

40

41

A major component of
application-layer multicast is

construction of multicast tree (or,
who should forward to who?)

42

Scribe uses Pastry to construct
the tree. Each multicast group is

assign a random ID from the same
ID space as nodes and objects.

43

The node with the closest ID to
the group ID serves as a

“rendezvous point” for the group.

44

0210

Tree for group 0212

0200

0221
0110

21010001

45

0210

1200 join the group by routing a join message to group ID.

0200

0221
0110

21010001

1200

46

DHT-based
P2P Architecture

47

