
DHT-based 
P2P Architecture
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DHT: 
Distributed Hash Table
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Hash Table

insert (key, object)
delete (key)

obj = lookup (key)
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Distributed Hash Table

insert (key, object)
delete (key)

obj = lookup (key)
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DHT: 
Objects can be stored 

in any node in the 
network.
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Example:
Given a torrent file, find 
the list of peers seeding 
or downloading the file.
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Implementation: 
A centralized directory of 
which node stores which 
key (object).
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How to do this in a fully 
distributed manner?
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Idea:  Have a set of 
established rules to decide 
which key (object) is stored 
in which node.
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Rule:  Assign IDs to nodes 
and objects.  An object is 
stored in the node with 
closest ID.
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How to assign ID?

Given a object, how to find 
the closest node?
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Pastry
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To assign ID, we can use a 
hash (e.g. into a 128 bit 
string).

e.g., hash IP address, URL, 
name etc.
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To find the closest node to 
a given object, each node 
can store the list of all 
other nodes.

But this is not scalable.
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More scalable solution: Each 
node only knows a small, 
constant number of nodes, in 
a routing table.
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Suppose an ID is of the form

     	 	 	 	 d1 d2 d3 ... dm

with digit di = {0, 1, 2, ... n}
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Suppose an ID is of the form
     	 	 	 	 d1 d2 d3 ... dm

with digit di = {0, 1, 2, ... n-1}

e.g., n = 10, m = 4, then ID 
looks like 0514, 2736, 4090 
etc.
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Suppose an ID is of the form
     	 	 	 	 d1 d2 d3 ... dm

with digit di = {0, 1, 2, ... n-1}

e.g., n = 3, m = 4, then ID 
looks like 1210, 1102, 2011 
etc.
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A node knows (m)x(n-1) 
neighbors -- m groups, each 
group with n-1 entries.
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0121 137.12.1.0

2001 22.31.90.9

1021 45.24.8.233

1121 :

1210 :

1222 :

1200 :

- -

Routing Table for Node 1201
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Each node i keeps a table

next(k,d) = address of node j such that

1. i and j share prefix of length k
2. k+1 digit of j is d
3. node j is the “physically closest” match
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In addition, each node knows 
L other nodes with closest 
ID.  (L/2 above, L/2 below)
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1122 2.12.1.0

1200 12.30.99.90

1202 78.8.73.231

Leaf Set for Node 1201
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Visualizing Pastry
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00002222
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00002222
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00002222

Any object whose IDs that falls within the 
blue region is stored in node A.

A
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Leaf Sets
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Example Routing Table

1201

0121

2101

1021
1121
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Recall that we want to find 
the node with ID closest to 
the ID of a given object.

node = route(object_id)
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route(0212) issued at node 1211.
1211 forward the request to next(0,0).

1211

0100
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route(0212) received at 0100.  
0100 forward the request to next(1,2).

1211

0100
0201
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1211

0100
0201

0210

route(0212) received at 0201.  
0201 forward the request to next(2,1).
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1211

0100
0201

0210

0211

0201 found that it is within the range of its
leaf set, and forward it to the closest node.
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After 4 lookups, we found 
the node closest to 0212 is 
0211.
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We can now implement the 
following using route()

insert (key, object)
delete (key)

obj = lookup (key)
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Scribe
Application-Level Multicast over Pastry
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Recall: IP multicast is not 
deployed.  We therefore need 

an alternative multicast solution. 
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In Application-Layer Multicast, 
nodes duplicate and forward 

messages at the application layer.
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Nodes need not be a subscriber 
of a group to forward messages 

for the group.
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A major component of 
application-layer multicast is 

construction of multicast tree (or, 
who should forward to who?)
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Scribe uses Pastry to construct 
the tree.  Each multicast group is 

assign a random ID from the same 
ID space as nodes and objects.
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The node with the closest ID to 
the group ID serves as a 

“rendezvous point” for the group.
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0210

Tree for group 0212

0200

0221
0110

21010001
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0210

1200 join the group by routing a join message to group ID.

0200

0221
0110

21010001

1200
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DHT-based 
P2P Architecture
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