DH I-based
P2P Architecture

DHT:
Distributed Hash Table

Hash Table

insert (key, object)
delete (key)
obj = lookup (key)

Distributed Hash Table

insert (key, object)
delete (key)
obj = lookup (key)

DHT:

Objects can be stored
in any node in the
network.

Example:
Given a torrent file, find
the list of peers seeding
or downloading the file.

Implementation:

A centralized directory of
which node stores which
key (object).

How to do this in a fully
distributed manner?

Idea: Have a set of
established rules to decide
which key (object) is stored
in which node.

Rule: Assign IDs to nodes
and objects. An object is
stored in the node with
closest ID.

How to assign |1D!?

Given a object, how to find
the closest node!

To assign ID, we can use a
hash (e.g.into a 128 bit
string).

e.g., hash IP address, URL,
hame etc.

To find the closest node to
a given object, each node
can store the list of all
other nodes.

But this is not scalable.

More scalable solution: Each
node only knows a small,
constant humber of nodes, in

a routing table.

Suppose an ID is of the form
didzdsz...dm

with digit di= {0, I, 2, ... n}

Suppose an ID is of the form
didzdsz...dm
with digit di= {0, I, 2, ... n-1}

e.g.,n=10,m = 4,then ID
looks like 0514, 2736,4090
etc.

Suppose an ID is of the form
didzdsz...dm
with digit di= {0, I, 2, ... n-1}

e.g.,n =3, m=4then ID
looks like 1210, 1102,201 |
etc.

A node knows (m)x(n-1)
neighbors -- m groups, each
group with n-1 entries.

Routing Table for Node 201

0121 137.12.1.0
2001 | 22.31.90.9
1021 | 45.24.8.233
112]
1210
1222
1200

Each node i keeps a table

next(k,d) = address of node j such that

|.i and j share prefix of length k
2. k+1 digit of jis d
3.node j is the “physically closest” match

In addition, each node knows

L other nodes with closest
ID. (L/2 above, L/2 below)

Leaf Set for Node 1201

| 122 2.12.1.0

1200 | 12.30.99.90

1202 | 78.8.73.231

Visualizing Pastry

=
_

2222 . 0000

2222 . 0000

s

Any object whose |IDs that falls within the
blue region is stored in node A.

Leaf Sets

Example Routing Table

2101
0121

1201

1021

| 121

Recall that we want to find
the node with ID closest to
the ID of a given object.

node = route(object id)

route(0212) issued at node 1211.
|21 | forward the request to next(0,0).

1211 O O O

route(0212) received at 0100.
0100 forward the request to next(l,2).

2100 O O O

O O
O - 0201

0100

O O

route(0212) received at 0201.
0201 forward the request to next(2,1).

2100 O O O

0210

0201

0201 found that it is within the range of its
leaf set, and forward it to the closest node.

021 |
1211 O O O
Q 0210
O O 0201
0100

O O

After 4 lookups, we found
the node closest to 0212 is
0211.

Ve can now implement the
following using route()

insert (key, object)
delete (key)
obj = lookup (key)

Scribe

Application-Level Multicast over Pastry

Recall: IP multicast is not
deployed. We therefore need
an alternative multicast solution.

In Application-Layer Multicast,
nodes duplicate and forward
messages at the application layer.

Nodes need not be a subscriber
of a group to forward messages
for the group.

A major component of
application-layer multicast is
construction of multicast tree (or,
who should forward to who!?)

Scribe uses Pastry to construct
the tree. Each multicast group is
assign a random ID from the same
|ID space as nodes and objects.

The node with the closest ID to
the group ID serves as a
“rendezvous point” for the group.

O

0001

O

Tree for group 0212

0210 O

022]

1200 join the group by routing a join message to group ID.

0210 O
Q 1200
O
0200 ,
O v
0221 d"
0110

0001 é 2101

DH I-based
P2P Architecture

