
DHT-based P2P
Architecture

1

No server to store
game states

2

Not scalable to replicate
states of every object in
the game in every client

3

Idea: split responsibility
of storing the states
among the clients

4

Who store what?

5

Knutsson’s Idea: divide game
world into region and assign
region coordinator to keep
the states in the region.

6

When a player needs to
read/write the state of an
object, it contacts the
coordinator.

7

Either every client can
maintain a directory of
coordinators, or

8

use DHT (Pastry)

9

Hash regions and nodes
into the same ID space. The
node whose ID is closest to
the ID of a region becomes
the coordinator.

10

Game Map DHT ID space

11

The coordinator is likely to
be not from the same
region it is coordinating,
reducing the possibility of
cheating.

12

The coordinator is the
“server” of the region and
serves as the root of
multicast tree as well.

13

Game Map

14

To subscribe to a region
with ID r, route a JOIN
message to r.

15

0210

1200 join the group by routing a join message to group ID.

0200

0221
0110

21010001

1200

16

0210

1200 join the group by routing a join message to group ID.

0200

0221
0110

21010001

1200

17

To update a state of an
object, route an update
message to the region of
that object.

18

The message will reach
the coordinator. The
coordinator then
forward the updates
along the multicast trees
to subscribers.

19

what if coordinator fails?

20

Pastry would route
messages to the next
closest node.

21

Use the next closest
node to the region as the
backup coordinator.

22

The primary coordinator
knows the backup from
its leave set and replicate
the states to the backup
coordinator.

23

If the backup receives
messages for a region, it
knows that the primary
has failed and takes over
the responsibility.

24

Issues with Knutsson’s scheme

25

1. No defense against cheating

26

2. Large latency when
(i) look for objects in a region
(ii) creating new objects
(iii) update state of objects

27

3. Extra load on coordinators

28

4. Frequent changes of
coordinators for fast moving
players.

29

Knutsson’s design is for
MMORPG game

(slow pace, tolerate latency)

30

Can similar architecture be
used for FPS games?

31

Colyseus

32

1. Distribute the states to
all nodes, not just

coordinator.

33

2. Support multi-
dimensional interest

management

34

3. Reduce latency by
prefetching

35

1. Distribute the states to
all nodes, not just

coordinator.

36

Each object is stored in
exactly one node

(“primary”)

37

Other nodes might store
copies of the object

(“replica”)

38

State of an avatar should be
stored primarily in the node of

the corresponding players.

39

State of objects within a player’s
AoI should be stored in the node

of that player as well.

40

But movement of players
leads to migration of primary.

41

Best way to place of primary
states remains open.

42

Interest Management: what are
the objects within my AoI?

43

Colyseus supports multi-
dimensional interest management

44

Mercury

45

Normally DHT supports
exact match query only

46

We need range query to
support generalized
interest management

47

100 < x < 200
600 < y < 700

48

DHT does not support this
efficiently because hashing

distribute the keys randomly

49

A simple but inefficient
solution is to query each
values within the range.

50

Must not use hashed IDs

51

Hx Hy

Each node is in charge of a range of
values in one of the dimension.

Each ring is called a hub.

52

Hx Hy

Each node keep tracks of its
predecessors and successors.

53

Hx Hy

To do an exact lookup, we perform linear
search along the ring

54

Hx Hy

To do a range lookup, we perform linear
search along the ring and follow the succ/pred

links until we find all values in range.

55

O(n) hops is needed for
linear search but we can

reduce it to O(log n) hops

56

Publish/Subscribe
Using Mercury

57

Hx Hy

Node A:
100 < x < 500
600 < y < 700

A new subscription is sent to the
hub that corresponds to one of its
dimension and is stored in nodes
that maintain the values overlapped
with range.

58

Hx Hy

Object M in Node N
x = 400, y = 600

An update (publication) is sent to
all hubs.

59

Mercury interface:

given an AoI, returns the list of
objects within the AoI and the
nodes that store their primary
copy.

60

The node that store matching
publication and subscriptions is
responsible for informing the
subscribers of new publications
and new subscribers of existing
publications.

61

With this list of objects, the player
contacts the corresponding nodes to
read/write the state of the objects
directly.

62

Latency is a concern only during
discovery of new objects. We can
further reduce this latency by
prefetching.

63

Let t be the time needed to send query and get
reply back from Mercury. A player can predict

its position and AoI after time t.

64

Increase t to be more conservative --
less misses, but more unnecessary
object information.

65

The authors showed that Colyseus is
scalable and give latency small enough
for Quake II/III.

66

Recap

67

Without a trusted central server:
1. how to order events?
2. how to prevent cheat?
3. how to do interest management?
4. who should store the states?

68

Many interesting proposals, but no
perfect solution.

1. Increase message overhead
2. Increase latency
3. No conflict resolution
4. Cheating
5. Robustness is hard

69

Many tricks we learnt from pure P2P
architecture is useful if we have a
cluster of servers for games

“P2P among servers”

70

Part III of CS4344
Hybrid Architecture

71

