
DHT-based P2P 
Architecture
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No server to store 
game states
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Not scalable to replicate 
states of every object in 
the game in every client 
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Idea: split responsibility 
of storing the states 
among the clients
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Who store what?
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Knutsson’s Idea: divide game 
world into region and assign 
region coordinator to keep 
the states in the region.
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When a player needs to 
read/write the state of an 
object, it contacts the 
coordinator.
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Either every client can 
maintain a directory of 
coordinators, or 
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use DHT (Pastry)
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Hash regions and nodes 
into the same ID space.  The 
node whose ID is closest to 
the ID of a region becomes 
the coordinator.
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Game Map DHT ID space
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The coordinator is likely to 
be not from the same 
region it is coordinating, 
reducing the possibility of 
cheating.
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The coordinator is the 
“server” of the region and 
serves as the root of 
multicast tree as well.
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Game Map
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To subscribe to a region 
with ID r,  route a JOIN 
message to r.  
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To update a state of an 
object, route an update 
message to the region of 
that object.
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The message will reach 
the coordinator.  The 
coordinator then 
forward the updates 
along the multicast trees 
to subscribers.
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what if coordinator fails?
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Pastry would route 
messages to the next 
closest node.
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Use the next closest 
node to the region as the 
backup coordinator.
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The primary coordinator 
knows the backup from 
its leave set and replicate 
the states to the backup 
coordinator.
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If the backup receives 
messages for a region, it 
knows that the primary 
has failed and takes over 
the responsibility.
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Issues with Knutsson’s scheme
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1.  No defense against cheating

26



2.  Large latency when 
(i) look for objects in a region 
(ii) creating new objects 
(iii) update state of objects
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3.  Extra load on coordinators
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4.  Frequent changes of 
coordinators for fast moving 
players.
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Knutsson’s design is for 
MMORPG game

(slow pace, tolerate latency)
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Can similar architecture be 
used for FPS games?
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Colyseus
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1. Distribute the states to 
all nodes, not just 

coordinator.
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2. Support multi-
dimensional interest 

management
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3. Reduce latency by 
prefetching
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1. Distribute the states to 
all nodes, not just 

coordinator.
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Each object is stored in 
exactly one node 

(“primary”)
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Other nodes might store 
copies of the object

(“replica”)

38



State of an avatar should be 
stored primarily in the node of 

the corresponding players.
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State of objects within a player’s 
AoI should be stored in the node 

of that player as well.
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But movement of players 
leads to migration of primary. 
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Best way to place of primary 
states remains open.
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Interest Management: what are 
the objects within my AoI?
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Colyseus supports multi-
dimensional interest management
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Mercury
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Normally DHT supports 
exact match query only
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We need range query to 
support generalized 
interest management
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100 < x < 200
600 < y < 700
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DHT does not support this 
efficiently because hashing 

distribute the keys randomly
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A simple but inefficient 
solution is to query each 
values within the range.
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Must not use hashed IDs
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Hx Hy

Each node is in charge of a range of 
values in one of the dimension.  

Each ring is called a hub.
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Hx Hy

Each node keep tracks of its 
predecessors and successors.
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Hx Hy

To do an exact lookup, we perform linear
search along the ring
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Hx Hy

To do a range lookup, we perform linear
search along the ring and follow the succ/pred

links until we find all values in range.
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O(n) hops is needed for 
linear search but we can 

reduce it to O(log n) hops
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Publish/Subscribe 
Using Mercury
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Hx Hy

Node A:
100 < x < 500
600 < y < 700

A new subscription is sent to the 
hub that corresponds to one of its 
dimension and is stored in nodes 
that maintain the values overlapped 
with range.
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Hx Hy

Object M in Node N
x = 400, y = 600

An update (publication) is sent to 
all hubs.
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Mercury interface:

given an AoI, returns the list of 
objects within the AoI and the 
nodes that store their primary
copy.
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The node that store matching 
publication and subscriptions is 
responsible for informing the 
subscribers of new publications 
and new subscribers of existing 
publications.
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With this list of objects, the player 
contacts the corresponding nodes to 
read/write the state of the objects 
directly.
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Latency is a concern only during 
discovery of new objects.  We can 
further reduce this latency by 
prefetching.
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Let t be the time needed to send query and get
reply back from Mercury.  A player can predict

its position and AoI after time t.
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Increase t to be more conservative --
less misses, but more unnecessary 
object information.
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The authors showed that Colyseus is 
scalable and give latency small enough 
for Quake II/III.  
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Recap
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Without a trusted central server:
1. how to order events?
2. how to prevent cheat?
3. how to do interest management?
4. who should store the states?
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Many interesting proposals, but no 
perfect solution.

1. Increase message overhead
2. Increase latency
3. No conflict resolution
4. Cheating
5. Robustness is hard
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Many tricks we learnt from pure P2P 
architecture is useful if we have a 
cluster of servers for games 

“P2P among servers”
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Part III of CS4344
Hybrid Architecture
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