David D. Clark’s paper
“The Design Philosophy of the DARPA Internet Protocols”
1988
David Clark

Position: Senior Research Scientist
Office: 32-G816
Phone: 253-6003
E-mail: ddc@csail.mit.edu
Research Directorate(s): AI
URL:

Biography:

Since the mid 70s, Dr. Clark has been leading the development of the Internet; from 1981-1989 he acted as Chief Protocol Architect in this development, and chaired the Internet Activities Board. Recent activities include extensions to the Internet to support real-time traffic, explicit allocation of service, pricing and related economic issues, and policy issues surrounding local loop employment. New activities focus on the architecture of the Internet in the post-PC era. He is chairman of the Computer Science and Telecommunications Board of the National Research Council.
Why the Internet is the way it is?
In the beginning..
Need a communication network that will survive a war:

- multipath between two hosts
- divide messages into message blocks
- deliver the message blocks using store-and-forward switching
FIG. 1 - Centralized, Decentralized and Distributed Networks
ARPANET

packet switch network over phone lines
ARPANET

From “An Atlas of Cyberspace”, A website by Martin Dodge
“Come and write applications using our network!”
Wait, we need to write our own packet switching software??
Interface Message Processors (IMP)

packet switch network over phone lines
Services of IMP:

segmentation: break into 1Kb blocks

header: add header

routing

reliability: ACK, checksum

reassembly

flow control
Both applications need to establish connections
Network Control Program

ftp

telnet

IMP

ftp

telnet

IMP

ftp

telnet

IMP

ftp

telnet
Meanwhile..

PRNET
SATNET
being developed
How to make disjoint networks talk to each other effectively?
Choices

A. Build a tightly integrated, unified network

B. Interconnect existing network
Why?

More practical. Networks represent separately administered entities.
Choices

A. Packet Switching
B. Circuit Switching
Why?

The networks to be integrated are packet switched network. Packet switch is natural choice for the applications at the time (remote login).
FIGURE 1 FIRST ARPA MULTINETWORK DEMONSTRATION
But, NCP assumes reliable network layer (IMP), PRNET is not reliable.
Cerf & Kahn:

What’s the best design for an NCP replacement?

How should the network be attached to each other?
TCP replaces NCP
Cerf & Kahn:

What’s the best design for an NCP replacement?

How should the network be attached to each other?
Introduces

Gateways

Addresses

IP
Goals

Robust - work despite failure of networks or gateways
Versatile - support a variety of services and networks
Permit distributed management of resources
Cost effective
Easy to add new hosts
Permit accounting of resources
Goal

“Survivability in the Face of Failure”

Communication between two entities should continue after temporary disruption without needing to reestablish connection states.

Or

Mask transient failure
Store connection states in

A. packet switching nodes
B. end nodes
Why?

Easier to implement than replication. Replication only protects against finite number of node failures.
“Fate-Sharing”

The only way the states are lost is the failure of end hosts.
Consequences

Stateless packet switchers.

Need to trust end hosts.
Need to support a variety of services
Services

Remote login - low delay, reliable
File transfer - delay not important, reliable
Teleconferencing - reliability not important, low delay
Choice

A. Introduces UDP.
Protocols

IP - datagram-based, best effort
TCP - reliable service over IP
UDP - unreliable service over IP
Compared to

X.25 - provides reliable services
(that cannot be switched off!)
Need to support a variety of networks
Make minimal assumptions

Can transport packets
Best effort delivery
Addressing
Minimum packet size
Not assuming

Reliability
Ordered delivery
Packet prioritization
Broadcast/multicast
Knowledge of network stats
Application-driven

TCP designed for dominant application at the time -- telnet
e.g. stream-oriented seq no
David D. Clark’s paper
“The Design Philosophy of the DARPA Internet Protocols”
1988
Another David D. Clark’s paper “End-to-End Arguments in System Design” 1984 (with Saltzer and Reed)
E2E Argument

A tool to guide designers: which layer to implement a given functionality?
Example

Reliable file transfer between host A and host B
Steps

1. A reads file from disk
2. A transmits file as packets
3. Network delivers packets
4. B receives packets
5. B write data to disk
Possible Errors

1. Disk fault
2. Software bugs
3. Packet loss
4. Processor/Memory errors
5. OS crashes
Choices

A. Make sure every step is reliable

B. End-to-end check and retry (compare checksum, resend if error)
The Argument

To achieve careful file transfer, the transfer application must apply application-specific, end-to-end reliability guarantee.
The Argument

The end-to-end check of the file transfer application must still be implemented no matter how reliable the communication system becomes.
Conclusion

No need to provide reliability guarantee at lower level (e.g. network, OS, hardware)
Actually,

Lower level reliability can improve performance.
To implement at low-level?

Additional cost for applications that do not require the feature.

Less information than the “end”, less efficient.
Other Example: Data Encryption
Choices

A. Encrypt at the network-level
B. Encrypt in the application
Why?

Intercept before reaching the network
Need to trust the network
Still need to authenticate
Other Example:
Duplicate Messages
Other Example: Delivery Guarantees
Other Example: RISC
Other Example: Recovery in Telephony Exchange
The Argument

Any attempt by the computer designer to anticipate the client’s requirements will probably miss the target and the client will end up re-implementing it anyway.
The End Point?
Applications?
Users?
Hosts?
The end-point is a trustworthy entity.
Example

Reliable file transfer between host A and host B
If I don’t trust the file transfer application, I need to check for error myself.
E2E Argument

The function in question can completely and correctly be implemented only with the knowledge and help of the application standing at the endpoints of the communication system. Therefore, providing the questioned function as a feature of the communication system itself is not possible. (Sometimes an incomplete version of the function provided by the communication system may be useful as a performance enhancement)