Vern Paxson's Paper "End-to-End Internet Packet **Dynamics**", 1997/99

22 August 2008

NUS CS5229 Semester 1 2008/09

How often are packets dropped?

How often are packets reordered?

Why these questions?

1. Understand the Internet

when you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind;

- Lord Kelvin

2. Model the Internet

3. Enable more accurate evaluation through simulations

4. Lead to a better application/systems design

How often are packets dropped?

How often are packets reordered?

22 August 2008

How to answer these questions?

Collect lots of packet traces

Analyze the traces

22 August 2008

NUS CS5229 Semester 1 2008/09

Trace collection:

large number of flows

a variety of sites

many packets per flow

use TCP

Why TCP: real-world traffic will not overload the network

Time between measurement is Poisson distributed.

PASTA Theorem: Intuitively, if we make *n* observations and *k* observations is in some state *S* and *n*-*k* in other states, then we can assume prob of observing *S* is approximately *k*/*n*.

Two traces:

N1: Dec94 N2: Nov-Dec95

use tcpdump at sender + receiver

100 kB

Size of file transfered

22 August 2008

NUS CS5229 Semester 1 2008/09

21

Number of sites

22 August 2008

NUS CS5229 Semester 1 2008/09

20800

Number of trace pairs

22 August 2008

NUS CS5229 Semester 1 2008/09

Part 1: The Unexpected

Packet Reordering

2 reorderings

2

5

N1 N2 N2 **36%**

Percentage of connections with at least one out-of-order delivery

Percentage of data packets out-of-order

22 August 2008

NUS CS5229 Semester 1 2008/09

Percentage of ACK packets out-of-order

22 August 2008

NUS CS5229 Semester 1 2008/09

Data packets are usually sent closer together.

22 August 2008

Percentage of packets out-of-order to and from U of Colorado in N1.

Route fluttering: alternate packets can take different route to dest.

Taken from Paxson's PhD Thesis: Alternate routes are taken for packets from WUSTL to U Mannheim

Fig 1 from the paper, showing large gap and two slopes.

Fig 1 from the paper, showing large gap and two slopes.

Impact of Packet Reordering

Recap: TCP's fast retransmit

NUS CS5229 Semester 1 2008/09

NUS CS5229 Semester 1 2008/09

N_d = 3 is a conservative choice.

What if receiver wait longer before sending dup ack?

NUS CS5229 Semester 1 2008/09

2 5 3

Delivery Gap:

time between receiving an out-of-order packet and the packet sent before it.

N1

N2

Waiting time with which 70% of out-of-order delivery would be identified.

41

Is needless retransmission a problem?

Number of good retransmissions for every bad retransmission. $N_d = 3, W = 0$

N1 N2 100

Number of good retransmissions for every bad retransmission. $N_d = 2, W = 0$

N1 N2 **15**

Number of good retransmissions for every bad retransmission. $N_d = 2, W = 20ms$

Packet Corruption

1 in 5000

packet is corrupted

22 August 2008

NUS CS5229 Semester 1 2008/09

49

1 in 65536

corrupted packet goes undetected using TCP checksum

(assuming each possible checksum is equally likely)

1 in 300 million

Internet packet is corrupted and is undetected.

Part 2: Bottleneck Bandwidth

Packet Pair

Problems with Packet Pair

1. Asymmetric Link

2. ACK Compression

3. Out of order delivery

4. Clock resolution

Suppose

B = 1000 kBpsb = 1 kB Q = ?

5. Changing bottleneck bandwidth

NUS CS5229 Semester 1 2008/09

NUS CS5229 Semester 1 2008/09

6. Multi-channel Links

Asymmetric links **ACK** compression **Out-of-order delivery Clock resolution** Changes in bottleneck bandwidth **Multi-channel links**
Measure at receiver: Asymmetric links ACK compression

Packet bunch: Out-of-order delivery Clock resolution Changes in bottleneck bandwidth Multi-channel links

2008/09

22 August 2008

Collect multiple estimates, take the most freq occurrence (modes) as the bottleneck bandwidth.

KBytes/sec

Part 3: Packet Loss

N1 N2

Percentage of packets that were lost.

22 August 2008

NUS CS5229 Semester 1 2008/09

Percentage of loss free connections

22 August 2008

NUS CS5229 Semester 1 2008/09

Loss rate on lossy connections

22 August 2008

NUS CS5229 Semester 1 2008/09

17%

Loss rate on connections from EU to US

22 August 2008

NUS CS5229 Semester 1 2008/09

Are packet losses independent?

Compute: P^u = Pr [p lost] P^c = Pr [p lost | prev pkt lost]

Loss rate for "queued data pkt" on N1

22 August 2008

NUS CS5229 Semester 1 2008/09

22 August 2008

2008/09

Are retransmission redundant?

Unavoidable

Coarse Feedback

Bad RTO

Percentage of retransmissions that are redundant

Type of redundant retransmission in N1.

Part 4: Packet Delay

OTT is not well approximated using RTT/2

ACK Compression

(might affect TCP self-clocking)

ΔT_s Sending interval ΔT_r Receiving interval

22 August 2008

NUS CS5229 Semester 1 2008/09

$\xi = \frac{\Delta T_r + C_r}{\Delta T_s - C_s}$

$\begin{array}{l} Compression \\ event \ \text{if} \ \xi < .75 \end{array}$

N1 N2 50% 60%

Percentage of connection that experiences at least one compression event.

N1 N2 50% 60%

Percentage of connection that experiences at least one compression event.

2

Average number of events per connection.

22 August 2008

NUS CS5229 Semester 1 2008/09

Estimating Available Bandwidth

Q_b: time to transit the bottleneck

 ψ_i : expected time spent queuing behind predecessor (derived from sending time)

 γ_i : diff between packet OTT and min OTT

 $\psi_1 = 0$ $\psi_i = \max\{\psi_{i-1} - (T_i - T_{i-1}), 0\}$

$\beta = \frac{\sum_{i} (\psi_i + Q_b)}{\sum_{i} (\gamma_i + Q_b)}$

β = 1 means all bandwidth is available.

$\beta = 0$ means none of the bandwidth is available.

Fig 10 from the paper, showing distribution of available bandwidth.

Conclusion

The numbers in the paper are not important. (the Internet has changed)

Measurement is difficult but useful

Many new techniques needed (e.g to measure bottleneck bandwidth)

We can improve current design (e.g. TCP if we know more about reordering)

We can identify problem (e.g. packet corruption)

We can better model the behavior (e.g. bursty packet loss)

We can infer much info from just a packet trace (e.g. available bandwidth)