
An Adaptive Protocol for Locating Programmable Media
Gateways

Wei Tsang Ooi
Department of Computer Science

Cornell University

weitsang@cs.cornell.edu

Robbert van Renesse
Department of Computer Science

Cornell University

rvr@cs.cornell.edu

ABSTRACT
We describe a new control protocol called Adaptive Gate-
way Location Protocol (AGLP). In this protocol, a client
requests a computation on a multimedia stream. AGLP dis-
covers programmable Internet servers that process multime-
dia streams, and assigns the computation to one of these so-
called gateways. AGLP continuously searches for alternate
gateways, and, transparent to users, migrates computations
between them to improve efficiency. The AGLP protocol
uses soft-states for robustness and scale. Simulation results
support that our protocol quickly locates gateways and mi-
grates computations while keeping the load on the network
low. We also outline planned enhancements to AGLP.

1. INTRODUCTION
There is a growing interest in adding multimedia process-
ing capabilities into the network. For example, active ser-
vices such as MeGa [1] allow an application-level gateway to
transcode multimedia streams into lower-bandwidth streams
suitable for slow links, while still allowing the senders to send
high quality high bandwidth streams to other well-connected
receivers. Here at Cornell University, the Degas project [10]
extends the model of MeGa, by allowing receivers to upload
a program into a gateway to customize the processing of
RTP media streams. Examples include creating a picture
in picture effect by merging two video streams, or switch-
ing between different streams automatically based on audio
signals. With multiple gateways running in the network the
question arises as to which gateway should be chosen to run
such a program.

Running the program in a gateway that is strategically lo-
cated in the network could use network bandwidth more ef-
ficiently. For example, if the output video stream has lower
bandwidth than the input stream, then the program should
be run on a gateway that is close to the sender. On the other
hand, if the program outputs a higher bandwidth stream,
the program should be run close to the receiver.

The problem of determining the best gateway is an opti-
mization problem. However, the dynamic nature of the net-
work prevents us from solving the problem using a central-
ized, combinatoric algorithm. Senders and receivers may
join and leave video sessions, new gateways may be added
and deleted, and the underlying network behavior changes
continuously. Therefore, we opt for a distributed, adaptive
algorithm in Degas.

In this paper, we present the Adaptive Gateway Location
Protocol (AGLP) used in Degas for choosing a gateway that
efficiently utilizes bandwidth. Although we design AGLP to
work with Degas, we believe that it can be modified to suit
other applications as well. AGLP is a soft-state protocol
based on the announce-listen model widely used in MBone
tools. The simplicity of the model allows us to build a scal-
able, robust protocol that is resilient to crashes and message
loss. AGLP adapts to changing network conditions, as well
as the birth and death of gateways, senders, and receivers, by
migrating computations (also called services) between gate-
ways. An additional requirement on our protocol is that it
assigns a new service to a gateway rapidly.

We designed our protocol to be compatible with existing
MBone tools. No changes are required at the senders. This
means that traditional MBone tools such as vic [7] and ivs
[13] can be used as the video sending application. This
makes it possible to deploy our protocol without affecting
the existing MBone community.

Our simulations support that AGLP achieves its goals of
rapid assignment and adaptive placement, while keeping the
load on the network low. The rate of migrations is small,
and a good gateway for such a migration can be selected
within a minute.

The rest of this paper is organized as follows. We describe
the AGLP protocol in Section 2. We analyze the perfor-
mance in Section 3. In Section 4, we discuss improvements
to AGLP we plan to make. Related work is described in Sec-
tion 5 and we conclude our paper in Section 6. Please note
that an in-depth discussion about Degas is out of the scope
of this paper. Therefore certain details about the gateways
have been omitted to simplify the presentation. Interested
readers should refer to [10] for a full description of the Degas
system.

2. PROTOCOL DESCRIPTION
Before we describe our protocol, we present the symbols and
terminology used in our description:

• g is a well-known multicast channel used for exchang-
ing control messages among the gateways, and between
the gateways and client. Every gateway and client lis-
tens to g.

• s is a multicast session.

• P is a program that specifies an input session s and
the processing to be done on video streams from s.

• C is the client that requests some processing to be
done on video streams.

• G0, G1, .., Gm are gateways available for running a pro-
gram requested by C. One of the gateway will be se-
lected to service C. Without loss of generality, we let
G0 be the current gateway servicing C.

• S0, S2, .., Sk are video senders participating in video
session s. These senders can be normal MBone video
sources. They need not be aware of the existence of
the gateways or C.

For simplicity, we assume that each client can submit only
one program at a time, and each program can read from
only one session. We also assume that all participants run
the network time protocol NTP [8], which we rely on to
measure the propagation delay of a packet.

Our protocol consists of two phases (see Figure 1). The
first phase, Quick-Start Phase, chooses a gateway G0 that is
close to C, without worrying about optimizing bandwidth
utilization. The second phase, the Adapting Phase, opti-
mizes the bandwidth utilization by migrating services to a
better gateway. We describe these two phases in Section 2.1
and Section 2.2 respectively.

Evaluation Selection Handoff

Adapting Phase

Quick-Start Phase

Figure 1: Different phases in the AGLP Protocol.

2.1 Quick-Start Phase
There are two reasons why the Quick-Start Phase is neces-
sary. First, we want to reduce the start-up latency experi-
enced by the user. Secondly, we do not have any knowledge
about the behavior of the program requested by the client,
nor do we know anything about the session (such as the
identity of the senders, and bandwidth of incoming video
streams). The gateway we select at the Quick-Start Phase
serves as a temporary gateway. This gateway collects in-
formation so that further optimization can be done. The
Quick-Start Phase works as follows (see Figure 2).

The client C who wants to request some processing to be
done on the gateway first multicast a request message onto
the common multicast channel g. A gateway Gi that re-
ceives the request message and is available to serve C replies

ClientGateway Gateway Gateway Gateway

Script
Upload

REQUEST

OFFER

SERVE

timeout

SERVED
BY

G1 G2 C G3G0

Figure 2: The Quick-Start phase of AGLP.

with a offer(C) message. However, instead of replying im-
mediately, we employ a technique commonly known as Mul-
ticast Damping to reduce the number of offer messages re-
ceived by C. Each Gi waits for time Toffer,i before multicas-
ting the offer onto g. Moreover, a gateway will suppress its
offer(C) message if it has received an offer(C) message from
another gateway while waiting.

Client C listens to g and accepts the first offer that it re-
ceives. Without loss of generality, let the first offer that
C receives be from gateway G0. C subsequently creates a
TCP connection with G0 at port p, where p is a port number
embedded in the offer(C) message. Subsequent offers from
other gateways will be ignored by C.

C sends the necessary information needed for processing to
G0 using the TCP connection. This includes the multicast
address of the input session, s, the multicast address of the
output session, s′, and a program that specifies how to pro-
cess the incoming video streams.

After G0 has received all the necessary information, G0 joins
the session s, processes incoming video streams, and multi-
casts the output onto channel s′ (see Figure 3). C listens to
channel s′ to receive the post-processed video it requested.
At this point, we enter a state where gateway G0 is serving
client C. G0 and C periodically announce this relationship
onto g. Every Tserve seconds, G0 announces a serve(C) mes-
sage onto g. Similarly, C sends a served-by(G0) message to
G0 every Tserved−by seconds.

The receipt of serve(C) message by C indicates that the
Quick-Start Phase has completed successfully. If C does not
receive any serve(C) message in a period of length Trequest,
C will restart the whole process by sending another re-

Session s

Session s’

C

Go

Senders

Figure 3: Gateway G0 listens to session s and re-
ceives video streams from the senders. G0 processes
those streams and sends the result out onto session
s′, on which C is listening.

quest message. Otherwise, the Quick-Start is successful, and
AGLP proceeds to the next phase.

2.2 Adapting Phase
During the adapting phase, a service for C may be migrated
from the current gateway G0, to another more suitable gate-
way, as more information about the session is discovered
and changes in the environment are detected. The adapt-
ing phase consists of three stages: evaluation, selection and
replacement (see Figure 4 for an example). In the evalua-
tion stage, each gateway evaluates itself against G0 to check
if it is more suitable than G0 for serving C. Once a gate-
way determine that it can serve G0 better, it will notify G0.
G0 periodically runs a selection process, to select the best
alternate gateway. Once a replacement Gr is chosen, G0

hands-off the service for C to Gr. We explain these three
stages in greater detail in the following subsections.

ClientGateway Gateway Gateway Gateway

SERVE

REPLACE

OK

G3C

x = -14

HANDOFF

Upload
Script

HANDOFF

select G3

G1 G2 G0

x = 50 x = 100

Figure 4: The Adapting phase of AGLP.

2.2.1 Stage 1: Evaluation
We first introduce a few variables that corresponds to the
criteria used to perform evaluation:

• bi: the bandwidth of video stream from sender Si

• bC : the bandwidth of the output video stream

• di,j : the distance between gateway Gi and sender Sj

• di,C : the distance between gateway Gi and client C

We now describe how this information is collected and how
the evaluation is performed.

After joining session s, G0 starts to collect information about
the current session. This information includes the identity
of the senders in the session, and bandwidth of the input
streams and the output stream, and the distance (or latency)
d0,j from each sender Sj . The identities and distances can
be learned from RTCP [12] packets, while the bandwidth
information can be gathered by simply counting the packets
as they are being processed. This information is included in
the serve messages and multicast onto group g.

Each gateway Gi, that is available to serve C, maintains a
table of distances to itself from the sources, Dself = di,0..di,k.
This table is maintained as soft-states, and is refreshed by
periodically joining session s, and listening for RTCP pack-
ets. A distance can be calculated by subtracting the NTP
timestamp of a sender’s report from the arrival time.

Each gateway, upon receiving a serve(C, s) message from
G0, starts the evaluation test to compare the suitability of
serving client C. The test produces a score, xi. This score
is calculated as follows. First, let Ui be

Ui =
X

j

(bj × di,j) + bC × di,C

Intuitively, Ui corresponds to the bandwidth utilization. We
calculate xi as

xi = U0 − Ui

A score xi > 0 indicates that Gi is better than G0 for serv-
ing C. Each gateway with a score larger than ε will try to
replace the current gateway. We choose a threshold ε in-
stead of 0 for two reasons. First, a score between 0 and ε
indicates that the gateway is only slightly better than G0.
The small improvement that we gain is not worthy of the
overhead caused by the replacement process. Second, by ig-
noring gateways that are only slightly better, we can avoid
unnecessary oscillation caused by small changes in network
conditions. In the next subsection, we discuss how a replace-
ment is selected by G0.

2.2.2 Stage 2: Gateway Replacement
After evaluation, each gateway with a score larger than ε
will notify the current gateway, and wait for a reply. This
process is similar to the Quick-Start Phase. Again, we use
Multicast Damping for scalability reasons. The gateways
start a timer and wait for Treplace,i seconds. When the timer
expires, gateway Gi multicasts a replace(C, xi) message onto

g. If Gi receives another replace(C,xj) message from another
gateway Gj and xj > xi, then Gi suppresses its own replace
message.

The current gateway keep tracks of the gateway with the
lowest score so far, which we call the replacement gate-
way Gr. Tadapt seconds after G0 receives the first replace
message, gateway G0 unicasts a message handoff(C,p), to
Gr. G0 then establishes a TCP connection to Gr at port
p through which G0 sends the program and input session
address s to Gr. Gr subsequently starts the service, and
multicasts a handoff-ok(C,G0,s

′′) announcement, where s′′

is a new multicast address where the processed media stream
is going to be sent.

2.2.3 Stage 3: Service Handoff
Gr joins session s, starts processing the input video streams,
and sends the output onto session s′′. Gr also begins the
periodical announcement of serve(C, s′′) messages.

At this stage, both Gr and G0 are providing service for C.
Upon receiving both handoff-ok(C,G0,s

′′) and serve(C,s′′),
C knows that another more suitable gateway has been found
and this new gateway is ready to serve C. C can now switch
from group s′ to group s′′. C stops announcing served-
by(C,G0) and starts announcing served-by(C,Gr). G0 stops
processing video streams from s eventually after no served-
by(C,G0) is received for Tbye seconds.

We provide a summary list of messages involved in this pro-
tocol in Table 1.

3. ANALYSIS AND SIMULATION
In this section we evaluate our protocol. In particular, we
want to confirm that our protocol satisfies two desirable
properties:

• robustness:

– a gateway eventually runs the service requested
by a client;

– all services are eventually terminated when no
client is listening;

– the service is eventually moved to the optimal
gateway.

• scalability:

– as the number of gateways increases, the number
of states maintained and the number of messages
exchanged does not increase significantly.

3.1 Robustness
We achieve robustness by maintaining only soft-states which
are periodically forgotten and need to be refreshed. Soft-
state protocols are used in many light-weight protocols in
MBone applications such as SDP [6] and RTCP [12]. Failure
recovery is automatic in soft-state protocols, since the failure
of a gateway or network link will cause refresh messages to be
lost and states to be forgotten. Refresh messages in AGLP
include serve and served-by—we illustrate how they support
failure recovery by describing two scenarios below.

• Suppose that the gateway that is serving C crashes.
The periodic serve message will cease and C will even-
tually forget that some gateway is servicing it. C will
start requesting service again by entering the Quick-
Start phase.

• Suppose that the message handoff-ok is lost on its way
to C. C will not switch to the new gateway. Even
though the new gateway has started serving C, it will
not receive a served-by message from C. The new gate-
way will eventually timeout after Tbye seconds, and end
its service.

We simulated AGLP in networks with up to 50% loss rate.
Although this caused somewhat longer start-up/handoff la-
tencies and redundant requests, the protocol still worked
correctly.

3.2 Scalability — Memory Requirements
We envision that the number of gateways running in the net-
work |G| will be large (up to thousands), and the number
of clients requesting service to be in the same range. The
number of senders per client, |S|, however, is expected to be
small (say, less than 10). Similarly, because the processing
requested by client could be computation intensive, we ex-
pect the maximum number of clients that can be served by
each gateway, |C|, to be small as well.

Each gateway maintains the following soft-states:

• A list of clients it is currently serving;

• The gateway with the best score so far;

• A table that records the distance to all senders for each
client it serves;

• A table that records the bandwidth of all input streams
and output streams for each client it serves.

On the client side, the only soft-states that are maintained
are the sessions to listen to, and the gateway currently serv-
ing the client.

The size of the state maintained in the gateway is thus
O(|S| × |C|), and is O(1) for the client. Since a gateway
does not keep state for every other gateway, and both |S|
and |C| are expected to be small, our protocol is scalable in
terms of memory size.

3.3 Scalability — Networking
Multicast Damping is a widely used technique to improve
scalability in one-to-many protocols (e.g., it is used in IGMP
[4] and SRM [5]). As described in Section 2, we use Multi-
cast Damping for the request-offer and serve-replace message
exchanges to avoid implosion of messages. The effectiveness
of this technique, however, depends heavily on the time-
out values chosen, Toffer and Treplace. Even though there
is extensive work done in analyzing the effect of timers in
Multicast Damping (see, for example, [5] and [9]), there are
some unique requirements for our timers. Toffer should be
proportional to the distance from the client, so that the first

request() A request for service by a client.

offer(C, p) A response to a request message from client C. Indicates that the sending gateway is available to
serve C. C should contact this gateway at port p for details.

serve(C, S, D) The sending gateway is currently running a service for C. S is the list of session members, D is
a vector containing distances from each member in S as well as the distance from C.

served-by(G) Response to the gateway serving C to notify that C is still listening to output from G.

replace(C, x) Notify others that the sending gateway is more suitable for serving C. x indicates how much better
the sending gateway is.

handoff(C, p) Message from the current gateway to G′ to indicate that G′ has been chosen to replace the current
gateway for serving C. G′ should listen to port p for service specification.

handoff-ok(C, G, s′) Announcement from a new gateway G′ that it is ready to replace G to serve C. s′ is the
new multicast address where the output from the service will be sent.

Table 1: A summary of message types and their contents in AGLP

reply received by the client comes from the gateway that is
closest to the client. For Treplace, the timer value should be
inversely proportional to the score of a gateway. We discuss
these two parameters in this section.

In order to evaluate the performance of AGLP under these
parameters, we simulate our protocol using the ns2 network
simulator and run it on a 500-node topology generated using
the gt-itm toolkit [2]. We place gateways and the client at
random locations in the generated network.

In AGLP, we set the value of Toffer to k×d, where k is a con-
stant and d is the propagation delay between gateway and
client, measured using an NTP timestamp embedded in the
request message. A small value of k results in a lower start-
up latency, but a larger number of duplicates. The number
of duplicates also depends on the distribution of gateways
in the network. If gateways are sparsely distributed, then
the number of duplicates increases.

We tried different values of k in our simulations. In Figure
5 we show the average number of duplicate offer messages
received by the client for different values of k in cases where
the number of gateways G is either 50, 100, or 200. A value
of k ≥ 2 causes the number of duplicates to stay below 3
even as the number of gateways increases up to 200. Figure
6 shows the latencies that the client experiences.

We conclude that k = 2 works well in reducing the number
of duplicates while keeping the start-up latency within a
reasonable time. In Figures 7 and 8 we show the behavior of
Multicast Damping as a function of the number of gateways
in more detail, along with a 95% confidence interval for each
measurement. Our experiments indicate that AGLP scales
well for k = 2. In the remaining experiments we are using
this value for k.

We set the value of Treplace to k′/x, where x is the score. In
Figure 9 we show the number of duplicate replace responses
as a function of k′. We see that for k′ > 500 the number of
duplicates is under 10, which we consider acceptable. Figure

0

2

4

6

8

10

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
u
m
b
e
r

o
f

M
e
s
s
a
g
e
s

k

Number of Duplicate Offer Messages vs k

G = 50
G = 100
G = 200

Figure 5: Duplicate offer messages for different val-
ues of k and G (the number of gateways).

0

2

4

6

8

10

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

L
a
t
e
n
c
y

(
s
e
c
o
n
d
s
)

k

Request-Offer Latency vs k

G = 50
G = 100
G = 200

Figure 6: The delay between sending a request and
receiving the first offer.

0
0.5
1

1.5
2

2.5
3

3.5
4

50 100 150 200 250 300 350 400 450 500

N
u
m
b
e
r

o
f

M
e
s
s
a
g
e
s

Number of Gateways

Number of Duplicate Offer Messages
vs Number of Gateways

Figure 7: Duplicate offer messages for k = 2.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

50 100 150 200 250 300 350 400 450 500

L
a
t
e
n
c
y

(
s
e
c
o
n
d
s
)

Number of Gateways

Request-Offer Latency vs Number of Gateways

Figure 8: The delay between sending a request and
receiving the first offer for k = 2.

10 shows that the average number of migrations before a
service reaches the optimal gateway goes down with k′. We
were surprised by this result. After all, as k′ goes up, it
becomes less likely that the client will receive a response
from the optimal gateway within Tadapt. However, after
further consideration we are able to explain this.

0

5

10

15

20

100 200 300 400 500 600 700 800 9001000

N
u
m
b
e
r

o
f

M
e
s
s
a
g
e
s

k’

Number of Duplicate Replace Messages vs k’

G = 50
G = 100
G = 200

Figure 9: Duplicate replace messages.

After the current gateway gets the first replace response, it
waits Tadapt seconds before selecting a gateway to hand-off
to. That is, after sending the last serve message, it waits

0

0.5

1

1.5

2

2.5

3

100 200 300 400 500 600 700 800 9001000

N
u
m
b
e
r

o
f

M
i
g
r
a
t
i
o
n
s

k’

Number of Migrations vs k’

G = 50
G = 100
G = 200

Figure 10: Number of migrations needed to migrate
to an optimal gateway.

a total of RTT1 + k′/x1 + Tadapt seconds, where RTT1 is
the round-trip time to the first responding gateway, and
x1 is the score at that gateway. In order for the optimal
gateway’s response to be received in time, we need to have
the following condition (see Figure 11):

RTToptimal +
k′

xoptimal
< RTT1 +

k′

x1
+ Tadapt

We can rewrite this as:

RTToptimal − RTT1 − Tadapt

(1
x1

− 1
xoptimal

)
< k′

Thus, the larger k′, the more likely that the optimal gateway
responds in time, as reflected in Figure 10.

k’/x 1
k’/x optimal

Tadapt

pick
best
gateway

SERVE

G0
Gateway GatewayGateway

G1 G optimal

REPLACE

Figure 11: Exchanges of serve and replace messages.

In the following experiments, we use k′ = 1000 as a conser-
vative choice. For this value of k′, we find that there are no
more than 8 replace messages received (see Figure 12) even
if we run a gateway on all 500 nodes in the network. There
were at most two migrations in all runs of our simulations
(see Figure 13 for averages and 95% confidence intervals).
In Figure 14 we show how this translates into time. On
average, all services were migrated to the optimal gateway
within 60 seconds, which we find acceptable.

0

2

4

6

8

10

50 100 150 200 250 300 350 400 450 500

N
u
m
b
e
r

o
f

M
e
s
s
a
g
e
s

Number of Gateways

Number of Duplicate Replace Messages
vs Number of Gateways

Figure 12: Duplicate replace messages received by a
gateway for k′ = 1000.

0

0.5

1

1.5

2

2.5

3

3.5

4

50 100 150 200 250 300 350 400 450 500

N
u
m
b
e
r

o
f

M
i
g
r
a
t
i
o
n
s

Number of Gateways

Number of Migrations vs Number of Gateways

Figure 13: Number of migrations to migrate to an
optimal gateway for k′ = 1000.

0

10

20

30

40

50

60

70

50 100 150 200 250 300 350 400 450 500

T
i
m
e

t
o

M
i
g
r
a
t
e

(
s
e
c
o
n
d
s
)

Number of Gateways

Time to Migrate to Optimal Gateway
vs Number of Gateways

Figure 14: Time to migrate to an optimal gateway
for k′ = 1000.

4. ENHANCEMENTS TO AGLP
Our current implementation of AGLP, as described above,
has many restrictions. For example, we assume that each
service reads from only one multicast session, and outputs
to another session. We also assume that each client can
request one service at a time. As described below, we plan
to relax these restrictions.

4.1 Multiple Receivers
Although so far we have assumed that the client is the only
one who benefits from the service provided by the gate-
ways, we can easily allow multiple clients to receive the post-
processed streams from gateways. Since the post-processed
video stream is multicast onto session s′, any host that is in-
terested in the post-processed stream can tune in to session
s′ to receive the stream. This can be done as follows.

We will augment the Session Description Protocol to include
information about services currently provided by the gate-
ways. A host can view the list of services available using a
GUI front end, and join any session that it is interested in.
The host will periodically announce served-by messages onto
the common multicast channel g. The served-by messages
from multiple receivers can be consolidated by using Multi-
cast Damping: if a receiver R receives a served-by message,
then R reschedules the announcement of its own served-by
message. This reduces the total number of served-by mes-
sage sent. If the original client C that initiated the service
quits, the gateway will continue serving the other receivers
as it is still receiving served-by messages.

Two problems arise. First, what if the gateway servicing
the receivers fails after C quits? The other receivers do not
have access to the original program submitted by C, and
therefore cannot restart the service. One possible solution
to the first problem is to have each receiver download the
program from the gateway (if C permits it) as they join
session s′. Another solution is to let the gateway periodically
multicast the programs onto a separate channel.

The second problem concerns the calculation of scores dur-
ing evaluation. Since the output from the gateway is now
multicast to multiple receivers, how can we characterize the
bandwidth utilization of the output stream? We can es-
timate the propagation delay from the gateway to all re-
ceivers by using receiver report RTCP packets, but since
bandwidths are shared in the multicast tree, we cannot sim-
ply sum the products of the bandwidth and the distances.
We plan to investigate both problems further.

4.2 Composable Services
So far we have tacitly assumed that each client requests ser-
vice from only one gateway. We can extend AGLP to allow
multiple services to be requested by a client. An interesting
consequence of this is that the client can submit multiple
programs that can be composed to perform a task.

For example, a client would like to create a ”Quad Split-
ter” view of four video streams from some session s. One
approach is to submit a program that says ”take these four
streams, scale each of them down by half, and arrange them
to create a quad-splitter view.” If the four video sources are
located far from each other, this program is best run at a

gateway somewhere in the middle of the four sources. How-
ever, if a client can request multiple services, then a better
way to create a quad-splitter view is to write five programs:
each of the first four programs reads from one video sender,
scales it by half, and sends the scaled video out to a new
session. The fifth program reads from the output sessions of
the first four programs and creates the quad-splitter view.
Our adaptive protocol will cause the scaling processes to be
performed near the senders, resulting in more efficient use
of bandwidth (see Figure 15)

Several modifications to AGLP are needed to support this.
First, a gateway G needs to know whether it is receiving
data from another gateway G′. This is needed so that when
a service on G′ is migrated to another gateway, G can de-
tect the handoff and switch its input session to the output
session of the new gateway. The client can indicate this in-
formation to G in the program uploaded to G. G can then
pay attention to any handoff message from G′, and switch
accordingly.

Secondly, a gateway must be able to receive and process
streams from multiple sessions. We have been assuming that
a service reads multiple streams from a single session, and
output to one session. This is inadequate if we want to
allow composable services. For instance, say gateway G is
receiving streams from two gateways G′ and G′′. Initially
G′ and G′′ can send their outputs to a shared session, which
G can listen to. As services on G′ and G′′ migrate to other
gateways, G will have to listen to two different sessions to
receive its inputs.

The third modification needed concerns failure recovery when
a gateway G fails. One way to recover from the failure is to
restart only the service that ran on that gateway. However,
the client needs to maintain consistent information about
where each of the gateways receives its input from and where
they send their outputs to, so that the client can modify its
program to indicate the new input or output session. Main-
taining consistent information is hard because our protocol
uses soft-states. We believe that a better solution is to let
the client restart all services from scratch. Even though this
is inefficient as it will cause all living gateways to stop run-
ning their service for C, this does provide a quick recovery
from failures.

4.3 Load Balancing
We have implemented a simple method to balance the loads
on gateways. Only a gateway with load lower than a certain
threshold is eligible to offer services to a client. Ideally, we
should take the available resources of a gateway into consid-
eration. We should include metrics such as available CPU
time, available memory, or the availability of special multi-
media hardware into our evaluation function. However, it
is not clear how to integrate these different metrics into one
variable in order to decide which gateway is more suitable
to service a particular client.

5. RELATED WORK
Many techniques that we use in AGLP are already widely
used in the network community, especially in the MBone
tools. For example, announce-listen based soft-state proto-
cols are used in the Active Service Control Protocol (ASCP)

[1], the Internet Group Management Protocol (IGMP) [4],
the Session Description Protocol (SDP) [6], and RTCP [12].
Among these protocols, ASCP is the closest to our work.
ASCP is used to locate an active server in the network to
perform a specified transcoding. However, ASCP does not
adapt to network conditions, and the transcoding may not
occur on a server that is strategically located. This may
result in inefficient utilization of network bandwidth.

Other protocols for locating services existed. For example,
DHCP [3] uses a centralized server at a known location to
provide information about the location of the local DNS
servers. DHCP is intended for local area networks only
– DHCP does not scale, and its centralized design makes
it vulnerable to crashes. SLP [14] uses another approach,
where each server periodically announces the availability of
services to a well-known multicast channel. A client who
requires some service listens to the multicast channel to dis-
cover the services available. This approach is designed for
local area networks, and suffers from a scalability problem
when a large number of servers are available. [11] describes
a wide-area version of SLP for locating Internet Telephony
Gateway, but this work does not take network bandwidth
into consideration.

MeGaDiP (Media Gateway Discovery Protocol) [15] uses
centralized directory agents called dealers to find media gate-
ways located along the end-to-end path between two end
hosts. An end host contacts a local dealer to find a gateway.
If no gateway is available, the dealer forwards the request
to another dealer along the end-to-end path. List of dealers
along the path are obtained using traceroute and modified
DNS lookup. While both AGLP and MeGaDiP try to min-
imize network traffic, AGLP is distributed, does not require
changes to DNS, and can support multiple end hosts.

The Conductor system [16] allows adaptors to be deployed
at key locations in the network to adapt data flows to chang-
ing network conditions. Conductor uses a centralized algo-
rithm to decide on deployments of adaptors into strategic
locations in the network. The Conductor may produce a
non-optimal plan because the complexity of calculating an
optimal plan in a centralized location is prohibitive. We use
a distributed, adaptive scheme that does not suffer from this
problem. Conductor adapts TCP streams, but does not sup-
port the connection-less, RTP-based multicast packets that
AGLP supports.

6. CONCLUSION
In this paper, we present an adaptive control protocol called
AGLP for running services on media processing gateways in
the Internet. Our protocol supports the following function-
ality:

• allowing the client to request a service, and submit
media processing program to a gateway;

• deciding which gateway should be used to perform a
service;

• migrating services to more suitable gateways (adapt-
ability).

Clients

SendersSenders

Senders Senders

Clients

SendersSenders

SendersSenders

Figure 15: Composable Service is possible with AGLP. The left diagram shows a possible configuration when
a client uses a single gateway to create a quad-splitter view. The right figure shows a possible configuration
when multiple programs are used. Scaling the video near the sources may result in significant reduction in
bandwidth usage.

AGLP builds on the announce-listen paradigm and uses soft-
states to maintain information. As a result, our protocol is
both scalable and robust. AGLP is compatible with exist-
ing MBone tools, so that no changes are required at the
senders. Furthermore, the existence of gateways and clients
is transparent to the senders.

Although AGLP was designed for the Degas system, the
protocol can be modified for any application that needs
to decide where to run certain services inside the network.
With the increasing interest in the research community to
move computation, traditionally performed at the edge of
the network, into the network itself, we believe applications
for AGLP will increase in the future.

7. REFERENCES
[1] E. Amir, S. McCanne, and Z. Hui. An application

level video gateway. In Proc. of 3rd ACM Intl.
Multimedia Conf. and Exhibition, pages 255–266, San
Francisco, CA, November 1995.

[2] K. Calvert, M. Doar, and E. Zegura. Modeling
internet topology. IEEE Communications Magazine,
36(6):160–163, June 1997.

[3] R. Droms. RFC 2131: Dynamic host configuration
protocol, March 1997.

[4] W. Fenner. RFC 2236: Internet Group Management
Protocol, version 2, November 1997.

[5] S. Floyd, V. Jacobson, C. G. Liu, S. McCanne, and
L. Zhang. A reliable multicast framework for
light-weight sessions and application level framing.
IEEE/ACM Transactions on Networking,
5(6):784–803, December 1997.

[6] M. Handley and V. Jacobson. RFC 2327: SDP:
Session description protocol, April 1998.

[7] S. McCanne and V. Jacobson. vic: A flexible
framework for packet video. In Proc. of 3rd ACM Intl.
Multimedia Conf. and Exhibition, pages 511–522, San
Francisco, CA, November 1995.

[8] D. L. Mills. RFC 1305: Network time protocol
(version 3) specification, implementation, March 1992.

[9] J. Nonnenmacher and E. W. Biersack. Scalable
feedback for large groups. IEEE/ACM Transactions
on Networking 1999, 7(3):375–386, June 1999.

[10] W. T. Ooi and B. Smith. The design and
implementation of programmable media gateways. In
Proc. of 10th. Intl. Workshop on Network and
Operating Systems Support for Digital Audio and
Video (NOSSDAV’00), Chapel Hill, North Carolina,
June 2000.

[11] J. Rosenberg and H. Schulzrinne. Internet telephony
gateway location. In Proc. of IEEE INFOCOM,
March 1998.

[12] H. Schulzrinne, S. Casner, R. Frederick, and
V. Jacobson. RFC 1889: RTP: A transport protocol
for real-time applications, January 1996.

[13] T. Turletti. The INRIA videoconferencing system.
ConneXions - The Interoperability Report Journal,
8(10):20–24, October 1994.

[14] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan.
RFC 2165: Service location protocol, June 1997.

[15] D. Xu, K. Nahrstedt, and D. Wichadakul. MeGaDiP:
a wide-area media gateway discovery protocol. In
Proc. of IEEE Intl. Performance, Computing and
Communications Conf., Pheonix, Arizona, February
2000.

[16] M. Yarvis, A. A. Wang, A. Rudenko, P. Reiher, , and
G. J. Popek. Conductor: Distributed adaptation for
complex networks. Technical Report CSD-TR-990042,
University of California, Los Angeles, Los Angeles,
California, August 1999.

