
Approximate VCCs: A New Characterization of Multimedia
Workloads for System-level MpSoC Design

Yanhong Liu Samarjit Chakraborty Wei Tsang Ooi
Department of Computer Science
National University of Singapore

{liuyanho,samarjit,ooiwt}@comp.nus.edu.sg

ABSTRACT
System-level design methods specifically targeted towards
multimedia applications have recently received a lot of at-
tention. Multimedia workloads are known to have a high
degree of variability. Therefore, designs based on a worst-
case analysis of such workloads tend of be overly pessimistic.
We address this issue by introducing a new concept called
approximate variability characterization curves (or Approx-
imate VCCs), to characterize the “average-case” behavior
of multimedia workloads in a parameterized fashion. Since
most multimedia applications only have soft real-time con-
straints, it is often possible to tolerate a small amount of
performance degradation. By allowing such small degrada-
tions in the performance, large amounts of resource savings
are possible. The concept of Approximate VCCs that we
present in this paper allows a designer to quantitatively ac-
count for the performance degradation and the associated
resource savings. We illustrate this using two typical sys-
tem design cases.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose
and application-based systems—Real-time and embedded sys-
tems

General Terms
Performance, Design

Keywords
Multimedia, Workload, System-level design

1. INTRODUCTION
Today multimedia applications run on a wide range of

consumer electronic devices, ranging from set-top boxes to
PDAs and mobile phones. Due to factors like flexibility,
low design costs and high time-to-market pressures, many
of these devices are now designed using configurable multi-
processor System-on-Chip (MpSoC) platforms. Examples of
such platforms are the Eclipse architecture template and the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

10

macroblock index [×104]

nu
m

be
r

of
 p

ro
ce

ss
or

 c
yc

le
s

[×
10

4]
Figure 1: Processor cycle requirements of a sequence of

macroblocks for an MPEG-2 decoder application.

Viper SoC architecture from Philips that target advanced
set-top boxes and DTVs, OMAP from Texas Instruments
and PrimeXsys from ARM. To configure a platform architec-
ture for a specific multimedia application, a common prac-
tice is to use a set of representative audio/video clips that
would be processed by the application. The workload gener-
ated by such a representative set is then used to determine
parameters such as on-chip buffer sizes, clock speeds of the
different processors, bus widths and cache configurations.

Multimedia workloads are known to exhibit a high vari-
ation in their resource demands. For example, the ratio of
the worst-case and the average load on a processor running
a multimedia task can easily be as high as a factor of 10
[12]. On the other hand, multimedia applications typically
have soft real-time constraints. This allows certain tasks to
miss their deadlines or a few data items to be occasionally
dropped from a buffer, without significantly deteriorating
the output quality. A consequence of the above two char-
acteristics is that a worst-case analysis of multimedia work-
loads often lead to overly pessimistic results. At the same
time, a straightforward average-case analysis does not suffice
because of the high variability in the workload. Hence, ap-
propriately characterizing multimedia workloads for system-
level design is a tricky problem. Figure 1 shows the proces-
sor cycle requirements of a sequence of macroblocks for an
MPEG-2 decoder application. The large variation in the
processor cycle requirements for the different macroblocks
is clearly noticeable.

To address the above problem, in this paper we propose a
new characterization of multimedia workloads, that can be
used to characterize the “average-case” behavior of a work-
load in a parameterized fashion. Towards this, we take into
account the frequency with which the worst-case occurs and

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

number of processor cycles per macroblock [×104]

oc
cu

re
nc

e
ra

tio

Figure 2: Histogram of the processor cycle demand per

macroblock for an MPEG-2 video. The minimum and

the maximum cycle demands are 2218 and 92247 respec-

tively.

discard worst-case scenarios that do not occur frequently
enough. Therefore, what we refer to as “average-case” (for
the sake of simplicity), actually denotes the worst-case that
occurs often enough. We quantify “often enough” using a
parameter that is specified by the designer. By ignoring
worst-case scenarios that do not occur very frequently, sig-
nificant amounts of resource savings are usually possible,
with negligible loss in the output audio/video quality. Our
proposed characterization can also be used to quickly iden-
tify the tradeoffs between the output quality and the po-
tential resource savings. Using purely simulation-oriented
techniques to determine such tradeoffs is not only expensive
in terms of the simulation time involved, but is often also
impractical.

The concept of VCCs was proposed in [9, 10] to charac-
terize different kinds variabilities occurring in multimedia
workloads. These include (i) data-dependent variability in
the execution time of multimedia processing tasks, (ii) vari-
ability in the amount of input and output data produced and
consumed by a task (for example, the variable length de-
coding task in MPEG decoders consume a variable number
of bits for each processed macroblock), and (iii) burstiness
in on-chip traffic arising out of multimedia processing on
multiprocessor architectures [13]. VCCs characterize best-
and worst-case scenarios without considering the frequency
with which such scenarios occur. Simulating the execution
of an MPEG-2 decoder with a randomly chosen video clip
shows that the worst-case processor cycle demand to decode
a macroblock occurs in about 0.02% of the total number of
macroblocks processed. For the execution trace in Figure 1,
the histogram of the processor cycle demand per macroblock
is shown in Figure 2. From this figure, it may be noted that
the cycle demands of about 90% of all the macroblocks are
less than half of the maximum/worst-case cycle demand of
a macroblock. VCCs, as proposed in [10], would record this
maximum value without taking into account the frequency
of its occurrence.

An approximate VCC or ε-VCC ignores at most ε percent-
age of the data from the right-hand side of the histogram
in Figure 2. The remaining data is then used to compute
the worst-case scenario. As a result, all worst-case scenar-
ios, whose cumulative frequency of occurrence is less than ε
percent are ignored. Given a trace such as the one shown
in Figure 1, we show how to bound the error corresponding
to different values of ε, for typical system-level design prob-
lems. An example of this is to bound the maximum number

of data items that may be dropped from a buffer, when the
buffer sizing is done based on ε-VCCs. It may be noted that
when buffer sizing is based on VCCs, it can be guaranteed
that no data items will be dropped [10], albeit at the cost
of much larger buffer sizes compared to when ε-VCCs are
used. Since worst-case scenarios occur very infrequently (as
discussed above), significant savings are achieved by using
ε-VCCs, at the cost of negligible loss in output audio/video
quality.

Related work: The concept of VCCs has its foundations
in the theory of network calculus [4, 7]. Whereas the origi-
nally proposed network calculus may be seen as a determin-
istic queuing theory for analyzing communication networks,
recently a number of extensions to this theory have been de-
veloped [3, 6]. These extensions are concerned with provid-
ing statistical service guarantees rather than deterministic
guarantees, which often lead to resource over-provisioning.
Along similar lines, Ayyorgun and Cruz [1, 2] have recently
proposed a service model which allows a certain portion of
network packets to be dropped based on a loss parameter.
In contrast to the work presented in this paper, they, how-
ever, concentrate on a multiplexing problem and study the
necessary capacity of a multiplexer to provide determinis-
tic service guarantees to each flow passing through it. As
we already mentioned, all the above efforts focus only on
the domain of communication networks, and the results ob-
tained can not be applied to our problem setup (multime-
dia processing on MpSoC platforms) in any straightforward
manner.

Within the embedded systems domain, the concept of Sto-
chastic Automatic Networks (SANs) [11] has been proposed
for average-case performance analysis of platform architec-
tures. Whereas this is an automata-theoretic formalism,
the workload characterization that we present here is purely
“functional”, where the “state” of the system is not mod-
eled. The focus is primarily on modeling the variability in
the arrival process and the execution demand of multimedia
streams, rather than the state of the system processing these
streams. We believe that there is a potential for integrating
our work with the SAN formalism.

Organization of the paper: Section 2 describes our model
of MpSoC platforms and the concept of VCCs. This is fol-
lowed by our definition of ε-VCCs. In Section 3 we present
an analytical method for bounding the error incurred while
designing a system based on ε-VCCs. Experimental results
which validate our method are presented in Section 4.

2. MULTIMEDIA WORKLOAD
CHARACTERIZATION

2.1 MpSoC Platform Model
We consider the following system-level view of multimedia

stream processing on an MpSoC platform. The platform
architecture consists of multiple processing elements (PEs)
onto which different parts of an application are mapped.
An input multimedia stream enters a PE, gets processed
by the task(s) implemented on this PE, and the processed
stream enters another PE for further processing. At the
input of each PE is a buffer, which is a FIFO channel of
fixed capacity, and is used to store the incoming stream to be
processed. Finally, the fully processed stream is written into
a playout buffer which is read by some real-time client (RTC)

Figure 3: An MPEG-2 decoder on an MpSoC platform.

such as an audio or a video output device. For the sake of
generality, we consider any multimedia stream to be made
up of a sequence of stream objects. A stream object might
be a bit belonging to a compressed bitstream representing a
coded video clip, or a macroblock, or a video frame, or an
audio sample—depending on where in the architecture the
stream exists.

As an example, Figure 3 shows an architecture with two
PEs (PE1 and PE2), implementing an MPEG-2 decoder ap-
plication. The variable length decoding (VLD) and inverse
quantization (IQ) tasks have been mapped onto PE1, and
the inverse discrete cosine transform (IDCT) and motion
compensation (MC) tasks onto PE2. A video stream, af-
ter being downloaded over a network, enters the buffer B1,
which is read by PE1. The resulting partially decoded mac-
roblocks are then written into B2, which is read by PE2.
The fully decoded macroblocks are written into the playout
buffer Bv, which is read by the video output device at a
prespecified rate.

Typical constraints that are associated with the above
setup are: none of the buffers should overflow and the play-
out buffer should not underflow. Configuring the above ar-
chitecture, such as determining the minimum sizes of the
buffers B1, B2 and Bv is difficult because of the complex
nature of multimedia workloads. As we already mentioned
in the previous section, the execution requirements of dif-
ferent macroblocks might be highly variable. Further, the
bitstream arriving over the network might also be bursty.

2.2 Variability Characterization Curves
VCCs can be used to quantify best-case and worst-case

characteristics of sequences. These can be sequences of con-
secutive stream objects belonging to a stream, or sequences
of consecutive time intervals of some specified length. A
VCC V is defined as a tuple (Vl(k), Vu(k)), where k repre-
sents the length of the sequence. Let the function P be a
measure of some property over a sequence. If P (n) denotes
the measure of this property for the first n items of the se-
quence, then Vl(k) and Vu(k) for all k ≥ 0 are defined as
follows. Vl(k) = infi≥0{P (i + k) − P (i)}

Vu(k) = supi≥0{P (i + k) − P (i)} (1)

Vl(k) and Vu(k) therefore provide lower and upper bounds
on the measure P , for all subsequences of length k, within a
larger sequence. Let us now consider a few concrete exam-
ples of VCCs.

Workload Curve γ = (γl, γu): The VCC γ is used to
characterize the variability in the execution requirements of
a sequence of stream objects to be processed by a PE. In
this case, given a sequence of stream objects, P (n) denotes
the total number of processor cycles required to process
the first n stream objects. Hence, γl(k) and γu(k) denote
the minimum and the maximum number of processor cycles
that might be required by any k consecutive stream objects
within the given sequence.

Let emin and emax be the minimum and the maximum
number of processor cycles required by any single stream ob-
ject belonging to a sequence. In the execution trace shown
in Figure 1, for any reasonably large value of k, γl(k) is
clearly greater than k × emin. Further, the difference be-
tween them increases with increasing k. Similarly, γu(k) is
clearly smaller than k × emax. Hence, the VCC γ is more
expressive compared to simple best- or worst-case charac-
terizations commonly used in the real-time systems domain.

It is also meaningful to construct a pseudo-inverse of a
VCC V, which we denote as V−1. In the case of a work-

load curve, γl−1
(e) = mink≥0{k | γl(k) ≥ e} and γu−1(e) =

maxk≥0{k | γu(k) ≤ e}. Hence, γl−1
(e) denotes the maxi-

mum number of stream objects that may be processed using
e processor cycles. γu−1(e) denotes the minimum number
of stream objects that are guaranteed to be processed using
e processor cycles.

Arrival Curve α = (αl, αu): This VCC is used to charac-
terize the burstiness in the arrival pattern of stream objects.
Given a trace of the arrival times of a sequence of stream ob-
jects (e.g. the partially processed macroblocks being written
into the buffer B2 in Figure 3), αl(∆) and αu(∆) denote the
minimum and the maximum number of stream objects that
arrive within any time interval of length ∆. For notational
simplicity, henceforth we will denote the pseudo-inverse of
α (i.e. α−1) as ξ.

Service Curve β = (βl, βu): Due to the variability in
the execution requirements of stream objects, the number
of stream objects that can potentially be processed within
any specified time interval varies (even when the proces-
sor runs at a constant frequency). We will use βl(∆) and
βu(∆) to denote the minimum and the maximum number
of stream objects that can be processed (or served) by a
processor within any time interval of length ∆. βl and βu

may also be derived from a trace of execution requirements
of stream objects (such as the one shown in Figure 1) and
the clock frequency with which the processor is being run.

2.3 Approximate VCCs
The use of VCCs to analyze and tune platform architec-

tures for multimedia processing has been illustrated in [10].
However, in the above formulation, the best- and worst-case
characterization using VCCs do not take into account the
frequency with which the best- or the worst-case occurs. Ap-
proximate VCCs generalize the concept of VCCs and take
into account the frequency with which the best-/worst-case
occurs.

Recall our definition of VCCs, as given by Eqn. (1). Now,
for any given k, let a set S be defined as follows: S =
{P (i+k)−P (i) | i ≥ 0}. Instead of computing the minimum
and maximum value in the multiset S, to compute ε-VCCs,
we first remove certain extreme observations from S and
then compute the minimum and the maximum value from
the remaining elements.

Let Sl
ε denote the set resulting from removing the small-

est ε percent of items from the set S. Similarly, Su
ε de-

notes the set resulting from removing the largest ε percent
of items from S. An ε-VCC Vε can now be defined as follows:
Vl

ε(k) = infi≥0{Sl
ε} and Vu

ε (k) = supi≥0{Su
ε }.

The above definition of ε-VCC implies that ε percent of
items in S are less than Vl

ε and ε percent of items in S
are larger than Vu

ε . Since the set S can contain a poten-

0 0.5 1 1.5 2
0

2

4

6

8

10

12

14

16

18
x 10

7

number of macroblocks [×104]

nu
m

be
r

of
 p

ro
ce

ss
or

 c
yc

le
s

γu
0

γu
10

γl
10

γl
0

Figure 4: Approximate workload curves.

tially large number of elements, a computationally efficient
algorithm is necessary to compute Vl

ε and Vu
ε . We adopt

a histogram-based algorithm [14] which is simple and effi-
cient. Although the results obtained are not as accurate as
percentile-based methods [5], they are sufficiently precise for
the problem setups that we are interested in.

The histogram-based algorithm works as follows. Let Dmin

and Dmax be the minimum and the maximum values of
the elements in S. Suppose that the range [Dmin, Dmax]
is split into n equal-sized bins with the bin boundaries be-
ing c0, c1, · · · , cn. First, we construct a histogram for all the
elements in S. We then compute ri (for all 1 ≤ i ≤ n),
which is the ratio of the number of elements in the i-th
bin (ci−1, ci] to the total number of elements in S. Clearly,

the sum
�i

j=1 rj represents the fraction of items which are
not larger than ci. We then define a function F , where
F (ci) =

�i
j=1 rj for 0 ≤ i ≤ n (note that F is defined only

for these values). Finally, Vl
ε and Vu

ε are defined as follows.

Vl
ε(k) = max0≤i≤n{ci | F (ci) ≤ ε

100
}

Vu
ε (k) = min0≤i≤n{ci | F (ci) ≥ 1 − ε

100
} (2)

It follows from the above definition that VCCs are a spe-
cial case of ε-VCCs, with ε set to zero. Figure 4 shows
an approximate workload curve (for the VLD/IQ task in
Figure 3) with ε = 10. The same figure also shows the cor-
responding workload curve (i.e. the case where ε is set to
0). It can clearly be seen that the approximate workload
curves represent more conservative bounds on the execu-
tion requirements of sequences of stream objects, compared
to the lower and upper bounds obtained from the (exact)
workload curves.

3. ERROR ANALYSIS
In a typical system design process, a designer would ana-

lyze a set of representative audio/video clips to obtain dif-
ferent ε-VCCs. These ε-VCCs would represent the work-
load that the system will be required to support. In the
context of platform-based design, these ε-VCCs would de-
termine different platform configuration parameters such as
sizes of on-chip buffers, bus widths and clock frequencies
of the different on-chip processors. Since ε-VCCs represent
more conservative bounds and ignore infrequent best- and
worst-cases, the resulting systems can also be more conserv-
atively designed (and hence would be less expensive), albeit
at the cost of small errors. For example, the minimum on-
chip buffer sizes determined using ε-VCCs would be smaller
compared to those determined using VCCs. The difference
in size would depend on the value of ε chosen. However, the
savings would come at the cost of occasionally some stream

objects being dropped from the buffer. In this section we
present an analytical method that can be used to bound the
error incurred for any ε. We present this method in the con-
text of two system design problems: optimal on-chip buffer
sizing and processor frequency selection.

3.1 On-Chip Buffer Sizing
Consider a PE (such as PE2 in Figure 3) processing a

stream whose arrival process is bounded by the arrival curve
α. Let β be the service curve offered by the PE. It can
then be shown that the minimum size of the buffer (or the
maximum backlog) at the input of this PE (i.e. B2 in this
case) is equal to sup∆≥0{αu(∆) − βl(∆)}. Let us denote
this as bmax (the maximum backlog).

To see how βl is obtained, let us assume that the PE runs
at a clock frequency of f clock cycles/second. Given a trace
of processor cycle requirements per stream object (such as
the one shown in Figure 1) it is possible to compute the
workload curve γu. It is then easy to see that γu−1(f ·∆) is
the minimum number of stream objects that are guaranteed
to be processed within any time interval of length ∆. Hence,
we set βl(∆) to be equal to γu−1(f · ∆).

For the buffer sizing to be done using ε-VCCs, we proceed
as follows. Instead of using the arrival curve α directly,
we use its pseudo-inverse ξ. From a representative trace of
arrival times of a sequence of stream objects, we compute
ξl

ε(k). From the trace of execution time requirements of
the stream objects we compute βl, as described above. The
estimated maximum backlog is then given by:

bε = sup
k≥0

{k − βl(ξl
ε(k))}

It may be shown that supk≥0{k − βl(ξl
ε(k))} is equal to

sup∆≥0{αu
ε′ (∆) − βl(∆)} (which is similar in form to the

computation of bmax shown above). Here, αu
ε′(∆) is ob-

tained by inverting ξl
ε(k). It may be noted that by inverting

ξl
ε(k) we obtain an approximate arrival curve whose approx-

imation ratio ε′ is different from the approximation ratio ε
of ξl

ε(k).
Clearly, if the buffer size is set to bε then stream objects

might occasionally be dropped. Given a trace of arrival
times of stream objects at the buffer, we can bound the max-
imum number of stream objects that might be dropped. We
assume that βl, which was obtained from a set of representa-
tive multimedia streams, also holds for this trace (i.e. βl(∆)
is the minimum number of stream objects that are guaran-
teed to be processed within any time interval of length ∆,
for this stream as well).

Let T (i) denote the arrival time of the i-th stream object
at the buffer. Let ξ(i, k) = T (i)−T (i−k) denote the length
of the time interval during which the previous k consecutive
stream objects adjacent to the i-th stream object arrive (0 ≤
k ≤ i). Then βl(ξ(i, k)) represents the minimum number of
stream objects that the PE can process during this time
interval.

Theorem 1. The maximum backlog when the i-th stream
object arrives at the buffer is equal to

sup
0≤k≤i

{k − βl(ξ(i, k))}

Hence, the i-th stream object might be dropped if

sup
0≤k≤i

{k − βl(ξ(i, k))} > bε

In the above inequality, the value of βl(ξ(i, k)) is esti-
mated to be γu−1(f ·ξ(i, k)). This assumes that the βl(ξ(i, k))
consecutive stream objects processed within the time inter-
val of length ξ(i, k) require the maximum possible number
of processor cycles. If we instead use the approximate up-
per workload curve γu

ε , then the above inequality may be
reformulated as:

sup
0≤k≤i

{k − βl
ε′(ξ(i, k))} > bε

However, unlike the previous case, in this case we can not
provide deterministic guarantees on the maximum number
of dropped stream objects.

3.2 Processor Frequency Selection
Let us consider the PE PE2 in Figure 3. The stream ob-

jects processed by it are written out into the playout buffer
Bv . This buffer is read by the real-time video output de-
vice at a prespecified rate. One of the design constraints
while configuring this platform architecture is to ensure that
Bv never underflows. Clearly, the clock frequency of PE2

should at least be equal to sustain the rate at which stream
objects are being consumed by the output device. However,
because of the variability in the execution time requirements
of stream objects, computing this minimum clock frequency
is not trivial. The problem becomes more complicated be-
cause of the buffering at the playout buffer. The problem of
computing this frequency has become especially interesting
with the advent of processor soft cores, which allow a high
degree of customization. This problem was addressed in [9]
using VCCs as a means of workload characterization.

Clearly, using ε-VCCs, the computed frequency will be
substantially lower compared to that obtained using VCCs.
For the sake of simplicity, here we have only considered the
problem of computing the minimum constant frequency at
which the PE needs to be run. However, the method pre-
sented in [9] can be used in the case of frequency-scalable
processors as well (to compute the different frequency levels
and the frequency range that the PE should support). Due
to space constraints, we do not present any further details
here. Our experiments results in Section 4.2 show how the
minimum frequency changes with different values of ε and
the bounds on the error incurred.

4. EMPIRICAL VALIDATION
To validate our scheme for workload characterization, we

experimented with the setup shown in Figure 3. For our
experiments, the granularity of a stream was chosen to be a
macroblock.

We experimented with multiple representative video clips
chosen from a set of clips, all of which have the same long-
term playback rate, i.e. the same number of macroblocks are
consumed per second by the video output device. For each
video clip, we first used the SimpleScalar instruction set sim-
ulator to obtain traces of execution times for the VLD/IQ
and IDCT/MC tasks of the MPEG-2 decoder application.
We then simulated the platform architecture shown in Fig-
ure 3 using a transaction-level model of the architecture
written in SystemC. Traces containing the arrival times of
the macroblocks at each on-chip buffer and the buffer back-
logs were obtained. The VCCs and the ε-VCCs were mea-
sured from the collected execution traces. In the following,
we assume that the traces of execution times have already
been obtained.

4.1 Buffer Sizing
The results reported below only concern the buffer at the

input of PE2 (i.e. B2). Both PE1 and PE2 were config-
ured to run with their long-term average frequencies. These
frequencies were computed by taking into account the long-
term playback rate of the output device and the average
cycle demands per macroblock for the tasks implemented
on them. The system was initially simulated for all the
(representative) video clips, from which we obtained the ap-
proximate lower pseudo-inverse curve ξl

ε(k) corresponding to
the arrival process of stream objects at the buffer B2. From
the simulation results we also obtained the approximate up-
per workload curve γu

ε (k) for PE2. We then computed the
buffer size bε. As shown in Figure 5, the computed buffer
size decreases as ε is increased from 0 to 20. We observed
more than 20% reduction in the buffer size when ε was set
to be 5.

For each video clip, we analytically estimated the upper
bound on the percentage of dropped macroblocks when the
size of B2 was set to bε. At the same time, we simulated the
execution of this clip with the size of B2 set be bε. The sim-
ulation results showed that our analytical method gives an
upper bound on the percentage of dropped macroblocks for
any of the clips used. Figure 6 shows the analytical bounds
and simulation results for a representative video clip. We
can observe that the drop ratio is upper bounded at about
5% with ε equal to 5. However, there is more than 20%
reduction in the buffer size compared to when ε is equal to
0. As shown in Figure 5, we also measured the Peak Signal-
to-Noise Ratio (PSNR) for this video clip corresponding to
each buffer size. PSNR is commonly used to measure the
quality of a reconstructed frame with macroblock loss, com-
pared to the decoded frame without any loss. We defined the
PSNR of a video clip as the average value of PSNRs over all
those frames which suffered loss of macroblocks. Although
we applied only a simple error concealment mechanism (a
dropped macroblock just takes the value of the correspond-
ing macroblock from the previous frame), Figure 5 shows
that at ε = 5, the PSNR remains at 39.2 dB. PSNR values
above 38 dB are generally accepted as good video quality
[8].

4.2 Frequency Selection
We will use PE2 to illustrate how the processor’s clock

frequency may be lowered if ε-VCCs are used. Based on
the approximate upper workload curve γu

ε on PE2 and the
long-term playback rate, we computed the clock frequency
fε for PE2. As shown in Figure 7, considerable reduction in
the frequency values were achieved when the approximate
curves were used. For example, there was nearly a 20%
reduction in the frequency when ε was set to be 60.

PE1 was configured to its long-term average frequency.
An initial simulation of the system was conducted for all the
representative video clips, after which we had the necessary
traces for the error analysis. For each video stream, we
computed an upper bound on the percentage of macroblocks
that can potentially miss their deadlines when PE2 is run at
different clock frequencies. When compared with simulation
results, it may be seen that our analytical method gives an
upper bound on the percentage of macroblocks that missed
their deadlines. Table 1 shows the analytical bounds and the
results obtained using simulation for a representative video
clip with two different playback delay settings td. It may

0 5 10 15 20
1000

2000

3000
bu

ffe
r

si
ze

 [m
ac

ro
bl

oc
ks

]

ε
0 5 10 15 20

20

30

40

ps
nr

 [d
B

]

buffer size
psnr

Figure 5: Computed buffer sizes

for different values of ε.

0 5 10 15 20
0

5

10

15

20

25

30

35

40

ε

dr
op

 r
at

io
 o

f m
ac

ro
bl

oc
ks

 [%
]

analytical result
simulated result

Figure 6: Percentage of mac-

roblocks dropped from B2 for dif-

ferent values of ε.

0 10 20 30 40 50 60 70 80
1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

ε

fr
eq

ue
nc

y
va

lu
e

[G
H

z]

Figure 7: Frequency values of PE2

for different values of ε.

% of macroblocks missing deadlines
ε td = 0.28s td = 0.30s

analysis simulation analysis simulation
0 3.84 3.80 0.00 0.00
20 9.73 9.63 0.00 0.00
40 16.7 16.5 0.00 0.00
60 44.0 43.7 0.00 0.00
80 97.0 97.0 80.4 69.5

Table 1: Analytical bounds and simulation results on

the percentage of macroblocks that miss their deadlines,

for different values of ε.

be noted that when the delay was set to 0.30s, none of the
macroblocks missed their deadlines, even with ε set to 60,
while the required frequency was reduced by nearly 20%.

5. CONCLUDING REMARKS
In this paper we proposed a parameterized scheme for

characterizing multimedia workloads, based on the novel
concept of approximate variability characterization curves
or ε-VCCs. Since most multimedia applications only require
soft real-time guarantees, we demonstrated that by using ε-
VCCs to design and configure platform architectures, signifi-
cant resource savings may be achieved with only a negligible
loss in output quality.

To bound the error incurred by using ε-VCCs, we required
a trace of the arrival times of stream objects to compute the
maximum number of stream objects that might get dropped
from a buffer. A more elegant scheme would be to provide
guarantees for a class of arrival patterns (such as that cap-
tured by an arrival curve). Note that our scheme can provide
guarantees for a class of resource requirements (i.e. those
that are captured by a workload curve).

Acknowledgements: The work reported here has been
partially funded by the NUS URC grant R-252-000-190-
112, through the project “ASTRA: System-Level Design and
Analysis of Architectures for Streaming Applications”.

6. REFERENCES
[1] S. Ayyorgun and R. L. Cruz. A composable service

model with loss and a scheduling algorithm. In
INFOCOM, Hong Kong, China, March 2004.

[2] S. Ayyorgun and R. L. Cruz. A service-curve model

with loss and a multiplexing problem. In ICDCS,
Tokyo, Japan, March 2004.

[3] R. Boorstyn, A. Burchard, J. Leibeherr, and
C. Oottamakorn. Statistical service assurances for
traffic scheduling algorithms. IEEE Journal on
Selected Areas in Communications, 18(13):2651–2664,
2000.

[4] J.-Y. Le Boudec and P. Thiran. Network Calculus - A
Theory of Deterministic Queuing Systems for the
Internet. LNCS 2050, 2001.

[5] W. Chase and F. Bown. General Statistics. John
Wiley & Sons, 1997.

[6] F. Ciucu, A. Burchard, and J. Liebeherr. A network
service curve approach for the stochastic analysis of
networks. In ACM Sigmetrics, 2005.

[7] R. Cruz. A calculus for network delay, Parts 1 & 2.
IEEE Transactions on Information Theory, 37(1),
1991.

[8] C. A. Gonzales, H. Yeo, and C. J. Kuo. Requirements
for motion-estimation search range in MPEG-2 coded
video. IBM Journal of Research and Development,
43(4), 1999.

[9] Y. Liu, A. Maxiaguine, S. Chakraborty, and W. T.
Ooi. Processor frequency selection for SoC platforms
for multimedia applications. In RTSS, Lisbon,
Portugal, December 2004.

[10] A. Maxiaguine, Y. Zhu, S. Chakraborty, and W.-F.
Wong. Tuning SoC platforms for multimedia
processing: Identifying limits and tradeoffs. In
CODES+ISSS, Stockholm, Sweden, September 2004.

[11] A. Nandi and R. Marculescu. System-level
power/performance analysis for embedded systems
design. In DAC, Las Vegas, Nevada, USA, June 2001.

[12] M.J. Rutten, J.T.J. van Eijndhoven, E.G.T. Jaspers,
P. van der Wolf, O.P. Gangwal, and A. Timmer. A
heterogeneous multiprocessor architecture for flexible
media processing. IEEE Design & Test of Computers,
19(4):39–50, July-August 2002.

[13] G. Varatkar and R. Marculescu. On-chip traffic
modeling and synthesis for MPEG-2 video
applications. IEEE Transactions on VLSI,
12(1):108–119, January 2004.

[14] W. Yuan and K. Nahrstedt. Energy-efficient soft
real-time CPU scheduling for mobile multimedia
systems. In SOSP, NY, USA, October 2003.

