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ABSTRACT
Characterizing mobility or contact patterns in a campus environ-
ment is of interest for a variety of reasons. Existing studies of
these patterns can be classified into two basic approaches – model
based and measurement based. The model based approach involves
constructing a mathematical model to generate movement patterns
while the measurement based approach measures locations and prox-
imity of wireless devices to infer mobility patterns. In this paper,
we take a completely different approach. First we obtain the class
schedules and class rosters from a university-wide Intranet learn-
ing portal, and use this information to infer contacts made between
students. The value of our approach is in the population size in-
volved in the study, where contact patterns among 22341 students
are analyzed. This paper presents the characteristics of these con-
tact patterns, and explores how these patterns affect three scenar-
ios. We first look at the characteristics from the DTN perspec-
tive, where we study inter-contact time and time distance between
pairs of students. Next, we present how these characteristics im-
pact the spread of mobile computer viruses, and show that viruses
can spread to virtually the entire student population within a day.
Finally, we consider aggregation of information from a large num-
ber of mobile, distributed sources, and demonstrate that the contact
patterns can be exploited to design efficient aggregation algorithms,
in which only a small number of nodes (less than0.5%) is needed
to aggregate a large fraction (over90%) of the data.
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1. INTRODUCTION
Pervasiveness of mobile devices has lead to development of a

new class of mobile applications which use proximity-based con-
nectivity such as Bluetooth to exchange messages. Since such ap-
plications often exploit the social context of the users, the term
MoSoSo, or mobile social software, has recently been coined to
refer to this class of applications. Examples of MoSoSo include
mobile applications that aim to expand one’s social circle (so called
BlueDating), by alerting a user if another user with similar interest
profiles is nearby. Serendipity [7] and Nokia Sensor1 are exam-
ples of BlueDating applications available currently. The academic
community has proposed several other novel applications for Blue-
tooth connectivity on mobile phones too. Two examples are DTN
and PeopleNet. DTN (e.g., Haggle [4]) studies how packets can
be routed from a source to a destination using carry-and-forward
strategy, allowing messages to be delivered in the absence of end-
to-end connectivity. PeopleNet [14] allows a user to query for
information provided by other users, by propagating the query to
other mobile phones in the network to increase the probability that
a matching answer can be found. These benevolent applications
are not the only applications exploiting the Bluetooth connectivity
between mobile phones. Malicious viruses can spread to nearby
mobile phones through Bluetooth connectivity as well [6].

Whether malicious or benevolent, mobility and contact patterns
of the mobile devices play a significant role in the performance, or
even viability, of such applications. Such contact patterns not only
help to accurately predict the performance of these applications, but
also help to design superior algorithms based on the characteristics
of these contact patterns.

Previous efforts to characterize mobility and contact patterns can
be categorized into two basic approaches. The first approach in-
volves constructing mathematical models (see reference [3] for a
survey) to generate movement patterns of devices. The advantage
of the model-based approach is its scalability – large number of
devices can be modelled over a large time scale. These mobil-
ity models, however, have been shown to exhibit a different set
of characteristics to those observed in the real world (as shown by
Chaintreau et. al.[5]). The second approach measures locations
and proximity of mobile devices to infer their mobility and contact
patterns. Such measurements can be done through logging at wire-
less access points (e.g., traces from Dartmouth [9]), from which
contact and mobility patterns can be inferred, or through mobile
sensing devices carried around by participants of the measurement
experiments (e.g., the iMotes experiment [4]). While the measure-

1http://www.nokia.com/sensor



ment approach allows real-world data to be collected, it is difficult
to scale to large number of users. Often such efforts require coop-
eration from service providers [16] or large number of man-hours
[9].

In this paper, we take a different approach to acquiring mobil-
ity and contact patterns, by exploiting a new data source – class
time-tables and student rosters easily accessible from within our
university. We extract time-tables and rosters from our university’s
Intranet learning portal, and infer mobility and contact patterns of
the students on campus. Our approach not only gives us accurate
contact patterns between students with relatively little effort, but it
also allows contact patterns of a large population (the whole stu-
dent population) to be studied over a long period (one academic
semester). The population represents students from different col-
leges and schools, in different years of studies, exhibiting different
behavioral patterns. Our trace complements measurement-based
traces, providing long-term, periodic, contact patterns among stu-
dents. Our approach augments existing trace driven studies because
it allows us to ask hypothetical questions about the performance of
DTN and similar applications. Measurements based studies repre-
sent a snapshot in time and are dependent on the penetration and
usage behavior at the time of the study.

Based on our traces, we explore how these contact patterns im-
pact mobile applications in three different scenarios. We first view
these patterns from the perspective of delay-tolerant networks, us-
ing “store, carry, and forward” routing. Such routing algorithms
have been studied in several contexts, including in wireless ad-hoc
networks (e.g., [15]), and most recently in opportunistic network-
ing [5]. Our analysis gives insights into the minimum achievable
end-to-end delay in opportunistic routing and shows that a large
percentage of students experience small inter-contact times with
other students.

Our second scenario concerns the spread of mobile viruses in a
campus setting. We investigate how fast a mobile virus spreads it-
self to other mobile devices through student contacts during classes.
Assuming 100% probability of infecting a neighbor, our results
show that a virus can spread at an alarming rate – 90% of the mo-
bile devices belonging to the student population can be infected in
1-2 days, depending on the initial number of infected phones. If we
consider contacts outside of classrooms, then even starting with a
single infected phone and using a reasonable model of interactions
outside classrooms, the virus can spread to 90% of the population
in a day. We also identify the classes or sessions which contribute
to the speed of spread of the virus.

Finally, we consider information gathering from a large number
of distributed data sources and show how the characteristics of the
contact patterns can be exploited to design efficient aggregation al-
gorithms. We consider a scenario, where an aggregation query is
issued to query information from a user population through mobile
phones. For instance, consider a virtual used textbook marketplace
running on top of PeopleNet [14]. One might want to find the av-
erage (or minimum) selling price of a book, before making buying
decisions. We present an algorithm to perform the aggregation in a
distributed and scalable manner. The characteristics of the contact
patterns allow a small number of nodes to sample a large fraction
(more than90%) of the population for data. Thus only a small frac-
tion of phones (less than0.5%) need to respond with the aggregated
information, avoiding implosion at the source.

We summarize our contributions as follows. First, we present the
first large-scale, long term, mobility traces inferred from university
class rosters and time tables. These traces are several orders of
magnitude larger than any previously reported traces that directly
measures contact patterns. We will make the anonymized traces

publicly available to the research community. Second, we analyze
the traces in the context of three mobile applications. In each of
these applications, we present the impact of the contact patterns ob-
served in our mobility traces on the applications. For delay-tolerant
networking, we introduce the notion oftime distancebetween stu-
dents, and show that students have small average time distance be-
tween them, providing insights to the achievable end-to-end delay
in routing. We utilize the mobility traces to askwhat if questions
and explore how fast a mobile virus can spread in a university cam-
pus under different conditions and infection parameters. We also
investigate how a scalable aggregation algorithm can be designed
exploiting the characteristics of the contact patterns, in the context
of querying over distributed, mobile data sources.

The rest of this paper is organized as follows. Section 2 presents
related work in the literature. Section 3 elaborates on the value of
our data set, and presents the models and assumptions used in our
study. The basic properties of the contact patterns are presented in
Section 4. We study characteristics of contacts between students in
the context of a DTN application in Section 5, and how malicious
mobile virus can spread among the student population in Section 6.
Section 7 describes a scalable, decentralized, aggregation algorithm
to aggregate information stored on mobile devices of the students.
Finally, we reflect on our findings and propose future directions of
this study in Section 8.

2. RELATED WORK
In the past there have been two approaches adopted to understand

contact patterns, a measurement-based approach and a model-based
approach. This section reviews some related work in the literature
on these approaches, and highlights the weaknesses of these exist-
ing approaches.

In the measurement-based approach, researchers conduct mea-
surement studies and collect traces through logging access patterns
and contact patterns. At UCSD [13] and Dartmouth [9], studies
of client’s association patterns with WiFi access points were con-
ducted over several months. The UCSD study includes data from
client-based logs. The study was conducted over 3 months. In the
Dartmouth study, information was obtained from SNMP logs from
access points. The study was conducted over four months. These
traces have also been used to make inferences about general con-
tact patterns (e.g. contact times, inter-contact times) between dif-
ferent users/people. However these inferences might be incorrect
since these are based on the fact that two devices have simultane-
ously associated with the same access point. This association does
not necessarily imply that the two devices are within range of each
other. Jain et. al [11], derive an empirical model for user registra-
tion patterns in a campus wireless LAN derived from trace based
studies.

To get more detailed proximity patterns, a study was conducted
by Intel and Cambridge as part of the Haggle [4] project. They
handed out iMotes to volunteers and asked them to carry these de-
vices around for a few days. These devices were collected once
the battery expired to read off data regarding proximity informa-
tion to other users. In the largest experiment, around 40 devices
were handed out to volunteers at INFOCOM 2005. No experiment
was longer than 5 days. The time granularity of the iMotes study
was 120 seconds.

These measurement-based studies are certainly useful in that they
give us insight into current trends and evolution in how these tech-
nologies are used. However, these trace based studies are based on
current penetration of wireless technologies and usage behaviors.
Moreover, they might not be an accurate reflection of real contact
patterns since they are based on the interactions between only a



small subset of the population. They also do not allow us to ask
what if questions. For example, if a new application such as DTN
or PeopleNet is deployed, what would be the performance when the
penetration rate isρ? There is clearly a huge gap in the knowledge
of real world contact patterns.

In the model based approach, researchers have developed simple
and reasonable mobility models which have been used to character-
ize the performance of wireless ad hoc networks (see [3] and ref-
erences therein). Mobility models such as the Random Way-point
and the Random Direction model are commonly studied in ad hoc
networking research. In these models however, nodes are typically
assumed to move independently. This assumption results in inter-
contact times that are exponential in nature. However as the trace
driven studies [13, 9, 4] have shown, inter-contact times typically
obey the power law distribution. Therefore these simple mobility
models do not reflect real world mobility patterns. There have been
attempts to model realistic campus mobility models by Jardosh et.
al [12]. However it is not clear if these are valid models.

3. OUR DATA SETS AND MODEL
Our insight is that accurate information of human contact pat-

terns is available in several special scenarios such as university
campuses. If one knows the class schedules and enrollment of
students for each class on a campus, it gives us extremely accu-
rate information about contact patterns between students over large
time scales. In this paper, we obtain this information about student
enrollment and class schedules from our university. We first char-
acterize the properties of these contact patterns and analyze their
impact on the following three applications:(i) DTN, (ii) spread of
mobile viruses and(iii) data aggregation from mobile data sources.

3.1 Data Collection
We collected information on class schedules and class rosters

for the Spring 2006 semester in which there were 22341 enrolled.
Our university, the National University of Singapore, has different
colleges (e.g., Engineering, Science, Law) and within each college
there are departments (e.g., Electrical and Computer Engineering,
Computer Science). Every department offers graduate and under-
graduate degrees, and face to face classes are an integral part of
these programs. Many classes also have labs and recitations asso-
ciated with them. For large classes, there are several recitation ses-
sions offered and students sign up for the recitation session which
is most convenient to them. The same goes for the labs. At this
time of writing, all lessons are conducted on the main campus of
the university at Kent Ridge, spanning an area of 146 hectares.

Our university has a central Intranet portal for teaching, called
Integrated Virtual Learning Environment (IVLE). The Intranet por-
tal hosts a web site for every class that is taught on campus. Pro-
fessors manage the web site for their respective classes and post
lecture notes, quizzes, solutions etc. on their class web site. In-
formation about students enrolled and the schedule for the class is
posted on the web site for each class. We wrote a Perl script to
harvest this data . We anonymize the identity of the students using
MD5. For each student we stored information about the classes he
was registered for, the start and end time of the class and its venue.

3.2 Data Processing
How accurate and reliable is our data? Are there pieces of in-

formation missing? The answer is yes. For a few classes, there are
inconsistencies in the way data is stored on the class web sites. For
example the schedule information is not available. Large classes
(e.g.,> 500 students) have different lecture sessions and we do
not have information on which lecture sessions these students have

signed up for. Also, for a given class, we do not have information
on which students have signed up for which recitation and labora-
tory. In the rest of this section, we will describe how we dealt with
these issues.

As mentioned previously, for each class, we obtained the ses-
sions associated with the class, and the students enrolled in the
class. A session can be of a certaintype, for instance, a lecture
session, a recitation session or a laboratory session. A class can
have multiple sessions of each type. Sessions of the same type can
be grouped into asession group. For instance, a class may hold
two lecture sessions (delivering different content) in a week for the
same set of students. Both these lecture sessions are said to belong
to the same session group. On the other hand, a class with large
number of students, may hold two lecture sessions (delivering the
same content) in a week for different batches of students. These
lecture sessions are considered to be in different session groups. A
student signs up for a session group for each type of session in a
class he is enrolled in, and is expected to attend all sessions within
that session group.

Our Intranet portal does not provide detailed information about
which session group a student has signed up for. To fill in these
details, we randomly assign a student to a session group. To be
more specific, given a students, for each classc thats has enrolled
in, for each session typet of c, s randomly and independently signs
up for a session group of typet, and attends all sessions of that
session group.

Our random assignment of students to session groups might re-
sult in conflicts – that is, a student might have signed up for two
sessions which are held at the same time. We adopt a simple ap-
proach to deal with such conflicts. If a session group assigned to
a student leads to a conflict, the student is randomly assigned to
another session group of the same type. If it is impossible to re-
solve a conflict, the student will not be attending any session group
of that type. In our trace, only 3% of all assignments resulted in
unresolved conflicts.

After both screen scraping2 and session assignment, we have a
view of which student is attending which session at what time. This
data provides us with in-class activity of a student for a week. We
further simplify the model in several ways. Firstly, most sessions
start on the hour and end on the hour. For the few sessions which
are not, we round up the starting time and ending time of the ses-
sions to the nearest hour. This simplification allows us to use one
hour as one unit time. Secondly, we “compress” the time by remov-
ing any idle time slots without any active sessions. For example,
suppose the last session of Monday ends at 9pm, and the first ses-
sion of Tuesday starts at 8am. If Monday 8pm to 9pm corresponds
to the 10th hour, then Tuesday 8am to 9am is the 11th hour in our
model. This concept is similar to business days, which counts the
number of days excluding weekends and public holidays. We refer
to our compressed time unit as a business hour. By compressing
the time, we can remove any effects introduced by idle hours dur-
ing the night and during weekends. For the rest of this paper, when
we use the unit hours, we are referring to business hours. Finally,
class activities which are held every fortnight are assumed to be
held weekly for simplicity.

3.3 Models
The data we obtained from the Intranet portal gives us the session

schedule of students, from which we can infer the contact patterns
of students inside the classrooms. Students, however, are likely
to come into contact with each other outside of class as well. For

2Screen scraping refers to the action of parsing data from a format
usually meant for human consumption.



instance, at dining halls or libraries. The class schedules and rosters
do not provide us with such information. To model such out-of-
class contacts among students, we introducerandom hubsinto our
model.

We assume that there areNhubs random hubs on campus. At a
given hour, if a student is not attending any session, with probabil-
ity phub the student is in one of the random hubs. This probability
phub is used to model the fact that, a student who is not in class
might not be in contact with other students at all. If a student is
in a random hub, he chooses one of theNhubs hubs with uniform
probability and stays in the hub for an hour. After an hour, the
student, if still not attending any classes, decides again if he will
be in a random hub, and if so, which one, independently from the
previous hour. In our analysis, we setphub to 0.1 andNhubs to
10. One could argue that the actual student population which is on
campus on any given day is a small fraction of the total population
and hence the random hubs will cause an artificial increase in the
number of contacts. We found, however, that over80% of the stu-
dents had at least one lecture, lab or recitation scheduled on any
given day. Our choice ofNhubs also closely mirror the large hubs
on our campus. There are 11 large venues (5 dining halls and 6
libraries) on our campus where students can gather.

We can now describe how we infer the contact patterns among
students inside classrooms and random hubs. The rule is simple –
two students are in contact with each other if and only if they are
in the same venue at the same time. In other words, we assume
that as long as two students are in the same classroom, they are
within Bluetooth range of each other. This assumption has been
validated inside large classrooms on our campus. We also assume
that two students who are in different classrooms are out of range
of each other, even if one classroom is just next door to the other.
We further assume that contacts take place only during business
hours, and ignore that fact that students hang around campus for
various activities after hours. We note that the last two assumptions
are conservative – the number of contacts we obtained is a lower
bound of the actual contacts that take place on campus.

3.4 Student Attendance Survey
The in-class contacts obtained through the rosters and schedules

are on the assumption that students attend lessons all the time. This
assumption is, of course, idealistic. Can we then easily take ab-
sentees into consideration when inferring the contact patterns? We
conducted an online survey among the general student population
in our university on class attendance patterns. The students were
asked how regularly (at least 75% of the time) they attended:

1. sessions in the beginning, middle and the end of the semester.

2. early morning, mid morning and afternoon sessions.

3. small (< 50 students), medium (50-100 students) and large
(>100 students) sessions.

4. sessions with online webcasts.

The survey, gathered 2317 responses from the students, which is
over 10% of the student population. The survey indicates that, in
general, at least 64% attended their lessons regularly (except for
early morning classes, where only 48% of the respondents attend
regularly). The survey also found that, not surprisingly, the answer
depends on the period during the semester, session size, and time
of the day when the session is held. About 91% of respondents
attend classes regularly at the beginning of semester. The number
drops to 71% for the middle of semester and decreases further to
64% near the end of semester. For sessions with size less than 50,

84% of the respondents attend the lesson regularly, but only 64%
do so for session larger than 100 students. For sessions with on-
line webcasts, the attendance rate drops to 38%. This irregularity
in attendance rate shows that, without attendance logs of individual
sessions, we cannot easily model student attendance. Based on the
traces we collected, one can, however, plug in different attendance
model to study the effects under different what-if scenarios. We
only present contact-patterns based on the assumption of full atten-
dance in this paper, which gives us a bound on the actual in-class
contact patterns.

The contact patterns among students that we obtained through
the procedure above, give ushuman contact patterns. From these
contact patterns, we can infer contact patterns between mobile de-
vices and explore hypothetical questions about the performance of
algorithms. We investigate these contact patterns in the rest of this
paper.

4. FIRST LOOK AT THE DATA
To give the readers a feel of the data collected, we first present

some basic properties of our data in this section. We will defer dis-
cussions on the impact of some of these properties to later sections.

Our data pulled from our Intranet portal gave us 4885 sessions,
with an average number of 40.25 students in a session. The largest
session has a session size of 615, and smallest session size is 1.
90% of the sessions have less than 85 students. Each student at-
tends between 1 to 22 sessions a week, averaging 8.8 sessions a
week. Figure 1 and Figure 2 show the cumulative distributions of
the number of sessions attended by a student and the number of
students in a session respectively. The figures show that the num-
ber of students attending a session has a highly skewed distribution,
while the number of sessions attended by students is more evenly
distributed.

We say a session isactiveat a timet if the session is being con-
ducted att. A student is active at timet if he is attending a session
at t. Figures 3 and 4 show the distributions of the number of active
sessions and active students at a given hour. The figures show that
both the number of active sessions and active students are almost
uniformly distributed, with an average of about 109 sessions (2%)
and 4900 students (22%) active at a time.

One of the properties we are interested in is whether students
tend to come into contact with the same group of students in the
sessions they are attending, or whether they interact with differ-
ent sets of students over time. To explore the interactivity among
students, we construct two graphs and investigate the basic graph
properties of these graphs.

Let thesession graphGses be an undirected graph where the ver-
tices are the sessions, and two sessions are connected by an edge
if and only if they share at least one common student. Figure 5
shows the CDF for the degree of sessions in theGses constructed
with our data. On average, a session shares common students with
155.4 other sessions. The most connected sessions shares students
with 1602 other sessions. This distribution indicates that there is
quite a bit of “mixing” occurring on our campus. Not only do there
exist sessions with large size, there are sessions with students who
attended many other sessions as well.

To see how well connected our students are, we construct another
undirected graph called thestudent graphGstu where the vertices
are students, and two students are connected by an edge if and only
if they attended at least one common session. The distribution of
the degrees in student graph is shown in Figure 5. On average, a
student shares a common session with 560.5 other unique students.
The most connected student shares a common session with 2303
other unique students, almost 10% of the whole student population!
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Figure 3: Number of Active Sessions per Unit Time.
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Figure 4: Number of Active Students per Unit Time.

Another interesting statistic we looked at is thedegree of sep-
aration between students. We compute the length of the shortest
path (calledhop distance) between any two students in the student
graph, and plot the distributions in Figure 6. We found that the di-
ameter of the student graph is 8,i.e., two students are connected by
at most 8 hops, with an average hop distance of 2.45, a surprisingly
small number. More than 90% of pairs of students are reachable
within 3 hops of each other.

Our observation of small degrees of separation between students
lead us to the question: do the student graph and session graph
exhibit small world properties? Before we answer this question,
let us first explain the notion of cluster coefficient and clustering
index.

Theclustering coefficientof nodei measures how well the neigh-
bors ofi are connected between themselves. Letki be the degree
of nodei and letGi(vi, ei) be the subgraph of the neighbors ofi.
Then the clustering coefficient of nodei is

CCi =
|ei|

(ki)(ki − 1)/2

Theclustering indexof the graphCC is the average clustering co-
efficient over all the nodes.

We compute the average path lengthL(G) of a graphG as the
average length of the shortest path between all pairs of nodes inG.
Using average path length, and the clustering index of the graphs,
we can identify small world characteristics. Like random graphs,
small world networks have small average path length but unlike
random graphs, they have a relatively large clustering index. Small
world networks mirror social networks, in which tightly coupled
cliques of friends are connected to each other by fairly few outgoing
popular persons.

We compare our session graph to a random graph, in which we
have a set ofN nodes and each pair of nodes is connected with a
certain probability. It is easy to show that the degree distribution of
such a graph is binomial (and Poisson in the large graph limit). Let
D be the average degree of nodes in the graph. Then average path
lengthLrand is given by

Lrand ≈
ln(N)

ln(D)

and the clustering indexCCrand is CCrand ≈ D
N

[2].
Table 1 presents and compares the graph metrics of our session

graph and student graph with random graphs with the same number
of vertices and average number of edges. For both comparisons, we
see that both our network and the random network have small av-
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Gses Grand Gstu Grand

L 2.25 1.66 2.45 1.57
CC 0.34 0.03 0.53 0.026

Table 1: Small world characteristics of the session and student
graphs.

erage path lengths but our graph has much larger clustering index.
This result confirms that both the session and student graphs are
small world networks.

This preliminary study on sessions and students leads to sev-
eral general observations. Firstly, even when we consider contacts
within classrooms, our student population is well mixed, with small
degree of separation between them. This observation is good news
for mobile applications that rely on proximity-based connectivity
to disseminate messages (or viruses), as a potentially large number
of contacts can be made. Secondly, our data shows that creating a
mathematical model to model contact patterns might not be trivial,
as complex interactions exist between time, sessions and students.
These observations will be further elaborated in the subsequent sec-
tions, where the impact of the contact patterns from our traces on
several mobile application scenarios will be studied.

5. DELAY TOLERANT NETWORKING
The first scenario that we look at is delay tolerant networks (DTN).

DTN in general refers to networking applications that can tolerate
large delays, operating without end-to-end connectivity. Examples
of DTN include inter-planetary networks and vehicular-based net-
works in remote villages. The most relevant DTN in our context is
what is termedpocket switched network (PSN)[4], in which oppor-
tunistic data transfer between two devices (PDAs, cellphones etc.)
in close proximity is exploited to route packets from one user to
another, in the absence of Internet connectivity. PSN allows store-
carry-and-forward routing between devices, where a device might
buffer and carry a packet on behalf of a source device, and forward
the packet to the destination when the carrying device and destina-
tion device move within contact range of each other.

The mobility patterns of the devices, which in turn affect the con-
tact patterns, have huge impact on the design of forwarding algo-

rithms in PSN. Chaintreau et. al. [5] pointed out the weaknesses of
using model-based mobility approaches (e.g. random way-point) to
design forwarding algorithms, and showed that the characteristics
found in six mobility traces they studied are different from those
exhibited by the mobility models. Their mobility traces show that
the tail distribution of inter-contact time between pairs of devices is
heavy tailed, not light tailed as found in common mobility models.

In this section, we analyze the inter-contact time of our campus
traces. First, we look at the case without random hubs. We measure
the inter-contact time for a particular pair of students as follows.
Let s ands′ be two students. Supposes ands′ are in contactk
number of times in a week, at starting timet0, t1, ..., tk−1, where
ti+1 > ti. We lettk be the time of the first contact in the following
week, that is,tk = t0 + T whereT is the number of hours in a
week. The sequence ofk inter-contact times betweens ands′ is
given by〈t1 − t0, t2 − t1, ..., tk − tk−1〉. Inter-contact time tells
us how frequently packets forwarding opportunities arise between
these two students.

There are three significant differences between the inter-contact
time inferred from our campus schedule and rosters, and those
collected through mobility traces. Firstly, our contact durations
are in the order of hours, since a contact is maintained for the
whole duration of a session. Secondly, our contact patterns span
over the whole academic semester (13 weeks), and involve slightly
more than 22,000 students. This data is therefore several orders of
magnitude larger than that reported by Chaintreau et. al [5], both
in terms of duration of traces and population size. More impor-
tantly, we do not have the issues, where large inter-contact time
close to the trace durations are likely not to be observed, and small
inter-contact time smaller than granularity of measurements can-
not be observed. Finally, the distribution of inter-contact time from
our traces does not follow the power law distribution, as the inter-
contact time for in-class contacts is bounded – students are ex-
pected to see each other at least once every week3!

Figure 7 shows the distribution for inter-contact time for all pairs
of students, conditioned on contacts being made. The figure shows
two curves. The solid curve (labelled “Time”) plots the CDF of
inter-contact time. This curve shows that more than 20% of the stu-
dent pairs have an inter-contact time of 77 hours. This inter-contact
time corresponds to the case where students meet each other only

3Assuming they have not overslept and missed class.
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once a week, most likely during a weekly lecture. There is also a
slight increase in the number of inter-contact times around 35 hours
and 42 hours. These bumps are due to the time-tabling policy in our
university, in which lectures belonging to the same session group
are typically arranged to be three days or four days apart. The av-
erage inter-contact time between any pair of students is 39.1 hours.
While this average value seems large, our data shows that many of
the students experience at least one inter-contact time that has much
smaller values. The dotted line (labelled “Students”) in Figure 7
plots the CDF of the number of students who have experienced at
least one inter-contact time of a given value. From the figure, we
can see that about 90% of the students have an inter-contact time of
at most 10 hours with at least one other student.

Figure 8 shows the CDF for the number of contacts in a week,
between any pair of students. The figure shows that less than half of
all pairs never come into contact with each other and about 90% of
all pairs come into contact with each other at most 3 times a week.
The average number of weekly contacts between a pair of students
is 1.9.
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Another metric that is of interest to delay tolerant networking is
the time distancebetween any pair of students. The time distance
between two studentss ands′, with respect to a start timet0, is the
shortest possible times can pass a message tos′ (possibly through
some intermediate students), given thats received (or created) the
message att0. Time distance is interesting to look at, as it is a
fundamental property of the contact patterns. For a given starting
time and a given trace, time distance gives us a lower-bound on
the delay betweens ands′, regardless of the forwarding algorithm
used.

To compute the distribution of time distance, we first fix the
sources and starting timet, and simulate flooding starting from
s. At every hour, any student that has received the message orig-
inating froms, forwards it to all other students who are attending
the same session but have not received the message. We record
the time a message first reaches a student. After every student re-
ceives the message, or when no more new recipients are possible,
we stop the current simulation. We repeat these steps for all pos-
sible sourcess. This flooding procedure is similar to simulation of
epidemic spread with infection probability of 1 (see Section 6).

Before we present the results, we note that, unlike hop distance,
time distance cannot be computed by running all-pairs shortest path
algorithm on a weighted graphG, where the weight of an edge is
the shortest time distance between two neighboring students. The
reason is that, the time that elapses before a students can forward a
message to a neighbor, depends on the times receives the message.

The distribution of time distance for starting timet = 0 is shown
as solid line in Figure 9. We found that starting timet does not have
a significant effect on the distribution of time distance. Thus, only
one value oft is shown here. The average time distance, between
all pairs of students, is 18.8 hours, which is equivalent to about one
and a half days.

Recall that up to now, we are only considering in-class contacts
among students. Thus, the time distance computed is an upper
bound to the actual time distance between two students, as students
might interact outside of classrooms and speed up the flooding pro-
cess. We introduce random hubs as described in Section 3 into our
model, and recompute the time distance between all pairs of stu-
dents. The dotted line in Figure 9 shows the new distribution, with
average time distance of 7.9 hours. The random hubs have a sig-



nificant effect – without the hubs, about 30% of all pairs have time
distance of 20 hours or more. With random hubs, only 3% of all
pairs of students have time distance of 20 hours or more.

6. DATA DISSEMINATION AND EPIDEMIC
PROPAGATION

In this section we explore the epidemic spread of information and
computer viruses. Recall that we assume that every student follows
his/her assigned schedule and is present for every lecture, recitation
and lab. We assume that every student has a mobile device that is
capable of communicating in peer-to-peer mode and any two mo-
bile devices that are in the same venue can communicate with each
other directly with some probabilityp. We then analyze the spread
dynamics.

We first study the spread of the epidemic by ignoring recovery.
If at some time there is an infected nodeI which is co-located with
several other nodes in a class, we assume that each of these other
nodescatchesthe infection fromI with some probabilityp. p could
model a variety of factors such as attendance rate, or the probability
of two devices in the same lecture theater being in communication
range of each other. In fact it is reasonable to assume thatp = 1.
Even in our largest lecture halls we found that it was possible for
Bluetooth phones to communicate with each other even when they
are at the opposite ends of the lecture hall. In our simulation, we
first pick a random time at which to seedS nodes with the infection.
At each time step all infected nodes spread the infection to other
nodes in their vicinity with some probabilityp. The results are then
averaged over 100 simulation runs. We noticed that the results were
independent of both the choice of seeds and the start time of the
infection. First in Figure 10 we show the results when probability
of infection is1 as the number of initial seeds is varied. We also
investigate how random hubs speed the dynamics of the spread. We
do not see much difference in performance between50 and100
seeds. We see that even without random hubs, and with as little as
one seed, more than50% of the population gets infected within 15
hours. This time is only slight longer than on business day! With
random hubs, the situation is much worse,90% of the nodes get
infected within 10 hours, irrespective of the number of seeds! In
Figures 11 and 12, we keep the number of seeds fixed at50 and
investigate the effect of probabilistic infection. We see that the rate
of spread slows down only belowp = 0.5. Relating this back to
our class attendance survey, this implies that as long as attendance
rate is above 50%, the epidemic will spread quickly.

In our simulations, we chose nodes at random to seed and a ran-
dom time to seed the nodes with an infection. We noticed that
typically the speed of spread was almost independent of the nodes
and times chosen. We now investigate what really contributes to
the speed of spread of the epidemic. We use the metrics of central-
ity viz. closeness, betweenness and degree to investigate whether
these measures affect the spread of epidemic.

In social networks terminology, theclosenessmeasure of a node
i is defined as(

P
j dij)

−1, wheredij is the length of shortest path
between nodei and nodej. Note that a larger closeness implies a
more important node since it is on average closer to all other nodes.
Betweenness centralitymeasures the extent to which a node is in
between other sets of nodes. In other words, it measures how likely
a node is in the shortest path between any pairs of nodes in the net-
work. Letgij be the number of shortest paths from nodei to j and
gij(k) be the number of shortest paths fromi to j passing through

k. Then the betweenness measure of nodek is
P

i6=k 6=j

gij(k)

gij
. Fi-

nally the degree centrality of a nodek is just the number of neigh-
bors ofk.
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Figure 10: Spread of epidemic with and without random hubs
as the number of seeds is varied from 1 to 50 to 100. For 50 and
100 seeds, we see no difference in the speed of spread. Clearly
random hubs contribute significantly to the speed of spread.

We first compared the spread dynamics (we assume probability
of infection= 1) for the three measures of centrality above to study
whether these measures affect the spread of the epidemic. We did
this by removing the topx most central sessions for each measure
of centrality. We setx to be20, 50 and100. These numbers repre-
sent around0.5%, 1% and2% of the total number of sessions. First
we observed that irrespective of the centrality measure, the spread
dynamics were almost identical conditioned on the topx central
sessions being removed. Moreover we observed that removing the
20 most or50 most central sessions did not affect the dynamics
of spread, i.e., the spread dynamics was almost identical to hav-
ing no sessions removed. A significant slow down in the spread
dynamics was observed only when the100 most central sessions
were removed. To verify that it was the removal of the100 most
central sessions which contributed to the slow down in spread dy-
namics, we also removed100 sessions at random and compared the
dynamics. There was no difference in the spread dynamics with all
sessions present and with100 random sessions removed. The re-
sults can be seen in Figure 13. We only show results for the close-
ness measure, since the other measures result in almost identical
performance.

We next model the epidemic spread via the standard SIR model
available in literature [1]. In the SIR model, nodes can be in one
of three states,S, I or R. A node which has never been infected,
is said to be susceptible and is in stateS. A node which is cur-
rently infected is in stateI and a node which has recovered from
the infection is in stateR. A node which is in stateR never goes
back to statesS or I. If every infected node has a finite probabil-
ity of transiting to stateR, then the epidemic eventually dies out.
This standard SIR model has also been used to model the spread
of Internet and mobile computer viruses [10]. In our model, in any
time slot, a susceptible node which is co-located with an infected
node can get infected with probabilitypi. At the end of the time
slot, a node which is in stateI can transit to stateR with probabil-
ity pr. We investigate the spread of virus under three scenarios4,
(i) pi

pr
= 2

3
(ii) pi

pr
= 1 and (iii) pi

pr
= 3

2
. In Table 2, we show

4There are of course several other possibilities, but we found these
three cases representative of the dynamics of the system.
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Figure 11: Dynamics of epidemics spread as the probability of
infection is varied. We see that the spread dynamics slows down
significantly for values ofp less than0.5.

No Hubs With Hubs
ρ = 2

3
ρ = 1 ρ = 3

2
ρ = 2

3
ρ = 1 ρ = 3

2

Lifetime of
Infection 58 73 84 178 180 183
Percentage
Infected 54.55 66.91 80.23 99.62 99.95 100

Table 2: Infection Dynamics With the SIR Model.

how long it takes for the infection to die out and the total number
of people infected. We see that the random hubs not only cause the
infection to last much longer, but also cause almost100% of the
population to get infected.

7. DATA AGGREGATION
In this section we address the issue of how data can be aggre-

gated from a large set of mobile phones. To motivate this problem,
we present two scenarios where aggregation is useful.

The first scenario concerns virtual marketplace built on-top of
PeopleNet [14], in which buyers and sellers enter their information
on the phones, and let the information propagates through other
phones, until a match is found. One could use PeopleNet to buy
and sell textbooks. An aggregation query is useful, when say, a
student wants to know the minimum selling price of a particular
book. Another scenario could be a survey/opinion poll application.
For instance, university management could send SMS messages to
students polling for information (e.g. have you seen a certain suspi-
cious character? or how long have you been waiting for the shuttle
bus?) for security and planning reasons5. An aggregation query
would be useful, if only aggregated information is needed (e.g. av-
erage waiting time) rather than individual answers from students.

Running aggregation query over large number of mobile nodes
is non-trivial. There are three key mechanisms that need to be
worked out. First, how do we get the queries to the mobile nodes?

5This application is not as far fetched as it sounds, as our Intranet
learning portal already allows a professor to send class announce-
ments through SMS to all students in his class with a click of a
button.
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Figure 12: The effect of random hubs when the infection spread
is probabilistic.

Second, how do the mobile nodes aggregate information for the
query? Third, how do the mobile nodes relay this information back
to a central data collection agency? For the first and third options,
there are two alternatives. If we exploit the fact that mobile nodes
have the ability to communicate over the infrastructure (e.g., cel-
lular), then the query and aggregated information can be sent via
the infrastructure. On the other hand, if we wish to exploit only
the peer-to-peer capabilities of these devices, then we can use DTN
like ideas, to opportunistically hand off data to conveniently located
access-points whenever a mobile node is near one. We believe that
the first solution is more robust and reliable. Therefore for send-
ing queries and returning aggregated information, we exploit the
infrastructure capabilities of the mobile devices.

Given our choice for transmitting and receiving aggregated in-
formation, we turn our attention to how mobile nodes should ag-
gregate data. Notice that in our system model, there are energy and
bandwidth constraints6. Clearly, the quickest method to query the
database and receive responses is to broadcast the query over the
infrastructure to all the nodes in the system and have them respond
over the infrastructure. The bandwidth costs required for this is
enormous. If one was tolerant to some delay in receiving responses
however, a better strategy would be to transmit the query to a few
nodes in the system and have them opportunistically aggregate in-
formation from neighboring nodes and relay the aggregated infor-
mation after some fixed intervalT . Notice that in addition to delay,
we are also trading-off accuracy for bandwidth cost. A small sub-
set of the nodes might only be able to aggregate information from a
small fraction of the population. In what follows, we will see how
the nature of our trace data can be exploited to efficiently aggregate
information from a large fraction of the population in the shortest
possible time, while still keeping the infrastructure costs low.

Assume that the query is initially sent over the infrastructure to
some randomly chosen nodes. The quickest way (on an average)
in which this query can be spread to all the nodes in the system
is via an epidemic spreading model. In other words, a node with
the query periodically broadcasts and spreads the query to other
nodes in its vicinity. This will allow a large fraction of the popula-
tion to be sampled very quickly. The key issue however, is how this

6Memory constraints are not so severe given the increasing mem-
ory capabilities of mobile devices such as cellular phones.



 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

Ti
m

e 
in

 H
ou

rs

Fraction of Infected Nodes

Epidemic Spread
(Sessions With Maximum Closeness Removed)

CR = 0
CR = 20
CR = 50
CR = 100
100 Random

Figure 13: We look at the dynamics of epidemic spread with the
top 20, 50 and 100 most close sessions removed. We compare
the performance with no sessions removed and with100 ran-
dom sessions removed. In the legendCR represents the num-
ber of sessions removed.

information can be aggregated so that only a few nodes transmit ag-
gregated information over the infrastructure with most of the sam-
pled data. This is where the observation that in the campus model,
nodes frequently aggregate in large clusters can be exploited. For
simplicity, we consider only classes of queries where the size of
aggregated data does not grow, with the amount of data aggregated
(e.g. queries which wish to compute quantities such as AVERAGE,
MIN and MAX). This assumption implies that the infrastructure
bandwidth cost is only proportional to the number of aggregators
responding and not the amount of data which is transmitted.

The idea behind our algorithm is simple. Every node which hears
the query inherits the responsibility to aggregate. Next we ensure
that in each aggregation center (e.g. in a class room, lab or random
hub) only one node takes the responsibility of aggregating informa-
tion. We show that this simple idea has some very nice properties.

Formally, our algorithm is as follows. At any timet, there are
three setsAt, Rt andSt, such thatAt ∪ Rt ∪ St = N , whereN
is the set of mobile nodes.At is the set of nodes which have ag-
gregated data at timet. Rt is the set of nodes which have received
the query and taken the responsibility to aggregate data, but do not
have any aggregated data at timet. St is the set of nodes which
have not received the query up to timet. Let ai

t ∈ At, ri
t ∈ Rt

andsi
t ∈ St be the nodes in aggregation center (class room, lab

etc.) i at timet. At time stept all nodes inAt ∪Rt broadcast their
desire to aggregate information for queryq. At aggregation center
i, one of the nodesn(i) ∈ ai

t ∪ ri
t is elected7 as the aggregator

for that center and all other nodes inai
t relinquish the data that they

have aggregated so far ton(i). All nodes insi
t transmit their data

to n(i). Therefore ifC is the set of aggregation centers, then, at

7Dealing with the intricacy of distributed election protocol is out
of the scope of this paper.

time t + 1, we have,

ai
t+1− = n(i) ∀i ∈ C (1)

ri
t+1− = {ai

t ∪ ri
t ∪ si

t} \ n(i) ∀i ∈ C

si
t+1− = φ ∀i ∈ C

At+1 = ∪i∈Cai
t+1−

Rt+1 = ∪i∈Cri
t+1−

St+1 = N \ {At+1 ∪ Rt+1}
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Figure 14: The figure shows the number of nodes which are
aggregators, when a certain fraction of the node population has
been sampled. The number of initial seeds is varied. We see
that when over 90% of the population has been sampled, the
number of aggregators is the same irrespective of the number
of initial seeds.
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Figure 15: Same as Fig. 14, but with random hubs.

For simplicity, in our algorithm, we choosen(i) uniformly at
random fromai

t ∪ ri
t. At the end of the deadlineT for queryq,

nodes fromAT will transmit their aggregated information over the
infrastructure.
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Figure 16: The figure shows the amount of information aggre-
gated by each aggregator with 50 Seeds. The figure shows that
a small number of the nodes have aggregated most of the infor-
mation.

Let us look at some of the properties of the algorithm. First of all
we see that the set of nodes from which each node inAt has aggre-
gated information is disjoint, i.e., ifni ∈ N is the set of nodes over
which nodei ∈ At has aggregated data, thenni∩nj = φ,∀i 6= j .
Since we have only one aggregator at each aggregation center, and
new information only comes from the setSt, there is no duplication
of information gathered by different aggregators. In other words
there is no double counting. Nodes essentially store the query id
q and transmit information for queryq only once. Second, we see
that given an initial number of seeds, any algorithm which relies on
proximity based aggregation, cannot aggregate information from
an equivalent number of nodes in shorter time. In other words, for
any other algorithm, if the initial number of seeds is fixed, for any
t, |At ∪ Rt| is maximized in our algorithm. This is due to the fact
that the query spreads in an epidemic fashion in our algorithm.

The above properties are certainly useful. However, the key
question is, how does the setAt grow as a function oft? If it grows
arbitrarily large, then every one of these nodes will respond with in-
formation over the infrastructure and bandwidth costs will be enor-
mous. In Figures 14 and 15, we plot the number of nodes in the set
At versus the fraction of sampled nodes in the system. We observe
that irrespective of the number of seeds, the number of aggregators
required to sample90% of the nodes, is approximately the same.
We also notice that the number of aggregators required to sample
90% of the nodes, without the random hub is about430, while
with random hubs, it drops to about250. These numbers are not
very large, but can they be made smaller? In order to gain some in-
sight, we look at how much data each of these aggregators has, i.e.,
we computeni ∀i ∈ A∗

t , wheret∗ = min{t : |At∪Rt|
N

> 0.9}.
We sort and plotni in Figure 16. We see that a few of the nodes
have aggregated most of the data. Remarkably, we found that ir-
respective of the number of seeds, the largest100 aggregators had
aggregated over90% of the data and the largest50 aggregators had
aggregated over72% of the data. This points to a simple threshold-
ing principle, whereby a nodei ∈ At transmits information only if
ni > τ , whereτ is some predefined threshold.

In addition, we also looked at the amount of overhead involved
when nodes inat

i have to relinquish their data to noden(i). In our

simulations, we found that when90% of the nodes have been sam-
pled, the number of overhead transmissions is about900 without
hubs and380 with hubs. We contend that this overhead is quite
small.

To do a simple verification that it was this clustering model of
students which resulted in a small number of nodes aggregating
most of the data, we conducted the following control experiment.
Given our trace session schedule, at each time slot, all students
who are supposed to belong to one of the sessions are distributed
uniformly between the sessions which are active at that time. This
retains most of the dynamics of the system and only skews the dis-
tribution of students in sessions. When we ran this experiment with
50 seeds, we found that around525 nodes were required to aggre-
gate information from90% of the nodes. Moreover, if we consid-
ered only the top100 aggregators, they had aggregated only70%
of the data – a decrease of25%.

It is clear that we would not see these properties in a system
where nodes did not cluster and disperse at frequent intervals. We
have been able to exploit this clustering phenomenon to obtain
good performance from a simple yet intuitive algorithm. This algo-
rithm can be further formalized into a protocol with several design
parameters. However in this paper we only focus our attention on
the key ideas of the algorithm. The main motivation was to show
that the properties of our traces can result in simple yet powerful al-
gorithms. The specific protocol design issues are beyond the scope
of this paper.

8. REFLECTIONS AND CONCLUSIONS
In this section we reflect about the paper, its contributions, weak-

nesses and future directions. One of the main contributions of this
paper is the source of data. In the past most attempts at deriving
mobility patterns of users have been from analyzing trace measure-
ments (typically in a campus environment) of user interactions with
WiFi access points and other users. There are two possible reasons
for this heavy reliance on measurement based data. One is the en-
trenched mind set in the research community which has been used
to making measurements over the Internet to infer user behavior
and system usage patterns. The other possible reason is that univer-
sity campuses, out of privacy concerns, have been reluctant to part
with the kind of information we have collected. Whatever the case,
compared to existing literature in the mobile network research com-
munity, our approach and data are significantly different. In retro-
spect of course this method is a natural approach to obtaining such
data. We highlight that our data is complementary to measurement
based studies, which are dependent on existing applications and ex-
isting penetration of wireless devices. Measurement based studies
are useful in understanding current usage patterns and trends in user
behavior. However, they do not allow you to askwhat if questions
about new applications and algorithms. The research community
has relied on simple, intuitive, but unrealistic synthetic mobility
models to ask such questions. Our study presents a rich data source
for the research community which can be used to study all kinds of
applications and usage scenarios.

In addition to being an entirely new and complete data set, the
other key aspect of our data is its size and time scale. We have col-
lected data about the entire student population of22, 341 students
on campus. Measurement based studies, especially ones which de-
pend on users carrying logging devices are necessarily limited in
scope due to cost and manpower considerations.

Given the data set, we have first thoroughly characterized all its
properties. We further show that it exhibits small world behavior.

We then focused on three aspects which we believe will have
significant import on future mobile networking applications. The



first is DTN. Terrestrially, DTN is a key technology which can not
only bridge the digital divide, but will also be extremely useful in
disaster recovery scenarios. We show that in a campus environ-
ment, arbitrary pairs of students can communicate with each other
in less than two business days on average. This represents an up-
per bound on the performance of the system. We show that with
random hubs present, this number reduces to7.6 hours. Next, we
consider the spread of mobile computer viruses on our trace data
and show that a virus can spread to almost the entire campus re-
markably quickly. We then identify the sessions which actually
contribute to the speed with which these viruses spread. We then
consider a new application. We view mobile devices such as phones
as a large dynamic distributed database. We consider how data can
be efficiently aggregated over such a database. We show that due to
how students cluster on campus, data can be aggregated extremely
efficiently with a few nodes aggregating data from almost the en-
tire population. All our results represent upper bounds on what will
happen in a real world scenario.

One observation we make is that generating an accurate synthetic
mobility model derived from our trace data will be a very challeng-
ing task. Generating a synthetic model, all of whose properties are
identical to the actual campus trace (even in terms of graph prop-
erties) is not very simple. A recent approach by Ghosh et. al [8] is
possibly a step in the right direction. Their notion of sociological
orbits and hubs, seems to reflect the campus traces at a high level.
It remains to be seen, if algorithms which run on this model result
in identical performance to our traces.

There are some weaknesses in our approach which we can iden-
tify. First, knowledge gaps exist during the times in which students
are not active, i.e., in some session or the other. We use a sim-
ple random hub model to model how students behave when not in
classes. In our model, students independently choose which hubs
they will go to. This assumption is not true in real life. In the real
world, people will probably go to a specific set of random hubs.
The choice of random hubs could also be a function of the venue of
the last session attended. For example, after a lecture which ends at
noon, a student will probably head to the nearest cafeteria. These
dependencies are not captured in our model. One could invest a
lot time and effort concocting several other random hub models.
However, in the absence of any other data to guide such choices,
we chose to use the simplest reasonable model. The other place
where our actions have influenced the model is that of assigning
students to recitations and sub-sessions in large classes. We have
assumed once again that students independently pick a recitation.
However, in our experience with students on our campus, we found
that students try to attend the same recitation groups as their friends
or study partners. This dynamic is not captured by our data.

Finally, we realize that it may be difficult for other researchers to
obtain access to similar data from other universities. Therefore we
have made our complete and anonymized traces available at
http://www.comp.nus.edu.sg/ ooiwt/papers/contact-mobicom06-data/.
The traces are also available from CRAWDAD
(http://crawdad.cs.dartmouth.edu /). We believe that there is much
more that can be learnt from these traces.

Acknowledgements
We would like to thank Anirudh Natarajan and Arumugam Pillai
Venkatesh for writing scripts to parse the data. We would like to
thank the anonymous reviewers and our shepherd Jason Nieh for
valuable comments which helped in improving the quality of the
paper. This research was funded by grant R-263-000-331-112 from
the National University of Singapore.

9. REFERENCES
[1] N. Bailey.The Mathematical Model of Infectious Diseases

and its Applications. Hafner Press, February 1975.
[2] B. Bollobas.Random Graphs. Number 73 in Cambridge

Studies in Advanced Mathematics. Cambridge University
Press, Cambridge, UK, 2nd edition, January 2001.

[3] T. Camp, J. Boleng, and V. Davies. A survey of mobility
models for ad hoc network research.Wireless
Communications and Mobile Computing (WCMC): Special
issue on Mobile Ad Hoc Networking: Research, Trends and
Applications, 2(5):483–502, March 2002.

[4] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and
J. Scott. Pocket switched networks: Real world mobility and
its consequences for opportunistic forwarding. InTechnical
Report Number 617, February 2005.

[5] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and
J. Scott. Impact of human mobility on the design of
opportunistic forwarding algorithms. InProceedings of IEEE
INFOCOM 2006, Barcelona, Spain, April 2006.

[6] D. Dagon, T. Martin, and T. Starner. Mobile phones as
computing devices: The viruses are coming!IEEE Pervasive
Computing, 3(4):11–15, October 2004.

[7] N. Eagle and A. Pentland. Social serendipity: Mobilizing
social software.IEEE Pervasive Computing, 4(2):28–34,
2005.

[8] J. Ghosh, S. J. Phillip, and C. Qiao. Sociological orbit aware
location approximation and routing in MANETs. In
Proceedings of Broadnets 2005, Boston, U.S.A, October
2005.

[9] T. Henderson, D. Kotz, and I. Abyzov. The changing usage
of a mature campus-wide network. InProceedings of
MobiCom 2004, pages 22–31, September 2004.

[10] B. D. Noble J. W. Mickens. Modeling epidemic spreading in
mobile environments. InFourth ACM Workshop on Wireless
Security, August 2005.

[11] R. Jain, D. Lelescu, and M. Balakrishnan. Model t: an
empirical model for user registration patterns in a campus
wireless lan. InProceedings of Mobicom 2005, Cologne,
Germany, August 2005.

[12] A. Jardosh, K.C. Almeroth E. M. B. Royer, and S. Suri.
Towards realistic mobility models for mobile ad hoc
networks. InProceedings of Mobicom 2003, San Diego,
U.S.A, September 2003.

[13] M. McNett and G. M. Voelker. Access and mobility of
wireless PDA users.Mobile Computing and
Communications Review, 9(2):40–55, 2005.

[14] M. Motani, V. Srinivasan, and P. Nuggenhalli. PeopleNet:
Engineering a wireless virtual social network. InProceedings
of MobiCom 2005, Cologne, Germany, August 2005.

[15] G. Sharma and R. Mazumdar. Scaling laws for capacity and
delay in wireless ad hoc networks with random mobility. In
Proceedings of IEEE ICC 2004, volume 7, pages 3869–3873,
Paris, France, June 2004.

[16] D. Tang and M. Baker. Analysis of a metropolitan-area
wireless network.Wireless Network, 8(2/3):107–120, March
2002.


