
Reducing Data-Memory Footprint of Multimedia
Applications by Delay Redistribution

Balaji Raman1 Samarjit Chakraborty1 Wei Tsang Ooi1 Santanu Dutta2

1Department of Computer Science, National University of Singapore
2nVIDIA Corporation, Santa Clara

{ramanbal,samarjit,ooiwt}@comp.nus.edu.sg, sdutta@nvidia.com

ABSTRACT
It is now common for multimedia applications to be partitioned and
mapped onto multiple processing elements of a system-on-chip ar-
chitecture. An important design constraint in such architectures
is that the FIFO buffers connecting the processing elements (in
a pipelined fashion) should not overflow and the playout buffer
should never underflow. To meet these constraints, an usual de-
sign practice is to increase the initial playout delay after which the
output device starts reading from the playout buffer. Although im-
plementing this technique is straightforward and involves only the
the computation of an appropriate playout delay, it suffers from the
downside of a large playout buffer being required. In this paper,
instead of associating the playout delay solely with the output de-
vice, we propose to redistribute this delay among all the processing
elements running the various tasks of the multimedia application.
We show that this delay redistribution technique can signficantly
reduce (up to 70%) the total on-chip memory required.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]: Real-time
and embedded systems; C.4 [Performance of systems]: Design
studies and modeling techniques; I.6 [Simulation and Modeling]:
Applications

General Terms
Performance, Design

Keywords
Video decoding, System-level design, Playout delay, On-chip mem-
ory

1. INTRODUCTION
Many system-on-chip platform architectures targeted towards the

multimedia domain consist of multiple processing elements (PEs)
connected by FIFO buffers in a pipelined fashion (e.g. Eclipse and
Viper from Philips [1]). Each such PE executes a part of an appli-
cation (e.g. Variable length decoding in an MPEG-2 decoder ap-
plication) and runs concurrently with the other PEs. An important

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ...$5.00.

Output
Device
(playout
delay d)

PE 2

Input
Buffer

Intermediate
Buffer

Playout
Buffer

PE 1

PE 2
delay d1

Multimedia
Stream

Delay
Redistribution

Application
Partition

Output
Device
(playout
delay d)

Figure 1: Our system model and technique. FIFO buffers connect PEs
in pipeline. An application is partitioned and mapped onto the different
PEs that run tasks concurrently. Buffer size reduces on redistributing
playout delay.

design constraint in such set-ups is to ensure that none of the FIFO
buffers overflow and in addition, the playout buffer never under-
flows. To ensure the overflow constraint, PE stalls when the buffer
it is writing to fills up. To prevent playout buffer underflow, the
PE that writes to the buffer is usually clocked at a slightly higher
frequency than the clock of the output device that reads the playout
buffer.

Although a combination of these two techniques ensure both the
buffer overflow and underflow constraints, its application involves
additional stalling circuitry and the use of at least two different
clock domains. To avoid these overheads, a common design tactic
is to use a sufficiently large playout delay (i.e. the delay after which
the output device starts reading the playout buffer) to avoid possi-
ble playout buffer underflows, in combination with large buffers
to avoid buffer overflows. However, given the high variability in
the execution requirements of most multimedia applications, the
amount of buffer space required can be significant if one aims at a
design with a buffer targeting the worst-case application.

In this paper, we propose a technique where the playout delay
is not associated solely with the output device. Rather, this de-
lay is redistributed over the multiple PEs in the pipeline. In other
words, each PE starts reading its input buffer after a certain amount
of time, or delay, has elapsed since the previous downstream PE
started reading its input buffer. We show that such delay redistribu-
tion can significantly reduce the total buffer requirements, without
increasing the total playout delay of the application being executed.
Given that on-chip buffers occupy a large fraction of the chip area,
our technique is useful in reducing chip area. At the same time it
involves no extra implementation overheads.

Our delay redistribution scheme takes into account the variability
in the execution requirements of an application and also the bursti-
ness in the on-chip traffic. The manner in which the delay is dis-
tributed also depends on the partitioning of the application onto the
multiple PEs. As a rule of the thumb, we propose that the total

playout delay be redistributed among the different PEs in the archi-
tecture based on the ratio of the variability of the tasks running on
the respective PEs. In other words, a PE running a task with high
variability in its execution requirement should be associated with
a higher delay. Although this basic technique is fairly intuitive,
most current designs associate all the playout delay solely with the
output device.

Our contribution in this paper is in conceiving the delay redis-
tribution technique for multimedia pipelines and in formulating a
mathematical framework that can guide a system designer in ap-
plying this scheme. We also present experimental results (based on
an MPEG-2 decoder) to quantitatively show the reductions in the
buffer size required after applying our technique. The buffer sizes
we estimate are validated with the results obtained from simulation-
based techniques.
Relation to previous work: Previous efforts [2, 10, 4, 5, 7, 3, 8]
have specifically been directed towards optimizing on-chip mem-
ory in system-on-chip architectures designed for embedded mul-
timedia systems. Most of the previous papers attempted to re-
duce memory requirements of synchronous data-flow (SDF) graphs
which are used for specifying compute-intensive kernels of DSP
applications. Murthy and Bhattacharya [5] proposed buffer merg-
ing to reduce memory requirements of SDF graphs. Buffer merging
is achieved through sharing buffers that two different processes use.
After analyzing the lifetime of actors (nodes specifying application
code blocks in SDFs), it is determined whether two different pro-
cesses containing these actors can potentially share buffers. Stuijk
et al. [8] computed the pareto-optimal points that give the minimum
storage space needed to execute a graph under given throughput
constraints. We take a completely new approach in that we study
the on-chip traffic characteristics of the application and exploit the
playout delay parameter associated with the multimedia application
to reduce the buffer size. Similar approaches have been followed in
the domain of computer networks to counter the burst in network
traffic so as to effectively utilize network resources. In compari-
son, our work is concerned with fixed playout delay, rather than
dynamically adjusting it at runtime (as Ramjee et al. [6] studied).
Further, our technique is more relevant in the context of playing
stored audio and video. Hence, we did not exploit network related
parameters such as loss and delay.
Organization of this paper: In the next section, using three illus-
trative scenarios, we show that the maximum buffer size required
for the intermediate and the playout buffer reduces when the play-
out delay is redistributed among the display device and the PEs. To
estimate the playout delay associated with the multimedia applica-
tion, we propose a mathematical framework in Section 3. Using
this system model, in Section 4, we compute the maximum initial
playout delay required for a class of multimedia streams (e.g., same
bit-rate/resolution video clips) such that the playout buffer never
underflows. Then the playout delay is redistributed to the PEs, and
the maximum total on-chip buffer size required before and after
delay redistribution is estimated. To evaluate our analytical frame-
work, we use an MPEG-2 decoder application as the case study in
Section 5 and empirically show that the delay redistribution reduces
the total on-chip memory required. Finally, we conclude the paper
in Section 6.

2. ILLUSTRATIVE EXAMPLE
In this section, we first explain the mapping of the application to

the multiprocessor system-on-chip architecture platform. Then, for
this set-up (shown in Figure 1), the advantages of the delay redis-
tribution technique over others is illustrated with some scenarios.

MPEG-2 decoder is the multimedia application we chose to map

Input
Buffer

Playout
Buffer

Intermediate
Buffer

Buffer
underflow

b Bb

b Bb

Bc

d

d1 d-d1

Ba

b(a)

(b)

(c)

Buffer fills
during initial
playoutdelay

Buffer
overflow

Ba

Ba

Figure 2: Buffer fill levels with initial playout delay: (a) very small,
(b) large, and (c) redistributed.

to the system-on-chip platform. The sub-tasks of the application,
namely, variable length decoding (VLD), inverse quantization (IQ),
inverse discrete cosine transform (IDCT), and motion compensa-
tion (MC) are bound to the two on-chip processing elements (PE 1
and PE 2 in Figure 1). PE 1, running VLD and IQ, reads the in-
put buffer, where the stream objects (or items) of the encoded input
video arrive. PE 2, executing IDCT and MC, reads the partially
processed stream objects (output of PE 1) from the intermediate
buffer. The output device, after an initial delay d, reads the de-
coded stream objects (that PE 2 stored) from the playout buffer at
a constant rate and displays the video. To show how our technique
reduces the required on-chip memory size, we present three differ-
ent scenarios. Figure 2 sketches the fill levels of the on-chip FIFO
buffers in those scenarios. Scenario (c) is where we apply our de-
lay redistribution technique, and scenarios (a) and (b) are existing
techniques. Let us now discuss them in further detail.

Scenario (a), where the playout buffer underflows, occurs when
the output device reads the playout buffer with no or small initial
playout delay. The execution of some tasks of multimedia applica-
tions (e.g. VLD in MPEG-2) show high data-dependent variabil-
ity. The PEs running these variable tasks (for e.g., PE 1 which is
running VLD in our set-up) writes to their output buffer at a vari-
able rate. In the example discussed here, the output buffer of PE 1
is the intermediate buffer and its fill level fluctuates through time
(shown in Figure 2). This phenomenon of buffer fill level oscilla-
tion propagates to the playout buffer resulting in a cascading effect:
varying fill levels at one buffer cause the fill level to vary at the
next buffer in the pipeline, and this effect continues until it reaches
the playout buffer. The output device, however, reads items from
the playout buffer at a constant rate. Hence, it is possible that the
playout buffer underflows resulting in a loss in quality of the dis-
played video. Also, due to the cascading effect, the intermediate
buffer and the playout buffer might overflow if the buffers are not
large enough. To avoid such overflows and underflows – as men-
tioned in Section 1 – the PEs have to stall (avoids overflows) and
run at a higher clock frequency domain (avoids underflow at play-
out buffer). This technique has large overheads (e.g. in terms of
stalling circuitry). In the next scenario, we will see how the initial
playout delay absorbs the variabilities arising due to task execution
(and due to variable event arrivals).

The display device starts reading from the playout buffer after a
considerable initial playout delay in Scenario (b), and the playout

buffer does not underflow. Only after the initial delay the output de-
vice starts consuming items from the playout buffer. Hence, during
the delay, stream objects accumulate in the playout buffer. If this
initial delay is appropriately chosen, then the variabilties occurring
at the output of PE 1 will not propagate to the playout buffer (see
playout buffer fill level in Figure 2 (b)). Since there are no vari-
abilities in the fill level of the playout buffer, it never underflows.
Effectively, we evaded the cascading effect. However, bursts at the
intermediate buffer remains (see intermediate buffer fill levels in
Figure 2). Now, like the playout buffer, what if the intermediate
buffer plays the role of an consumer? That is, if we start PE 2 after
a certain delay, then the variabilities at the output of PE 1 shall be
absorbed at the intermediate buffer itself. The benefits of this delay
redistribution are discussed next.

In Scenario (c), PE 1 initially starts to decode items. Then af-
ter a delay of d1, PE 2 starts. Finally, after a delay d, the display
device starts reading stream objects from the playout buffer. In
Figure 2(c), we see no fluctuations in the intermediate buffer and
the playout buffer, and the fill level at the playout buffer substan-
tially reduces compared to Scenario (b). Note that the delay after
which PE 2 should start (d1) has to be appropriately chosen such
that the intermediate buffer size does not increase after the delay
redistribution. This is because the total buffer size required will not
reduce in that case. For slight increase in the intermediate buffer
size, our results show that the total maximum buffer size required
reduces after redistribution. Since, at the intermediate buffer, un-
like the playout buffer, the stream objects are partially compressed,
they require less memory.
Problem statement: We solve the following problem using the an-
alytical framework presented in the next section. Consider our sys-
tem model shown in Figure 3, and assume a streaming application
that is partitioned into tasks and mapped to the PEs of the system.
A constant bit rate input stream arrives at the input buffer, PE 1
partially processes it, and writes it to the intermediate buffer. PE 2
reads items from the intermediate buffer, completely processes the
stream, and writes it to the playout buffer. Finally, the display de-
vice consumes items from the playout buffer at a constant rate.
Given the frequency at which PE 2 runs (f2), the minimum fre-
quency at which PE 1 should run (f1), the corresponding minimum
playout delay (d) is estimated such that the playout buffer never
underflows. If the output device initially consumes items after de-
lay (d), the playout buffer is guaranteed to never underflow. Then,
preserving the playout buffer underflow guarantee, the maximum
playout buffer size and intermediate buffer size required after delay
redistribution should be estimated. It has to be shown that the total
maximum buffer size required (sum of the intermediate buffer and
playout buffer sizes) reduces after delay redistribution.

3. SYSTEM MODEL

Display

buffer
Playout

C(t)y(t)
PE 1

x1(t)

α1(∆)

buffer
Input

β2(∆)

PE 2
x2(t)

α2(∆)

buffer
Intermediate

β1(∆)

Figure 3: System Model
In this section, we model the variabilities in the arrival of in-

put items and the variabilities in the processing requirement of the
items.

We assume that the input bit stream to be decoded is fed into
the input buffer at a constant rate of r bps. Further, for simplicity,
we assume a stream consists of a sequence of stream objects. A
stream object might be a macroblock in the case of video decod-
ing. Now, given a media clip to be decoded, let x1(t) denote the

number of stream objects arriving in the input buffer over the time
interval [0, t] (see Figure 3). Due to the variability in the number of
bits constituting a stream object, the function x1(t) varies with the
media clip. We define two functions αl

1(∆) and αu
1 (∆) to bound

the variability in the arrival process of the stream objects into the
input buffer of PE 1 (see Figure 3). These two functions are defined
as

α
l
1(∆) ≤ x1(t + ∆) − x1(t) ≤ α

u
1 (∆) (1)

for all t and ∆ ≥ 0, where αl
1(∆) and αu

1 (∆) denotes the mini-
mum and maximum number of stream objects that can arrive at the
input buffer within any time interval of length ∆, respectively.

To compute αl
1(∆) and αu

1 (∆), we introduce two functions φl(k)
and φu(k). The former denotes the minimum number of bits con-
stituting any k consecutive stream objects in a bit-stream, and the
latter denotes the corresponding maximum number of bits. These
two functions can be obtained by analyzing a number of media clips
that are representative of the clips to be processed by the target de-
coder.

Given the functions φl(k) and φu(k), it is possible to compute
the pseudo-inverse of these two functions, denoted by φl−1

(n) and
φu−1

(n), where the argument n is the number of bits. The func-
tions φl−1

(n) and φu−1

(n) returns the maximum and minimum
number of stream objects that can be constituted by n bits respec-
tively. Since we assume the input bit stream arrives in the input
buffer at a constant rate of r bps, we have

α
l
1(∆) = φ

u−1

(r∆) and α
u
1 (∆) = φ

l−1

(r∆).

We denote the arrival stream to the intermediate buffer as x2(t) and
represent the alpha curves that bounds the variability in the arrival
to PE 2 as (αu

2 (∆), αl
2(∆)).

Similarly, we can characterize the variability in the number of
processor cycles required to process any stream object using two
functions γl(k) and γu(k). Both these functions, known as gamma
curves, take the number of stream objects k as an argument. The
function γl(k) returns the minimum number of processor cycles
required to process any k consecutive stream objects, and γu(k)
returns the corresponding maximum number of processor cycles.
The gamma curves for PE 1 and PE 2 will be denoted as γ

l/u
1

and
γ

l/u
2

respectively.

4. PLAYOUT DELAY REDISTRIBUTION
In this section, first we present our analytical framework to esti-

mate the minimum playout delay required such that PE 1 and PE 2
run at minimum processor frequency required to meet the display
rate. Later, we estimate the total maximum buffer size required
(sum of the intermediate and the playout buffer sizes).

We assume that the playout buffer is readout by the output device
at a constant rate of c stream objects/sec, after a playout delay (or
buffering time) of d seconds. Let the function C(t, d) be the num-
ber of stream objects readout by the output device over the time
interval [0, t] after playout delay d, then,

C(t, d) =

0 if t ≤ d

c(t − d) if t > d.
(2)

Now, given the input bitrate r, the functions (φl/u(k), γ
l/u
1/2

(k))
characterizing the possible set of media clips to be decoded, and the
function C(t, d), we can compute the minimum processor frequen-
cies f1 and f2 to sustain the playout rate of c stream objects/sec.
This is equivalent to requiring that the playout buffer never under-
flows.

Let y(t) denotes the total number of stream objects written into
the playout buffer over the time interval [0, t]. Then the playout
buffer underflow constraint is equivalent to requiring that y(t) ≥
C(t, d) for all t ≥ 0.

Let the service provided by PE 2 at frequency f2 be represented
by the function β2(∆). Similar to αl

2(∆), β2(∆) represents the
minimum number of stream objects that are guaranteed to be pro-
cessed (if available in the intermediate buffer) within any time inter-
val of length ∆. It can be shown that y(t) ≥ (αl

2 ⊗β2)(t),∀t ≥ 0,
where ⊗ is the min-plus convolution operator1. Hence, for the con-
straint y(t) ≥ C(t, d), ∀t ≥ 0 to hold, it is sufficient that the fol-
lowing inequality holds

(αl
2 ⊗ β2)(t) ≥ C(t, d), ∀t ≥ 0. (3)

It is known from the duality between ⊗ and �, that for any three
functions f , g, and h, h ≥ f � g if and only if g ⊗ h ≥ f , where
� is the min-plus deconvolution operator2. By applying this result
on inequality (3), we obtain

β2(t) ≥ (C � α
l
2)(t, d), ∀t ≥ 0. (4)

Note that β2(t) in Inequality (4) is defined in terms of the number
of stream objects that need to be processed within any time interval
of length t. To obtain the equivalent service in terms of processor
cycles, we can use the function γu

2 (k) defined above. The mini-
mum service that needs to be guaranteed by PE 2 to ensure that the
playout buffer never underflows is given by

γ
u
2 (β2(t)) = γ

u
2 ((C � α

l
2)(t, d)) (5)

processor cycles for all t ≥ 0. Hence, the minimum frequency at
which PE 2 should run to sustain the specified playout rate is given
by

min{f2 | f2t ≥ γ
u(β2)(t)}, ∀t ≥ 0. (6)

From the above equation, if PE 2 is run at frequency f2, with a
playout delay d (see Equation (2)), then it is guaranteed that the
playout buffer will never underflow. Now, let us compute the mini-
mum processor frequency for PE 1.

Considering that the playout delay is redistributed, the service
that PE 2 should guarantee to meet the display requirement is given
as

β2(t) ≥

0 if t ≤ d1

(C � αl
2)(t, d) if t > d1,

(7)

with d > d1.
PE 2 is idle during the initial delay d1. After the initial delay,

PE 2 produces items at a speed to sustain the display rate. To es-
timate the minimum playout delay required d, we will set d1 to
0.

In the above equation, αl
2(t) captures the minimum number of

items that arrives to the buffer in-front of PE 2. So, αl
2(t) lower

bounds the number of items that PE 1 should produce and it can be
written as

(αl
1 ⊗ β1)(t) ≥ α

l
2(t), ∀t ≥ 0. (8)

Again, applying duality to the above equation we have

β1(t) ≥ (αl
2 � α

l
1)(t), ∀t ≥ 0. (9)

1The min-plus convolution operator ⊗ is defined as follows. For
any two functions f and g, (f⊗g)(t) = inf0≤s≤t{f(t−s)+g(s)}
2The min-plus deconvolution operator � is defined as follows. For
any two functions f and g, (f �g)(t) = sups≥0

{f(t+s)−g(s)}

Similar to Equation (6), let f1 be the minimum processor fre-
quency at which PE 1 should be run to guarantee an output of at
least αl

2(∆). Then, f1 can be computed from the following equa-
tion as

min{f1 | f1t ≥ γ
u
1 (β1)(t)}, ∀t ≥ 0. (10)

The frequency of PE 1 and PE 2, f1 and f2 respectively, depends
on the playout delay d, which is a parameter of the consumption
function (Equation (4)). So, we have to estimate the playout delay
required to run the PEs at a minimum processor frequency com-
puted in Equations (6) and (10). We denote f(d) as the minimum
frequency of the processing element corresponding to the playout
delay d.

As shown in Figure 4, we define three different playout delays
corresponding to processor frequency f1 and f2: initial, stabiliza-
tion and maximum playout delays. The initial playout delay, di, is
the largest playout delay below which the minimum processor fre-
quency (for any PE in the pipeline) required to decode the stream is
infinity. Maximum playout delay, dm, is the smallest playout delay
value above which there is no decrease in the minimum processor
frequency (for all PEs in the pipeline) required to decode the stream
and can be written as

min{dm | fi(dm + δ) = fi(dm)}, ∀δ ≥ 0, ∀i. (11)

The stabilization delay, which lies between the initial and the
maximum delay, is the minimum playout delay required to run PE 1
and PE 2 at frequencies f1 and f2 and is defined as follows

DEFINITION 1. Stabilization playout delay (ds) is the delay value
at which the minimum processor frequency (of all PEs in the pipeline)
stabilizes to a value close to f(dm). It is defined for a given ε as
follows:

min{ds | fi(ds) − fi(dm) ≤ ε}, ∀i ≥ 0. (12)

In other words, PE 1 and PE 2 could run at a minimum processor
frequency f1 and f2 respectively. But to sustain the playout rate,
the display device should start consuming items from the playout
buffer after the stabilization playout delay. Hence from the above
equation, given the minimum processor frequencies f1 and f2, the
minimum playout delay required can be estimated.

Playout Delay

F
re
q
u
e
n
cy
 (
cy
cl
e
s/
se
c)

dmdsdi

Figure 4: Initial playout delay values as minimum required processor
frequency drops and stabilizes.

4.1 Buffer Size Estimation
To show that the buffer size reduces after redistributing the delay,

we first have to compute the maximum intermediate and playout
buffer sizes required. The following constraints must be satisfied
when estimating the buffer sizes: (i) playout buffer should never
underflow, and (ii) intermediate and playout buffer should never
overflow.

To ensure that playout buffer never underflows, as we showed
in the previous section, the processing elements have to run at the

minimum processor frequencies f1 and f2 (From Equations (6 and
10)). The output device must start consuming items from the play-
out buffer after the stabilization delay d. Now, let us compute the
maximum playout buffer and the intermediate buffer size required
such that these buffers never overflow.

The playout buffer stores decoded stream objects that are to be
consumed by the display device. We know that in time interval
[0, t], the number of stream objects processed is y(t), and the num-
ber of stream objects consumed is C(t, d). Hence the playout
buffer size required is given by

B(d) = max {y(t) − C(t, d)} , ∀t ≥ 0. (13)

We know that y(t) ≤ (αu
2 ⊗ βu

2)(t) and hence the maximum
playout buffer size required such that the buffer never overflows is
given by

B(d) = sup {((αu
2 ⊗ β

u
2)(t) − C(t, d)} , ∀t ≥ 0. (14)

In the above equation, the arrival of items to the playout buffer
is variable, but the consumption rate is constant. The delay d, after
which the playout device starts to consume items from the buffer,
smoothens the variability in the fill levels of the playout buffer.

Similarly, the maximum intermediate buffer required is com-
puted as follows

b1(d, d1) = sup
n

(αu
1 (t) ⊗ γ

l−1

1 (ft)) − β
l
2(t)

o

, ∀t ≥ 0. (15)

From the above equation, we see that both the arrival and the con-
sumption of items from the intermediate buffer is at a variable rate.
The variability in the fill level of the intermediate buffer due to
the arrival of items to the buffer can be smoothened if PE 2 starts
consuming items after appropriate delay d1. This delay d1 is re-
distributed from the playout delay d and in the next section we nu-
merically show that the total maximum buffer size required reduces
because of this redistribution.

5. EMPIRICAL EVALUATION
In this section, we present the results of our numerical analysis

to show that the delay redistribution reduces maximum buffer size
required. Then we present the simulation results that validates our
model results. Now we explain the procedure for the experiments.
We took MPEG-2 decoder as the multimedia application running in
our multiprocessor system-on-chip (shown in Figure 3). There are
two PEs - PE 1 partially decodes the incoming compressed video
stream, and PE 2 fully decodes it and stores the decoded stream ob-
jects in the playout buffer. The decoding tasks that the two PEs run
are sub-tasks of the decoder application. PE 1 runs VLD and IQ,
and PE 2 runs IDCT and MC. This task mapping coincides with
the software pipeline architecture of MPEG-2. For a given class
of clips, using our analytical framework, we compute the play-out
delay (d) and the delay after which PE 2 should start executing the
tasks mapped to it. After this delay redistribution we show that the
total buffer size (sum of the intermediate and the playout buffer)
reduces. To estimate the playout delay, our framework needs input
bit rate r, consumption rate c of the playout device, and functions
φ and γ, which characterize the stream arrival and service require-
ments respectively. These functions are then used to obtain the
playout delay and the amount of distribution in the playout delay
required. Now, we first describe our simulation set-up that is used
to obtain φ and γ for a class of video streams.
5.1 Experimental Set-up

We modeled our processor using the sim-safe configuration of
the SimpleScalar instruction set simulator. MPEG-2 decoder source

code was annotated with start and stop counters to record the num-
ber of processor cycles consumed by each stream object. To char-
acterize the execution requirement of the decoder, we used a set of
video clips having an average bitrate of 6000 kbps and a resolution
of 704×480 pixels. The display rate of these clips was 30 fps. Fig-
ure 6 shows the three functions φ, α, and γ for this class of video
clips. The procedure followed to obtain these functions is shown
in Figure 5. Recall from Section 3 that φ characterizes the vari-
ability in the number of bits constituting each macroblock in the
compressed video stream, α characterizes the variability in the ar-
rival pattern of the video stream at the input buffer, and γ captures
the variability in the execution requirement of each macroblock.
Clearly, such a characterization is more expressive than traditional
best/worst bounds, which are overly optimistic/pessimistic.

MPEG
Decoder

Source Code

MPEG source with
hooks + statistical

modules

Step 1Step 1

MPEG
SScalar
Executable

SScalar GCC
Step 2Step 2

SScalar ISA +
ISA for hooks
SScalar ISA +
ISA for hooks

Sim-safe instruction
set simulator

SimpleScalar

Bits per
macroblock

l, u

l, u

f1, f2, c

bb11, B, d, B, d11, d, d

MPEG
Stream

Cycles per
macroblock

Bits per
macroblock

Cycles per
macroblock

Proposed
Framework

Step 3Step 3

Step 4Step 4

Figure 5: Experimental Set-up

5.2 Results and Validation
Frequency versus playout delay: We first compute the total

initial playout delay required such that the processor frequency re-
quired for running tasks in PE 2 and PE 1 reduces to minimum.
To find the delay, we first have to plug in Equation 10 the proces-
sor frequency that video decoding tasks in PE 2 need. Now using
Equation 10, we compute the total playout delay required. Figure 8
shows the processor frequency f1 versus delay for tasks running
in PE 1 for two different values of f2. We can now estimate the
total playout delay to be the maximum delay such that processor
frequency for tasks running in PE 1 reduces to minimum. So, if
the output device starts after this initial playout delay the processor
frequencies of tasks running in PE 1 and PE 2 drops to the lowest
value possible. In Figure 8, for f2 = 460 MHz, f1 reduces from
100MHz to 40MHz as the total delay value increase from 100ms
to 500ms. Hence d is 500ms. In our experiments, we chose nu-
merous processor frequency values for PE 2 (i.e., for f2). We show
the results when f2 = 460, 500 MHz because to execute the tasks
mapped to PE 2, the average frequency at which PE 2 should run
is 460 MHz. From Figure 8 it is evident even if f2 is increased
beyond the average frequency required for PE 2, the minimum re-
quired processor frequency f1 is still 40 MHz. Hence there is no
advantage in running PE 2 at a higher frequency than its average.
On the other hand reducing f2 below 460 MHz, we observed that
(results not shown) the minimum required processor frequency for
f1 computed from Equation 10 is a large value than 40 MHz.

Buffer size reduction: Having found the total playout delay
corresponding to minimum processor frequencies required for the
processing elements, we now present results that shows memory
reduction on delay redistribution. For the total playout delay d, the
maximum playout buffer and intermediate buffer size required is
estimated (Equation 14 and 15). The buffer sizes are estimated with
and without redistributing the playout delay. The estimated max-

0 1000 2000 3000 4000 5000 6000 7000
0

5

10

15
x 105

macroblock index (k)

bi

ts

φ
l(k)

φ
u(k)

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5
x 104

analysis interval (∆)

m

ac
ro

bl
oc

ks

α
l(∆)

α
u(∆)

0 1000 2000 3000 4000 5000 6000 7000
0

2

4

6

8

10

12
x 106

macroblock index

pr

oc
es

so
r c

yc
le

s γ
u
1
(∆)

γ
l
1
(∆)

0 1000 2000 3000 4000 5000 6000 7000
0

2

4

6

8

10
x 10

7

macroblock index

pr

oc
es

so
r c

yc
le

s

γ
l
2
(∆)

γ
u
2
(∆)

Figure 6: The functions φ, α and γ characterizing a high-bitrate, high-resolution class of video clips.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10
x 107

Time (s)

bi

ts

d1 = 450 ms
d1 = 0 ms

(a) Playout Buffer

0 2 4 6 8 10 12 14 16
0

2

4

6

8
x 106

Time (s)

b
its

d1 = 450ms
d1 = 0ms

(b) Intermediate Buffer

Figure 7: Change in buffer fill levels with redistributing playout delay.

imum buffer sizes from our analytical framework closely matches
with that of the simulation results. Due to space constraints we are
not presenting results that shows the accuracy of our model. We
present a SystemC-based simulation results and show how much
savings in buffer space we could actually obtain after delay redis-
tribution. We used the video clip “cact” (obtained from [9]) in this
simulation. The main result of this paper is shown in Figure 7(a)
and Figure 7(b). The total buffer size savings (including the inter-
mediate buffer) we obtained after delay redistribution for this clip
is 70%. In Figure 7(a), the simulation results for d1 = 0ms and
d1 = 450ms is shown. Recall that d1 is the delay after which PE 2
starts processing. As we could see in this figure, the playout buffer
fill level substantially reduces after redistributing the delay. Fig-
ure 7(b) shows the fill level of the intermediate buffer over time,
and we see that after the redistributing delay, the fill level of the
intermediate buffer increases. Note here that irrespective of the in-
crease in the fill level of the intermediate buffer, the total buffer
size in terms of bits does not increase. In fact, it reduces. Since the
partitioned decoded macroblocks in the intermediate buffer occupy
less memory as compared to the playout buffer.
Note on decoder source code instrumentation: We instrumented the
libmpeg2 decoder source code to obtain the bits corresponding to
partially decoded macroblock. After VLD and IQ, the DCT blocks
corresponding to each macroblock will have several zero and non-
zero coefficients. Instead of storing each block in matrix format at
the intermediate buffer, we only store the location and the value of
each coefficient. We needed maximum 16 bits to store a coefficient
and 6 bits to store the location of the coefficient, leading to a more
efficient storage.

0.2 0.3 0.4 0.5 0.6 0.7
2

4

6

8

10 x 107

Playout Delay (ms)

No
. o

f p
ro

ce
ss

or
 c

yc
le

s f
2
 = 460 MHz

f
2
 = 500 MHz

Figure 8: Playout delay estimation w.r.t processing requirement of
tasks (VLD and IQ) running in PE 1.

6. CONCLUSIONS
A novel technique to reduce the on-chip memory size required

for stream processing on multiprocessor system-on-chip architec-
tures is proposed in this paper. Playout delay associated with the
display device in a multimedia embedded system is redistributed to
the processing elements on-chip connected in pipeline to the out-
put device. This delay redistribution reduced the maximum on-chip
memory required because the variabilities in the buffer fill levels
(due to event arrival and task execution at the PEs) were stopped
from propagating to subsequent buffers. We presented a mathe-
matical framework, using which we could estimate the total play-
out delay required and the delay to be redistributed. We validated
our results using simulation, and we obtained up to 70% savings in
buffer size after applying our technique.

7. REFERENCES
[1] M. J. Rutten et al. Eclipse: Heterogeneous multiprocessor architecture for

flexible media processing. In IPDPS, Fort Lauderdale, FL, April 2002.
[2] P. R. Panda et al. Data and memory optimization techniques for embedded

systems. In TODAES, volume 6, pages 149–206, New York, NY, 2001. ACM
Press.

[3] S. Han, X. Guerin, S.Chae, and A. A. Jerraya. Buffer memory optimization for
video codec application modeled in simulink. In DAC, San Francisco, CA, July
2006.

[4] D. Ko and S. S. Bhattacharyya. Modeling and optimization of buffering
trade-offs for hardware implementation of image processing applications. In
IEEE Workshop on Signal Processing Systems Design and Implementation,
Athens, Greece, November 2005.

[5] P. K. Murthy and S. S. Bhattacharyya. Buffer merging- A powerful technique
for reducing memory requirements of synchronous dataflow specifications. In
TODAES, volume 9, pages 212–237, New York, NY, 2004. ACM Press.

[6] R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne. Adaptive playout
mechanism for packetized audio applications in wide area networks. In
INFOCOM, Toronto, Canada, June 1998.

[7] N. Sarshar and X. Wu. Buffer size reduction through buffer sharing for
streaming applications. In ICME, Taipei, Taiwan, June 2004.

[8] S. Stuijk, M. Geilen, and T. Basten. Exploring trade-offs in buffer requirements
and throughput constraints for synchronous dataflow graphs. In DAC, San
Francisco, CA, July 2006.

[9] Tektronix. ftp://ftp.tek.com/tv/test/streams/Element/index.html.
[10] H. Yang, H. Jung, and S. Ha. Buffer minimization in RTL synthesis from

coarse-grained dataflow specification. In SASMI, Nagoya, Japan, April 2006.

