Meeting CPU Constraints by Delaying Playout of
Multimedia Tasks

Balaji Raman Samarjit Chakraborty = Wei Tsang Ooi
Department of Computer Science
National University of Singapore
{ramanbal, samatrijit, ooiwt} @comp.nus.edu.sg

ABSTRACT

Multimedia applications today constitute a significant frac-
tion of the workload running on portable devices such as mo-
bile phones, PDAs and MP3 players. However, the proces-
sors in such devices are usually not powerful enough to sup-
port multiple concurrently executing multimedia tasks. In
this context, different processor scheduling algorithms have
attracted a lot of attention. This paper attempts to address
the CPU constraint problem from a different perspective.
It is based on the observation that by increasing the play-
out delay of a multimedia task, the minimum processor fre-
quency required to run the task decreases. This is due to
the high data-dependent variability in the execution require-
ments of multimedia tasks. We also present a framework,
using which it is possible to compute the minimum proces-
sor frequency corresponding to any playout delay. Given a
set of concurrently executing multimedia tasks, using our
framework it is possible to compute the playout delays for
each of these tasks, such that the sum of their corresponding
processor cycle requirements do not exceed the maximum
frequency supported by the processor.

Categories and Subject Descriptors

C.3 [Special-purpose and Application-based Systems]:

Real-Time and Embedded Systems

General Terms

Theory, Measurement, Performance, Experimentation

Keywords
Scheduling Multimedia Tasks, Playout Delay, Buffering

1. INTRODUCTION

The processor cycles of devices like PDAs, mobile phones
and portable audio/video players are today mostly spent in
running multimedia-rich applications. However, the proces-
sors in such devices are significantly slower than those found

in even low-end desktops. For example, many high-end
PDAs today have 400 MHz Intel XScale processors, in con-
trast to 2.5 - 3 GHz processors commonly found in desk-
tops. As a result, there is a significant gap between the
processing resources available in these portable devices and
the requirements of applications that users would want to
run on them. Although a lot of work in the domain of
processor scheduling—especially in the context of multime-
dia applications—can be used to address this problem, in
this paper we look at it from a different perspective. We
note that by increasing the playout delay of a multimedia
task, there is a decrease in the minimum processor frequency
with which it needs to be run. Typically the playout delay
of a multimedia task is chosen independently of the other
tasks running on the processor. When multiple such tasks
are to be run concurrently, it might so happen that the sum
of their processor cycle requirements exceed the maximum
frequency with which the processor can be clocked. How-
ever, in such cases, by appropriately delaying the playout
of each of these tasks (which depends on the load on the
processor) it might be possible to support all of them.
Most multimedia applications exhibit a high degree of
data-dependent variability in their execution requirements.
In other words, when such an application processes a stream
of data items (e.g. macroblocks or frames in the case of
MPEG decoding), the number of processor cycles required
to process each data item is highly variable. The ratio of
the worst-case and the average load on a processor running
such an application can be as high as a factor of 10 [15]. The
playout rate associated with the application (e.g. the rate
at which decoded frames are displayed by the output device
in the case of an MPEG decoder) imposes certain real-time
constraints on it. When the playout delay is negligible, such
constraints translate to an upper bound on the amount of
time that can be spent in processing each data item. Since
the number of processor cycles required by each data item is
variable, the minimum processor frequency is determined by
the item which requires the maximum number of processor
cycles. When the playout of the application is delayed (i.e.
the processed data items are buffered before being played
out), the minimum required processor frequency decreases.
For any given delay, the “amount” of decrease is propor-

Permission to make digital or hard copies of all or part of this work for tional to the variability in the execution requirement of the
personal or classroom use is granted without fee provided that copies arestream. With a sufficiently large playout delay, the mini-
not made or distributed for profit or commercial advantage and that copies mum required processor frequency corresponds to the aver-
bear this notice and the full citation on the first page. To copy otherwise, to age processor cycle requirement per data item.

republish, to post on servers or to redistribute to lists, requires prior specific Further, many multimedia, tasks have variable input-output
)

permission and/or a fee. . . .
NOSSDAV'05June 13—14, 2005, Stevenson, Washington, USA. rates, i.e. the number of input data items consumed to pro-

Copyright 2005 ACM 1-58113-987-X/05/0006$5.00.

duce one processed data item at the output is variable. For
example, the variable length decoding task in an MPEG
decoder consumes a variable number of bits to produce one
partially decoded macroblock. This provides additional pos-
sibility for reducing the required processor frequency by de-
laying the playout of such tasks.

Following the above observations, in this paper we present
a framework using which it is possible to precisely compute
the minimum processor frequency required by a task for any
given playout delay. We also demonstrate how to appro-
priately choose the playout delays of multiple concurrently
executing tasks such that their minimum processor cycle re-
quirements can be satisfied by a given processor.

Organization of the paper: The rest of the paper is or-
ganized as follows. In the next section we present a moti-
vating example to illustrate the key idea behind this work.
In Section 3 we examine some related previous work. This
is followed by our proposed framework in Section 4 and its
experimental evaluation in Section 5. Finally, in Section 6
we conclude by outlining some directions for future work.

2. MOTIVATING EXAMPLE

Playout Delay | Minimum Processor Frequency
(in seconds) (in MHz)

MPEG2 | MP3 | Total
0.10 1356 346.2 1702.2
0.12 1033 327.5 1360.5
0.14 664.8 318.4 983.2
0.16 347.3 317.1 664.4
0.18 344.6 315.6 660.2
0.20 342.0 314.9 656.8

Table 1: Processor frequency requirements for an
MPEG-2 and an MP3 stream.

Let us consider a portable device with a processor core
running at 750 MHz. Assume that there are some tasks
already running on the device and they require a small frac-
tion of the available processor bandwidth, say 50 MHz. Now
consider a scenario where the scheduler has to synchronize
and continuously play an MPEG-2 stream and an associated
MP3 audio clip. As mentioned earlier, the main observation
that motivates this work is that an increased playout delay
can counter the variability present in multimedia workloads,
and consequently reduce the minimum processor frequency
required to process a multimedia stream. Now, presume
that the scheduler has computed the processor frequency
values for several playout delays, as shown in Table 1. This
table shows the processor frequency required by a video clip
mobile.mv2 (see Table 2) and an audio clip amazing.mp3
(see Table 3). From this table the scheduler can now choose
a common playout delay of 0.18 seconds and continuously
play the video and the audio at a frequency of 660.2 MHz.
Note that we still have around 40 MHz of remaining proces-
sor bandwidth. This can be used to accommodate any po-
tential, computationally less intensive tasks that could pop
up while playing the video.

In summary, the scheduler chose a playout delay with
which it is possible to concurrently run both, the audio
and the video decoding tasks. With a smaller delay (e.g.
0.1 seconds), it would not be possible to meet the real-time

playout constraints associated with these tasks using a 750
MHz processor. Further, it may also be noted that:

e There was no hindrance to the tasks currently running
on the processor.

e The processor cycles were effectively utilized. As dis-
cussed in Section 1, by sufficiently delaying the play-
out of a task, it is possible to run the task at a fre-
quency that corresponds to the average processor cy-
cle requirement of the stream. Clearly, the processor
cannot be run at a frequency lower than this.

e The multimedia tasks were not run at the cost of shun-
ning any impending tasks.

It is also worth noting that for voltage/frequency-scalable
processors the above scheduler can appropriately scale the
processor frequency depending on the load on the processor
and battery-life desired by the user. However, we do not
explore this possibility here; this is an interesting research
direction that we hope to pursue in future.

In Section 4 of this paper we present a framework using
which Table 1 may be computed for any given multimedia
application.

3. RELATED WORK

In this section we discuss some of the previously proposed
techniques for estimating processor cycle requirements of
multimedia tasks, with the aim of either improving CPU uti-
lization or minimizing energy consumption. We also point
out the major differences between these techniques and our
proposed framework.

All dynamic frequency or voltage scaling algorithms rely
on the fact that lowering the processor’s clock frequency
and/or supply voltage reduces its power consumption. How-
ever, accurately predicting the variation in the workload
generated by a multimedia task, so that the processor’s fre-
quency can be changed accordingly, is a difficult problem [4,
16]. In [16], the resource requirement for the current work-
load in the case of MPEG decoding is predicted from the
frame drop and delay encountered during the immediately
previous time interval. Further, the time required to decode
any MPEG frame is predicted using a frame classification
technique. On the other hand, in [4], the decoding process
is classified into two parts: frame dependent and frame inde-
pendent decoding. The decoding time for both these parts
are estimated and the processor’s voltage is scaled accord-
ingly. In contrast to these approaches, our work relies on an
offline analysis of a multimedia stream to accurately char-
acterize the variability in the workload generated by it. It
does not rely on any runtime prediction of the processor
cycle requirements of the stream.

A number of papers also exploit buffering techniques to
smooth out the variability in multimedia workloads, so that
dynamic power management techniques can be used [3, 8,
11, 12]. In [8], a job scheduler delays the execution of
soft real-time tasks, by buffering the streams processed by
these tasks, and uses the generated slack to process tasks
with stringent real-time constraints. However, this tech-
nique does not provide any insights into what would be an
optimal buffering time that would lead to energy savings and
at the same time allow continuous playback of a multimedia
task. Our framework, on the other hand, can be used to

identify an optimal playout delay, such that increasing this
delay does not lead to further savings in processor cycle re-
quirements and decreasing this delay significantly increases
the processor cycle requirements of a task.

Lately, a number of energy aware scheduling techniques
have been proposed in the literature (see [6, 19, 9] and the
references therein). A few recent papers have also addressed
the problem of energy savings in the specific context of mul-
timedia applications [7, 17]. Our work differs from these in
the following ways:

e Our framework applies to any kind of multimedia stream-

ing application. In other words, it does not rely on the
specific characteristics of the application.

e The analytical framework that we present can be ap-
plied to any level of granularity i.e. each data item in
the stream can be a bit, a macroblock, or a frame.

e The framework is only concerned with computing the
buffering time or the playout delay of each stream. It is
independent of the scheduling policy used to schedule
these streams. This framework is supposed to work at
a level below the scheduler which would typically be
used to schedule the multiple streams being processed
by the device.

e As mentioned earlier, the framework that we present
in this paper can be extended to the case of dynamic
voltage-frequency scaling. However, we do not explore
this option here.

In the domain of computer networks, several techniques
have been proposed for exploiting the playout delay of mul-
timedia applications in the context of link scheduling [13,
14]. For example, in [13], tight bounds on optimum average
audio playout delay based on tradeoffs between per-packet
loss and delay were estimated. Using these bounds, a history
dependent adaptive packet playout delay adjustment algo-
rithm was proposed. Our work is concerned with computing
a fixed playout delay, rather than dynamically adjusting it
at runtime. Further, our technique is more relevant in the
context of playing stored audio and video. Hence, we did
not exploit any network-related parameters such as packet
loss and delay.

4. DELAY-FREQUENCY ESTIMATION

In this section we present our analytical framework to
compute the minimum processor frequency in order to con-
tinuously playback a given media file, with a playout delay

equal to d.
B(A)

input X(t) "":I:IID"’O Y(t)‘:l:l:m C(t)‘[q
b B

stream G(A)

Figure 1: System model.

Figure 1 shows our system model, which consists of a
processor with an internal buffer, a playout buffer and a
playout (or output) device. After decoding the input stream,
the processor writes the data in the playout buffer which is
consumed by the playout device (e.g. a video display or a
speaker) at a fixed rate.

x 10

w

Cycl es

[N

Maxi mum Processor
Cycl es Required
N

Pr ocessor

Consuned

o

2

o

2 4 6 8 10
Macr obl ocks X 10°
% 10* Sequence

10

0 2 4 6 8
Macr obl ock | ndex

(a) mobile.m2v: Processor cycles/macroblock and the cor-
responding v (¢)

6 10

x 10 x 10
7] 8 5 4
E 7 QE -
5 8- -
6 22
6o Le2 pd
wgs E d
3= = //
on o1 4
oc 4y 3T e
. S
g§ [N S8
0 2000 4000 6000 8000 0 2000 4000 6000 8000

G anul e | ndex G anul e Sequence

(b) amazing.mp3: Processor cycles/granule and the corre-

sponding 7" (¢)

Figure 2: Variation in the processor cycle re-
quirement per stream object, for video and audio
streams.

We assume that the input bit stream to be decoded is
fed into the internal buffer at a constant rate of r bits/sec.
Further, for the sake of simplicity, we will consider a stream
to be made up of a sequence of stream objects. A stream
object might be a macroblock in the case of video decoding
or a granule in the case of audio decoding tasks. Now, given
a media clip to be decoded, let z(t) denote the number of
stream objects arriving in the internal buffer over the time
interval [0,¢]. Due to the variability in the number of bits
constituting a stream object, the function x(t) varies with
the media clip. We define two functions a!(A) and a*(A)
to bound the variability in the arrival process of the stream
objects into the internal buffer of the processor. These two
functions are defined as:

al(A) < z(t+ A) — a(t) < a(A) (1)

for all ¢ and A > 0, where o'(A) and a*(A) denotes the
minimum and maximum number of stream objects that can
arrive in the internal buffer within any time interval of length
A, respectively.

To compute o (A) and a*(A), we introduce two functions
#' (k) and ¢“ (k). The former denotes the minimum number
of bits constituting any k consecutive stream objects in an
audio bitstream, and the latter denotes the corresponding
maximum number of bits. These two functions can be ob-
tained by analyzing a number of media clips that are repre-
sentative of the clips to be processed by the target decoder.

Given the functions ¢'(k) and ¢“(k), it is possible to com-
pute the pseudo-inverse of these two functions, denoted by

qﬁlil(n) and <j>“71(n)7 where the argument n is the number

of bits. gzﬁl_l (n) and ¢* (n) returns the maximum and min-
imum number of stream objects that can be constituted by
n bits respectively. Since we assume the input bit stream

arrives in the internal buffer at a constant rate of r bits/sec,
we have:

a'(A) = ¢ (rA) and a“(A) = ¢

-1
(ra)
Similarly, we can characterize the variability in the num-
ber of processor cycles required to process any stream object
using two functions v'(k) and *(k). Both these functions
take the number of stream objects k as an argument. ~'(k)
returns the minimum number of processor cycles required to
process any k consecutive stream objects and v* (k) returns
the corresponding maximum number of processor cycles.
Finally, we assume that the playout buffer is readout by
the output device at a constant rate of ¢ stream objects/sec,
after a playout delay (or buffering time) of d seconds. Let the
function C(¢) be the number of stream objects readout by
the output device over the time interval [0, ¢], then obviously,

0 ift<d

cor={ 0 o HiZ @
Now, given the input bitrate 7, the functions ¢'(k), ¢*(k),
7' (k) and v*(k) characterizing the possible set of media clips
to be decoded, and the function C(t), we can compute the
minimum processor frequency f to sustain the playout rate
of ¢ stream objects/sec. This is equivalent to requiring that
the playout buffer never underflows. Let y(t) denotes the to-
tal number of stream objects written into the playout buffer
over the time interval [0,¢]. Then the playout buffer under-
flow constraint is equivalent to requiring that y(t) > C(¢)
for all ¢t > 0.

Let the service provided by the processor at frequency
f be represented by the function S(A). Similar to o'(A),
B(A) represents the minimum number of stream objects that
are guaranteed to be processed (if available in the inter-
nal buffer) within any time interval of length A. It can be
shown that [10] y(t) > (a! ® B)(t),Vt > 0, where ® is the
min-plus convolution operator'. Hence, for the constraint
y(t) > C(t),Vt > 0 to hold, it is sufficient that the following
inequality holds:

(@' ®B)(t) > C(t), ¥t >0 (3)

It is known from the duality between ® and @, that for
any three functions f, g and h, h > f © g if and only if
g® h > f (see [2] for further details), where @ is the min-
plus deconvolution operator?. By applying this result on
inequality (3) we obtain:

B(t) > (Coa')(t), vt >0 (4)

Note that B(t) in inequality (4) is defined in terms of the
number of stream objects that need to be processed within
any time interval of length ¢. To obtain the equivalent ser-
vice in terms of processor cycles, we can use the function
~*(k) defined above. The minimum service that needs to
be guaranteed by the processor to ensure that the playout
buffer never underflows is given by:

YBE) =1 (C o)) =" (CH 0 ¢ (1) (5)

IThe min-plus convolution operator ® is defined as follows.
For any two functions f and g, (f ® ¢)(t) = info<s<¢{f(t —
s)+9(s)}

The min-plus deconvolution operator @ is defined as fol-
lows: For any two functions f and ¢, (f @ ¢)(t) =
sup,>o{f (£ +s) — g(s)}

processor cycles for all t > 0. Hence, the minimum frequency
at which the processor should be run to sustain the specified
playout rate is given by:

min{f | ft > y"(B)(t), Vvt > 0}

In other words, if the processor is run at this frequency then
it can be guaranteed that the playout buffer will never un-
derflow, provided the output device starts consuming stream
objects after a delay of d time units.

5. EXPERIMENTAL EVALUATION

In this section, we first explain how to generate the in-
puts for our framework, and then discuss how we compute
the bounds formulated in Section 4. Finally, we present
the results of our evaluation and analyze the tradeoffs be-
tween playout delay and processor frequency requirements
for MPEG-2 and MP3 decoding.

5.1 Methodology

Simulation setup: In order to compute the minimum
processor frequency using the framework described in Sec-
tion 4, we need the following two inputs:

e To compute ¢'(k) and ¢*(k), we require the number
of bits in each macroblock in a video stream and the
number of bits in each granule belonging to an audio
stream.

e We also need the processor cycle requirement for each
stream object in order to compute the functions ~*(k)
and v*(k).

We obtain the number of bits present in each macroblock
in a video file and the number of bits present in each granule
in an audio file by analyzing the corresponding bitstreams.
To compute the processor cycle requirement for each stream
object we use a processor simulator to simulate the execu-
tion of each decoder task on representative audio and video
clips. Towards this we used SimpleScalar [1], which is a
commonly used instruction set simulator in the computer
architecture domain. SimpleScalar comes with several cycle
accurate simulators that differ mainly in the processor they
model. We used the Sim-Profile simulator and modified the
source code of the MPEG-2 and MP3 decoders with anno-
tations that start and stop counters to track the number
of processor cycles consumed by each stream object. When
the modified source code is compiled using the SimpleScalar
compiler, our source code annotations get transformed into
user-defined assembly language instructions. We therefore
extended the instruction set of SimpleScalar such that it
identified our instructions for incrementing the counters dur-
ing a simulation. After a simulation run for any given input
file, we obtained the processor cycle requirements for every
stream object in the input stream. Note that this process
had to be carried out for both MPEG-2 and MP3 files inde-
pendently.

Implementation issues: There are two different ways in
which the proposed framework may be used. Individual
MPEG-2 or MP3 clips may be profiled offline to compute
the (¢', ¢*) and (v',7*) functions for each clip. Using these
functions the list of playout delay values and the correspond-
ing processor cycle (or frequency) requirements can be com-
puted (such as the list shown in Table 1). Such a list is then

[Video File Characteristics |

Video Size 2 Mbyte
Number of I/B/P Frames 28/84/222
Total Number of Frames 334
Average bit rate of the video | 1500 kbps
Resolution of the video files 352%240
Frame rate of the video 30fps
Length of the video 11 seconds

Table 2: MPEG-2 file characteristics.

embedded into the media file as a metadata. At runtime,
the scheduler reads this metadata and delays the playout of
the stream based on the current load on the processor.

A second possibility is to analyze a set of representative
audio or video clips and compute the (¢',$*) and (v,7%)
functions for such a representative set. The assumption
is that the characteristics of any new audio or video clip
would be captured by these functions. Note that (¢, %)
and (fyl, ~") represent lower and upper bounds on the vari-
ability in the workload. Hence, by choosing a sufficiently
large representative set to derive these functions, it can be
assumed that any new clip would also be bounded by them.
The list of playout delay values and processor frequencies
are then computed based on these functions. Clearly, this
approach does not require the embedding of this list into a
video or audio clip. However, for any playout delay value,
the computed frequency would be much higher than the case
where (¢!, ¢*) and (7', 7*) are computed for individual clips.

We implemented the procedure for computing the mini-
mum processor frequency corresponding to any playout de-
lay (as explained in Section 4) using Matlab. In the next
section we analyze how the minimum processor frequency
varies for a number of audio and video clips. The video
files we used in the experiment are susi, mobile, cact and
BBC (m2v files obtained from [18]). Table 2 shows the char-
acteristics of these files. Table 3 lists the audio files used
(obtained from [5]) and their characteristics.

Audio File Size Audio No.
File (in Mbytes) | Length (sec) | of Frames
Amazing 1.86 122 4701
Christmas 2.89 182 7274
Sally 3.65 239 9189
Windows 95 1.98 130 4990

[Audio File Characteristics |

Average bit rate of the audio 128 kbps
Sampling rate of the audio clips (per channel) | 44.1 KHz
No. of granules in MP3 sample (constant) 576 *2

Table 3: List of MP3 files and their characteristics.

5.2 Results

Figures 3(a) and 3(b) show the playout delay versus the
minimum processor frequency required to decode a set of
MPEG-2 and MP3 clips. From these figures we can make
the following main observations.

e For both, audio and video decoding, we see a sharp
decrease in the minimum processor frequency require-
ment as the playout delay is increased. For example,
in Figure 3(a), for a playout delay of 0.1 seconds the
frequency required is in the GHz range. But as we in-
crease the playout delay the frequency drops to the
MHz range. The technique proposed in this paper

exploits this drop in the processor frequency require-
ment to accommodate multiple tasks which could not
have been run concurrently otherwise. As mentioned
in Section 1, when the playout delay is very small, the
minimum required processor frequency is determined
by the maximum number of processor cycles required
by any stream object. Since this maximum number is
significantly larger than the average number of proces-
sor cycles required by any stream object, the drop in
processor frequency turns out to be so sharp.

e As we continue increasing the playout delay we see that
the required processor frequency stabilizes to a certain
value. This value is determined by the input bitrate r
(see Section 4), the average number of bits constituting
each stream object (macroblock or granule) and the
average number of processor cycles required to process
each stream object. This frequency value may also be
interpreted as the frequency with which the processor
needs to be run to process a completely “smoothed out
stream”.

e Our framework can be used to choose a common play-
out delay for multiple streams (i.e. MPEG and MP3),
that need to be played out in a synchronous fashion.
The common playout delay is chosen such that the sum
of the processor frequencies required by each stream
does not exceed the maximum frequency with which
the processor can be run.

e Note that in Figures 3(a) and 3(b) we plot the proces-
sor frequency values starting at 0.1 seconds. This is
because the playout delay should clearly be greater
then zero—it requires a certain amount of time for the
first stream object to be processed and written into
the playout buffer.

6. CONCLUDING REMARKS

In this paper we presented an analytical framework using
which it is possible to compute the tradeoffs between play-
out delay and the minimum required processor frequency
for processing multimedia streams. This is achieved by ex-
ploiting the high variability in multimedia workloads. The
framework can account for both, the data-dependent vari-
ability in the processor cycle requirements of stream objects,
as well as the variability in the input-output rates of multi-
media streams.

Although our discussion in this paper focussed on com-
puting the initial playout delay of a multimedia stream, the
proposed framework can also be used in a dynamic environ-
ment. Suppose that a processor is currently executing an
audio decoding task and the user wants to launch a video
decoding application as well. Although there is some proces-
sor bandwidth available after running the audio decoder, it
is not sufficient to accommodate the video decoding task. In
this situation, the spare processor bandwidth can be used to
“speed-up” the execution of the audio decoder such that its
playout buffer fills up beyond a certain level. Thereafter it
is run at a lower processor frequency and the freed proces-
sor bandwidth is allocated to the video decoding task. Our
framework can be used to compute (i) the level to which the
playout buffer of the audio decoder should be filled, (ii) the
frequency bandwidth that is to be allocated to the audio and

x 10
14
- — —BBC
— — Cact
12 Mobile | |
Susi

Frequency (in cycles/second)

01 015 02 025 03 035 04 045 05
Playout Delay (in seconds)

(a) MPEG-2
x 10°
3.8
Amazing

. 37r “* Natcole |1
g - — —sally
2 3.6 Windows ||
0 \
2 35]
[3) \
& |
c 34f \ 1
> \
9 331 X 1
[} AN
=) ~ -
g 3.2t T - = - — - - _ _ _ _ 1
T

3.1r . 1

3 . . R R bl Bt U TP
01 015 02 025 03 035 04 045 05
Playout Delay (in seconds)
(b) MP3

Figure 3: Processor frequency and playout delay
tradeoffs.

the video decoder, and (iii) the playout delay of the video
decoding task.

The proposed framework can be extended in several di-
rections. We plan to implement our framework inside a real
scheduler. We also intend to conduct rigorous experiments
with voltage/frequency scalable processors and extend the
framework to account for the energy consumed by a proces-
sor. Finally, note that the functions (¢',¢") and (v',7*)
capture the worst-case bounds associated with a stream (or
a class of streams). Since most multimedia applications re-
quire only soft real-time guarantees, we would like to relax
these bounds by ignoring worst-case scenarios that occur
very rarely. This would lead to better utilization of the
available processing resources, albeit at the cost of a small
deterioration in the output quality.

7. REFERENCES
[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An
infrastructure for computer system modeling. IEEE
Computer, 35(2):59-67, 2002.
[2] J.-Y. Le Boudec and P. Thiran. Network Calculus - A
Theory of Deterministic Queuing Systems for the
Internet. LNCS 2050, 2001.

3]

[4]

ENE

(1]

(12]

(16]

(17]

L. Cai and Y.H. Lu. Dynamic power management
using data buffers. In DATE, Paris, France, 2004.

K. Choi, R. Soma, and M. Pedram. Off-chip
latency-driven dynamic voltage and frequency scaling
for an MPEG decoding. In DAC, San Diego,
California, June 2004.

Digital audio systems. http://www.das.iocon.com.

A. Dudani, F. Mueller, and Y. Zhu. Energy-conserving
feedback EDF scheduling for embedded systems with
real -time constraints. In LCTES-SCOPES, Berlin,
Germany, June 2002.

C.J. Hughes, J. Srinivasan, and S.V. Adve. Saving
energy with architectural and frequency adaptations
for multimedia applications. In MICRO, Austin,
Texas, December 2001.

C. Im and S. Ha. Dynamic voltage scaling for
real-time multi-task scheduling using buffers. In
LCTES, Washington, DC, June 2004.

R. Jejurikar and R. Gupta. Dynamic volatge scaling
for system wide energy minimization in real-time
embedded systems. In ISPLED, Newport Beach,
California, August 2004.

Y. Liu, A. Maxianguine, S. Chakraborty, and W.T.
Ooi. Processor frequency selection for SoC platforms
for multimedia applications. In RTSS, Lisbon,
Portugal, December 2004.

C. Lm and S. Ha. An energy optimization technique
for latency and quality constrained video applications.
In ESTIMEDIA, Newport Beach, California, June
2003.

Y. Lu, L. Benini, and G.D. Micheli. Dynamic
frequency scaling with buffer insertion for mixed
workloads. IEEE Transacations on Computer-Aided
Design of Integrated Circuits and Systems, 21(11),
November 2002.

S.B. Moon, J. Kurose, and D. Towsley. Packet audio
playout delay adjustment: performance bounds and
algorithms. Multimedia Systems, 6:17-28, 1998.

R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne.
Adaptive playout mechanism for packetized audio
applications in wide area networks. In INFOCOMM,
Toronto, Canada, June 1998.

M.J. Rutten, J.T.J. van Eijndhoven, and E.-J.D. Pol.
Robust media processing in a flexible and
cost-effective network of multi-tasking coprocessors. In
14th Euromicro Conference on Real-Time Systems
(ECRTS), 2002.

D. Son, C. Yu, and H. Kim. Dynamic voltage scaling
on MPEG decoding. In ICPDS, Kyongju City, Korea,
June 2001.

M. Tamai, T. Sun, K. Yasumoto, N. Shibata, and

M. lto. Energy-aware video streaming with QoS
control for portable computing devices. In NOSSDAV,
Country Cork, Ireland, June 2004.

Tektronix.
ftp://ftp.tek.com/tv/test/streams/Element /index.html.
C. Wang, J. Ho, R. Chang, and S. Hsu. A
feedback-controlled EDF scheduling algorithm for
real-time multimedia transmission. Technical Report
TR-IIS-01-008, Institute of Information Science,
Academia Sinica, Taipei, Taiwan, ROC, 2001.

