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ABSTRACT
Media gateways have been proposed as a solution to the
network heterogeneity problem in media multicasting. Ser-
vices on the gateways transform media streams as they flow
through the gateways. In this paper, we present our work on
composable services in media gateways. A user can request
a computation to be performed on a set of media streams.
The system then distributes the computation over multi-
ple gateways for execution. We present an algorithm for
decomposing the computation into sub-computations, and
an application-level protocol that locates appropriate media
gateways to run these sub-computations.

1. INTRODUCTION
Network and host heterogeneity causes problems for deliv-
ering multicast media streaming over the Internet. Hetero-
geneity often forces media streams to be simulcast in multi-
ple formats and varying bandwidth (as many video webcasts
are doing), or being multicast using the lowest bandwidth
acceptable by all users, sacrificing quality. End-to-end so-
lutions such as Receiver-driven Layered Multicast [12] have
been proposed to address the bandwidth heterogeneity prob-
lem, but they do not solve format or host capacity incom-
patibility issues. An alternative solution is media processing
in the network. This solution uses entities inside the net-
work to transform media streams – for example, into lower
bit-rate streams for slow links, or into another format the re-
ceiver is capable of decoding. These entities can be deployed,
for example, by ISPs across the Internet, or by corporations
within their VPNs.

Various research work has been done in this area. The
MeGa [1] media gateway can transcode RTP video streams
in multi-megabit MJPEG format on the Bay Area Giga-
bit Network into 128 Kbps H261 video streams suitable for
MBone sessions. Yeadon et al. [19] present a set of QoS
Filters that can resize video frames, reduce frame rates and
mix multiple video streams inside network switches.

Our work in the Degas system [14] extends the existing me-
dia gateway architecture in two ways. First, the Degas gate-
way is extensible. Degas allows a user to specify a computa-
tion to be performed on media streams by submitting a small
script into a gateway. Second, Degas tries to minimize band-
width consumption by assigning computations to appropri-
ate gateways. For example, a computation that transforms
media stream to lower bit-rate is assigned to a gateway near
the sender, while a computation that increases bit-rate is
assigned to a gateway near the receiver.

1.1 Composable Service
Amir et al. introduce the notion of composable services for
media gateways in [2]. By flowing through multiple gate-
ways, multiple operations can be performed on a media
stream before it reaches the receivers. This in effect cre-
ates a data-flow pipeline on the streams.

To clarify this approach, consider an operation that trans-
codes a H.261 video into MJPEG format and scales the
frame size by half. This can be divided into two operations,
one that transcodes the video, and another that resizes the
video streams (see Figure 1(a)). These two operations form
a linear pipeline. More complicate pipelines, in the form of
a tree, are also possible. Consider an operation that cre-
ates a ”quad-splitter” view by scaling four video streams,
and merges them into one output stream. Such an opera-
tion would be useful, for example, for previewing what is
being shown on multiple multicast channels. This operation
can be performed on five gateways – four to scale the video
streams, and one to combine the outputs from the first four
gateways into a ”quad-splitter” view (see Figure 1(b)).

There are several advantages in using multiple gateways to
service a media stream, as opposed to using a single gateway.
First, computation load can be better distributed among
the gateways. This can lead to better load balancing, and
higher throughput when a single gateway becomes a bottle-
neck. Second, by transforming media streams at appropri-
ate locations, we can reduce bandwidth consumption. For
instance, in the examples described above, the scaling op-
erations are performed near the sources, and merging and
transcoding are performed near the receivers, thus mini-
mizing the amount of data that is sent into the ”middle”
of the network. Finally, it is possible for output from a
sub-computation to be shared by different users requesting
different services. For example, if the transcoding service
in Figure 1(a) shared a common source with the ”quad-
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Figure 1: Examples of composable services.

splitter” service, then the output from the scaling gateway
could be shared by both services.

In this paper, we present our preliminary work on compos-
able services in media gateways. The work we present in
this paper is an extension of our previous work on Degas.

1.2 Degas
Degas is an application-level media gateway system that can
perform transcoding, filtering and mixing on video and au-
dio streams of an RTP multicast session. Multiple Degas
gateways are distributed across the Internet. The existence
of these gateways is transparent to the various senders that
multicast video streams onto their respective sessions. A
user who is interested in receiving videos from a session
through Degas runs a Degas client. The client first requests
a service from Degas. A gateway is selected to serve the
client. The selected gateway joins the session requested by
the client and runs the computation. The processed video
stream is sent to a new multicast session, which the client is
listening to. The gateway is selected in a manner that min-
imizes bandwidth consumption through an announce-listen
based protocol called Adaptive Gateway Location Protocol
(AGLP). The gateway that serves the client can change dy-
namically depending on the environment. For example, con-
gestion along the path between the serving gateway and the
client can cause the service for the client to be migrated to
another gateway.

1.3 Service Model
There are two possible approaches to extend our service
model in Degas with service composition. The user can ex-
plicitly request multiple services from the gateways. The

user sets up the pipeline by linking the input sessions and
output sessions of these services. The second approach is
to hide service composition from the user. This is the ap-
proach we adopted. We let the gateway servicing the client
decide how to decompose a computation and how to dis-
tribute them across other gateways. We chose this approach
to simplify the usage of the system and to avoid non-optimal
configuration that can occur if user did not set up the ser-
vices and pipelines properly.

Under the new service model, the gateway servicing the
client, called the main gateway, decomposes the computa-
tion on the media streams into one main computation and
multiple sub-computations. The sub-computations are sub-
mitted to other gateways for execution. A gateway that
runs sub-computations is called a helper gateway. The main
computation remains on the main gateway and will be re-
sponsible for collecting input from the video sources and/or
helper gateways, and performing final transformations on
the output stream before sending the result to the client.

1.4 Assumption and Constraints
We assume that a helper gateway can subscribe to any sub-
set of sources in a multicast session, since a sub-computation
may only need certain streams as input. This is not possible
currently as a receiver must receive data from all sources in
the session the receiver subscribes to. However, this can be
done in the future using Source Specific Multicast [9] and
Internet Group Management Protocol (IGMP) version 3 [5],
which currently is an IETF draft.

There is a major disadvantage in sending a stream though
multiple gateways – the latency between the sources and the
receiver increases because of the decoding and encoding op-
erations that need to be performed at each gateway along a
pipeline. [14] shows that passing a stream through a gateway
can introduce up to 30 ms of latency due to the decoding and
re-encoding process. However, there is an important class of
non-interactive applications where latency is less important,
such as watching pre-recorded video streams. Furthermore,
users can specify maximum latencies that they can toler-
ate in the system. We can constraint the system to split
off a sub-computation only if the total resulting end-to-end
latency is smaller than the one specified by the user.

Another constraint of our system is that the service per-
formed should not change its operations frequently. Other-
wise, computation needs to be re-decomposed and re-assigned.
An example of frequently changing computations is one that
filters input streams depending on who is the current speaker
of a teleconferencing session.

1.5 Research Goals
A research issue that arises is how the main gateway should
decompose and distribute the computation. There are sev-
eral concerns. One concern is the resource requirement of
the computation. A sub-computation should be assigned to
a gateway that matches its resource requirements. For in-
stance, we should assign a memory intensive sub-computation
to a gateway with sufficient memory. A main gateway with
high CPU load should spawn off as many sub-computations
as possible.



A second concern is maximizing sharing between different
services. A gateway can take sub-computations that are
already running on other gateways into consideration and
try to share those services if they share the same sources
and operations. Another concern is network bandwidth con-
sumption. We should distribute the computation so that the
traffic between the gateways is as small as possible. A fourth
concern is propagation delays. We should make sure that a
gateway that is assigned to run a sub-computation is not
“out of the way”. It should be located relatively close to
the path between the sender and the receiver. Making de-
cisions based on multiple concerns that may conflict with
each other is a complex problem. In this paper, we focus
only on minimizing network bandwidth consumption.

We can express our goal as a graph problem: given a graph
G representing gateways and links in the network, and a tree
T representing the computations, how to map the nodes in
T onto nodes in G such that consumed network bandwidth
is minimized? A polynomial solution to the problem can be
found, but is not practical since the network environment
is highly dynamic and a topology of all gateways in the
network cannot be obtained easily. Therefore we opt for a
decentralized approach, and decouple the problem into two
independent subproblems: computation decomposition and
helper gateway assignment.

Hence, our research goals are to build a system that (1),
automatically splits a high-level service requested by a user
into sub-computations, and (2), assign sub-computations to
gateways with the goal of reducing bandwidth consumption.

1.6 Paper Outline
The rest of the paper is organized as follows. Section 2
describes our algorithm for splitting computation into sub-
computations. Section 3 describes how we use a decentral-
ized protocol to locate gateways and assign sub-computations
to them. We present performance results of our protocol in
Section 4 and 5. We discuss related work in Section 6 and
conclude in Section 7.

2. COMPUTATION DECOMPOSITION
In this section, we describe the algorithm we use to split
a computation into sub-computations. As we decouple the
problem of decomposing computation and gateway assign-
ments, we do not take network conditions or gateway topol-
ogy into consideration. Instead, our algorithm tries to be
optimistic and assume that a gateway is always available
between a source and the main gateway to run the sub-
computation. Our algorithm uses the estimated size of com-
pressed videos as a parameter to decide how to split a com-
putation, since we do not know what the actual size of the
video will be at the time the decomposition occurs. We con-
servatively use the compression ratio of 50:1 for H.261 videos
and 10:1 for MJPEG videos as estimates.

Our algorithm limits the number of gateways a stream can
flow through to two. This greatly simplifies the decompo-
sition algorithm. However, a stream may still flow through
more than two gateways on its way to the receiver. A helper
gateway can optionally act as a main gateway, and decom-
pose the sub-computation that is assigned to it using the
same algorithm. These sub-sub-computations can then be

spawned off by the helper gateway to other gateways for
execution.

2.1 Computation Model
We model the operations on a video stream as a tree. Leaf
nodes in the tree correspond to the source of the video, and
non-leaf nodes correspond to the operations performed on
the video frames. An edge in the tree carries video frames
and is associated with a weight value. The weight value
corresponds to the data size of the video streams. This is a
natural representation of a computation, and has been used
in many video processing softwares (e.g. Rivl [17], PSVP
[11]).

Formally, define a computation tree as a tree G = (VG, EG)
with a set of leaf nodes Vleaf ⊂ VG and a root node Vroot ∈
VG. Define a weight function on the edges as w : EG → R+.
and a cut (S, T ) as a partition of VG into two subsets S and
T , such that Vleaf ⊆ S and Vroot ∈ T . We denote root(G) as
the root of tree G and cost(E) as the sum of the weights of all
edges in a set E. An edge (u, v) is said to cross a cut (S, T )
if u ∈ T and v ∈ S. The set of all edges that cross a cut
(S, T ) is called a cut-set for (S, T ). A computation is split
into sub-computations by removing edges that cross a cut.
Each set of non-leaf nodes that still connect to each other
after removing a cut-set corresponds to a sub-computation.
The sub-computation that contains Vroot will be the main
computation. See Figure 2 for an example.
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Figure 2: The top diagram shows an example of a
computation tree. Edges (u, w) and (v, w) divides the
computation tree into three smaller computation
trees, which corresponds to the sub-computations.

As we assume that the sub-computations will be assigned
to different gateways for execution, the weight of the edges



across the cut corresponds to the amount of data to be sent
across the network. Hence to find a cut that minimize net-
work bandwidth consumption, we need to find a cut-set
with minimum total weight, that is, we want to minimize�

w(u, v), u ∈ S and v ∈ T . Figure 3 shows our algorithm
for finding the minimum cut-set (or mincut).

MinCut(G)
1. Ecut ← {}
2. for each subtree Gi of root(G) do
3. if Gi is a single node then
4. Ecut ← Ecut ∪ {(root(Gi), root(G))}
5. else
6. E′

cut ← MinCut(Gi)
7. if cost(E′

cut) > w(root(Gi), root(G))
8. Ecut ← Ecut ∪ {(root(Gi), root(G))}
9. else
10. Ecut ← Ecut ∪ E′

cut

11.return Ecut

Figure 3: Algorithm for finding mincut in a compu-
tation tree.

Our algorithm runs in time linear to the size of the compu-
tation tree, since it visits each edge exactly once. We will
skip the formal proof of the correctness of the algorithm,
and only provide an outline of the proof below.

The proof is by induction on the depth of the computation
tree. Consider the base case when the depth of the tree is
one, that is, the tree consists of only the root node and the
leaf nodes. In this case the algorithm will return Ecut =
EG. This is the mincut since there is only one possible cut.
Now assume that the algorithm works for trees with depth
< k. Consider a tree of depth k. All subtrees must be of
depth < k and therefore MinCut will find the mincut of the
subtree correctly. Now, consider the edge e that connects
the root to a subtree Gi. A mincut of G must include either
e or the mincut of Gi. Furthermore, if weight of e is less
than the cost of Gi’s mincut, then e must be a member of
the mincut of G. Otherwise we can replace the mincut of
Gi with e and get a cut-set with lower cost and achieve a
contradiction. Therefore, lines 6 - 10 correctly find the edges
that belongs to the mincut of G. By induction, we conclude
that MinCut correctly finds the mincut of computation tree
G.

We note that our algorithm works because we model the
computation as a tree, and is a special case of the general
max flow/min cut problem. This is sufficient for most of the
useful computations we are interested in, such as transcod-
ing and merging of video streams. A more generalized model
of computation, such as directed acyclic graphs would be
more complex. Such generalized computation models is re-
quired when sharing of sub-computations is allowed among
services, and is a subject of future research.

Once the main gateway uses MinCut to create a series of
sub-computations, it will need to locate other gateways to
run these sub-computations. We will describe our protocol
for locating gateways in the next section.

3. GATEWAY LOCATION PROTOCOL
In this section, we describe how a main gateway locates and
assigns sub-computations to helper gateways. Our protocol
extends our previous work on Adaptive Gateway Location
Protocol (AGLP), and therefore we first describe how AGLP
works. A brief description is given in the next section. De-
tails about the protocol can be found in [13].

3.1 How AGLP works
AGLP is used in Degas to locate a single gateway to service a
client, with the goal of minimizing bandwidth consumption.
It is an application-level, soft state (”hints”) protocol. The
simplicity of the model allows us to build a scalable, robust
protocol that is resilient to crashes and message loss. By
using soft state, AGLP can adapt to changing network con-
ditions, as well as the birth and death of gateways, senders,
and receivers. AGLP can migrate computations between
gateways to adapt when the environment changes in order
to reduce network congestion.

AGLP uses propagation time as a parameter to decide if a
gateway is suitable to service a client. It does not take geo-
graphical locations, topology or number of hops into consid-
eration. Previous study [4] shows that there is little correla-
tion between these parameters. We use propagation time as
this directly corresponds to end-to-end delay, the parameter
we care most about.

In the design of AGLP, we assume that sources, gateways
and clients run NTP to synchronize their clocks to measure
propagation time between hosts. However, in the absence
of NTP, we can use other schemes to estimate propagation
delay, such as SPAND [16], or simply ping.

In AGLP, all clients and gateways communicate on a com-
mon, well-known multicast channel. AGLP consists of two
phases. The first phase, Quick-Start Phase, chooses a gate-
way that is close to the client to reduce start-up latency,
without worrying about optimizing bandwidth consumption.
The second phase, the Adapting Phase, optimizes the band-
width utilization by migrating services to better gateways.

At the beginning of the Quick-Start Phase, a client C who
wants to request some computation to be done on some in-
put streams multicast a request message onto the common
multicast channel. A gateway Gi that receives the request
message and is available to serve C replies with a offer mes-
sage. Instead of replying immediately, each Gi waits for
some time before multicasting the offer. A gateway will
suppress its offer message if it has received an offer message
from another gateway while waiting. Client C listens and
accepts the first offer that it receives. Subsequent offers from
other gateways will be ignored by C.

After the client chooses the gateway, the client and the cho-
sen gateway, denoted G0, periodically multicast a serve and
served-by messages to indicate that G0 is currently serving
the client.

After joining session s, G0 starts to collect information about
the session. This information includes the identity of the
senders S0..Sk, bandwidth of the input streams b0..bk and
the output stream bC , and the distance (or latency) d0,j



from each sender Sj . This information is included in the
serve messages and is multicast to every other gateway.

Each gateway Gi, that is available to serve C, maintains
a soft state table of distances to itself from the sources,
di,0..di,k and the client di,C . The table is refreshed by pe-
riodically joining the RTCP [15] session of s, listening to
RTCP packets, and calculating the distance by subtracting
the NTP timestamp of a sender’s report from the arrival
time.

Each gateway periodically evaluates its suitability of serving
client C by calculating a score, xi as follows. First, let Ui

be

Ui =
k�

j=0

(bj × di,j) + bC × di,C

Intuitively, Ui corresponds to the bandwidth consumption
of a gateway Gi. We calculate xi as

xi = U0 − Ui

A score xi > 0 indicates that Gi is better than G0 for serv-
ing C since it will consume less bandwidth. Each gateway
with a score larger than a threshold ε will try to replace the
current gateway. Gateway Gi waits for Treplace,i seconds,
and multicasts a replace message, containing its score xi. If
Gi receives another replace message from another gateway
with higher score, Gi suppresses its own replace message.
Treplace,i is set inversely proportional to xi, so that a gate-
way with a high score replies quickly. The current gateway
keep tracks of the gateway with the lowest score so far, de-
noted Gr. Tadapt seconds after G0 receives the first replace
message, gateway G0 multicasts a handoff message and sends
the computation to Gr. Gr subsequently starts the service,
sends the output stream to a new group, and multicasts
handoff-ok.

Gr begins to multicast serve messages periodically. Upon
receiving both handoff-ok and serve from Gr, C knows that
another more suitable gateway has been found. C switches
to the output group of Gr. C stops announcing served-by
for G0 and starts announcing served-by for Gr. As G0 no
longer receives served-by from C, it eventually stops process-
ing video streams for C after a timeout.

3.2 Extension to AGLP
The process of locating helper gateways is very similar to
the process of locating the main gateway by the client. How-
ever, instead of doing it in two stages (quick-start and then
adapt), we can do it in one since startup latency is no longer
a concern.

We add a new phase, Splitting Phase, into AGLP, between
the Quick-Start Phase and the Adapting Phase. The goal
of the Splitting Phase is to split the computation, and to
request other gateways to help with the execution of the
sub-computations.

It is important that we defer the Adapting Phase until all the
helper gateways are identified and initialized. The optimal
locations to execute main computation and sub-computations
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Figure 4: The Quick-Start Phase of AGLP.
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depend on each other, hence performing both the Adapting
Phase and the Splitting Phase simultaneously will cause un-
necessary migrations. The Adapting Phase is delayed by
suppressing session information in the serve message. With-
out the session information, other gateways cannot evaluate
and try to replace the main gateway.

The current gateway, G0, initiates the Splitting Phase by
multicasting a help-request message to all other gateways.
The help-request message contains information about the
sub-computation to be executed on a gateway, including
the input session and identities of the sources to the sub-
computation, the bandwidth of each input stream, and the
distance of the main gateway from each source. This in-
formation is the same as the information sent with serve
messages, except that only the subset of sources for the sub-
computation are sent.

A gateway that is available to help G0, upon receiving a
help-request message, evaluates itself to see if it is better
than the main gateway for running the sub-computation.
The evaluation is carried out by calculating a score in a
similar manner as the evaluation in the Adapting Phase.

Without loss of generality, let S0..Sk′ be the subset of sources
to the sub-computation, and define b′0 be the output band-
width of the sub-computation. We define U ′

i as

U ′
i =

k′�

j=0

(bj × di,j) + b′0 × di,0

and score x′
i of a gateway Gi as

x′
i = U ′

0 − U ′
i

where di,i = 0. If a gateway gets a score larger than a thres-
hold, the gateway waits for a certain amount of time before
multicasting a help-offer message back to gateway G0. A
help-offer message is similar to a replace message. G0 waits
for a certain amount of time before picking a gateway with
the highest score to run the sub-computation. Let Gh be the
one selected. G0 then multicasts a help-accepted message,
and hands off the sub-computation to Gh. Gh subscribes to
the sources, processes the video, and starts multicasting the
processed video to G0.

While G0 is trying to find helper gateways to run the sub-
computations, G0 continues to process the input streams us-
ing the un-decomposed computation. Once G0 knows that
Gh is ready, G0 reconfigures its computation by removing
the subtree that corresponds to the sub-computation as-
signed to Gh. G0 subscribes to the output session of Gh.
Gh and G0 periodically multicast a helping and helped-by
message to each other to maintain the soft state relation-
ship that Gh is helping G0.

Just like the original AGLP, we need to be able to adapt
to changing network conditions. Gh includes in its helping
message the information about the session, and other gate-
ways can evaluate themselves to see if they can replace Gh

to help G0. Gh can then hand off the sub-computation to a
better helper, and G0 will switch its input from Gh to the
new helper.

Gateway
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Gateway
G2 G3

Upload

select G3
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HELP−REQUEST

HELP−ACCEPTED

x’ = −40
x’ = 50

Gateway Gateway

HELPED−BY G3

HELPING G0

Sub−Computation

x’ = 150

HELP−OFFER

Figure 6: The Splitting Phase of AGLP.

If no gateway replies to the help-request message from G0,
this implies that the best place to run the sub-computation
is on G0, and the sub-computation is not spawned. After a
sub-computation is assigned to a helper gateway, migrations
might cause a sub-computation and the main computation
to run on a same gateway again. These computations can
then be merged, by grafting the sub-computation tree back
into the main-computation tree.

The main gateway will initiate the Adapting Phase once it
believes that it has reached a “stable” state, that is, it does
not receive any more help-offer messages in Tstable seconds.

4. PERFORMANCE OF AGLP
One particular issue that concerns us is how these changes
to AGLP will affect the performance, in particular, how it
will affect the number of migrations and time to reach the
set of optimal gateways. We implemented the extension to
AGLP in the ns2 simulator [3] and ran simulations on ran-
domly generated 100-node networks using the gt-itm ran-
dom topology generator [6]. We used a computation similar
to Figure 1(b) with three sources. The computation is de-
composed into three sub-computations that resize the input
streams, and a main computation that merges the stream.
In this section, we present our simulation results.

Figure 7 shows the number of migrations of the main gate-
way for the original AGLP (labeled AGLP), and the ex-
tended AGLP (labeled AGLP++). The result shows that
the average number of migrations for extended AGLP is
slightly less in the original version. This can be explained
as follows. The computation we used for this simulation is
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one that reduces bandwidth consumption, and therefore is
best ran close to the sources. Thus it is more likely that we
need to migrate the computation from the gateway we pick
in the Quick-Start Phase to another gateway close to the
sources. In the case where we divide the computation into
sub-computations, the main computation merges streams,
producing an output stream that uses more bandwidth than
the total input bandwidths. Hence the main computation is
best ran near the receiver. There is a good chance that the
gateway we pick in Quick-Start Phase, which is the gateway
closest to the receiver, is already good enough and no further
migration is needed in this case. Hence fewer migrations are
needed in extended AGLP.

However, as we deferred the Adapting Phase until we as-
signed sub-computations to helper gateways, the time it
takes to migrate the main computation to the optimal gate-
way increases significantly. Figure 8 shows the time to reach
the optimal gateway, plotted against the number of gate-
ways. We used Tstable = 30 seconds in this simulation. The
time to reach the optimal gateway increases by about 30 -
50 seconds.

Tstable is a parameter that we can tune to trade the number
of migrations and the time to reach stability. A small Tstable

causes optimal gateways to be found faster, but will cause

the number of migrations to increase. The effect of this
parameter is shown in Figure 9 and Figure 10.
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An interesting observation from Figure 9 is that the aver-
age number of migrations drops significantly when Tstable is
larger than 30 seconds. For values of Tstable less than 30 sec-
onds, the Adaptive Phase starts before all sub-computations
are assigned to helper gateways, and may unnecessarily mi-
grate the main computation to a gateway near the sources.

Figure 11 shows the average number of times helper gate-
ways start executing sub-computations. As the main gate-
way in our simulation requested help for three sub-computa-
tions, a value of 3 indicates that all sub-computations are
assigned to their respective optimal helper gateway the first
time. A value larger than 3 implies some migrations of sub-
computations. This graph shows that the number of mi-
grations per sub-computation is less than 1, indicating that
we are able to locate good helper gateways to run the sub-
computations most of the time.

Figure 12 shows the average number of help-offer messages
that the main gateway receives per number of sub-compu-
tations. Just as the replace messages during the Adapt-
ing Phase, we use multicast damping to avoid feedback im-
plosion. The graph shows that this number increases very
slowly as the number of gateways goes from 10 to 100. A



0

1

2

3

4

5

6

7

20 40 60 80 100

N
um

be
r 

of
 S

ub
-c

om
pu

ta
tio

ns

Number of Gateways

Figure 11: Average Number of Sub-Computation
Executions vs Number of Gateways, with 95% con-
fidence interval.

caveat here is that this graph shows the number of messages
per sub-computation. The number of help-offer increases lin-
early with number of sub-computations, and hence does not
scale well. One solution for this problem is to request help
for the sub-computations sequentially, instead of simultane-
ously. This can spread the help-offer messages over a period
of time and avoid implosion. However, this can increase the
time to reach optimal configuration significantly.
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Figure 12: Average Number of Help Messages vs
Number of Gateways, with 95% confidence interval.

In summary, our simulation results show that AGLP can be
extended to locate media gateways for running composable
services, while still maintaining a low number of migrations,
and a low number of messages at the expense of more time
to reach optimal gateways.

5. EFFECTS ON QOS
In this section, we present experimental results of our sys-
tem to study the effects of distributed media transforma-
tion on the quality of video received by the receiver. The
experiments are carried out using a prototype of the Degas
system [14] on a local area network. The computation that
we used in these experiments is shown in Figure 13. This
computation merges two high quality MJPEG streams into
a low-quality, 5 fps H.261 stream.

S2S1

w

u v

MJPG 6fps 160x120MJPG 15fps 160x120 

H261 5fps 88x72 H261 5fps 176x144

H261 5fps 176x144

Figure 13: A picture-in-picture computation used in
experiments.

We first ran the computation on a single gateway. To sim-
ulate the situation of an overloaded gateway, we chose a
slow machine, a Sun SPARCstation-5 with 32 MB of RAM
(called host A) as our gateway. In the second experiment,
we distributed the same computation onto three gateways.
We used two Sun Ultra-80 computing servers as helper gate-
ways to run operation u and v, and run operation w on host
A as the main gateway.
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Figure 14: Frame rate versus Time.

Figure 14 shows the number of frames per second received by
the client for both experiments. In the case where a single
gateway is used, the receiver only receives about 3.3 fps.
The CPU load on host A is about 85%. By assigning some
computing intensive sub-computations to helper gateways,
we are able to lower the CPU load on host A to about 25%,
and improve the frame-rate close to 5 fps. Figure 15 shows
the corresponding data rate received in the experiments.

We measured the period between rendering of frames for
both experiments. The results are shown in Figure 16 and
Figure 17. Our result shows that we are able to reduce jitters
significantly by using multiple gateways.

A surprising result from these experiments is our measure-
ment of end-to-end delays. We expected the end-to-end de-
lay for running a computation on multiple gateways to be
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Figure 15: Data rate versus Time.

larger than running it on a single gateway. However, we
found that the end-to-end delay is about 600ms higher when
we ran the computation on a single gateway. This is because
the frame processing time on host A is much larger than the
time spent in the extra decoding/encoding process when the
stream is passing through a second gateway.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000

In
te

r-
fr

am
e 

D
el

ay
 (

s)

Frame

AGLP

Figure 16: Inter-frame Rendering Delay versus
Frame Number for Single Gateway.

The results of our experiments are very encouraging. They
validate our believe that by distributing media transforma-
tion over multiple gateways, we are able to improve through-
put. In cases when a single gateway becomes bottleneck,
helper gateways can help reduce jitters and end-to-end de-
lays, thus improving the quality of the video streams re-
ceived by the user.

6. RELATED WORK
Media processing in the network has been proposed and
studied in [1, 18, 19]. These previous proposals concen-
trate on running media processing in a single location in the
network.

Distributing video processing across multiple nodes in the
network has been studied in [11, 10]. They employed mul-
tiple hosts in a network-of-workstation environment to ex-
ploit temporal parallelism and spatial parallelism in video
processing. In temporal parallelism, a host demultiplexes
a video stream and send different frames to different hosts
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Figure 17: Inter-frame Rendering Delay versus
Frame Number for Multiple Gateways.

for processing. The results are then sent to another host,
which multiplexes it into the resulting stream. For example,
the demultiplexing host can send odd numbered frames to
one host and even numbered frames to another. In spatial
parallelism, different regions of a video frame are sent to dif-
ferent hosts for processing. In contrast, our work focuses on
functional parallelism, where multiple hosts perform differ-
ent operations on the video streams as it flows through the
hosts.

The concept of functional decomposition was proposed in
[2] in the context of the Active Service framework. A media
gateway runs as a service, but can act as a client to request
another media gateway to be instantiated as its server. This
can continue recursively and result in a chain of media gate-
ways. Our work is different from this in that our service
composition is done automatically and is transparent to the
client, and we take network bandwidth into consideration
when we decide where to run the services.

Several recent wide-area network services allow composition
of their services as well. CANS [7] (Composable, Adap-
tive Network Services) composes its services in response to a
client’s request using a centralized plan manager. The com-
position of services is transparent to the client. The plan
manager constructs a data path through the services, using
a heuristic to maximize the minimum bandwidth available
along the path. Ninja [8] uses a different heuristic to com-
pose its services. Their automatic path creation facility first
maps a user request to a data path with a minimum number
of operators, and then assigns these operators onto the least
loaded servers on the network. There are two main differ-
ences between these two approaches and ours. First, they
attempt to construct a path using available mobile code to
meet a user’s request. In contrast, our mechanism decom-
poses a user’s request into blocks of mobile code. Second,
both Ninja and CANS use centralized algorithms with global
knowledge (link bandwidths and load on servers) to con-
struct the path. AGLP++ uses a decentralized approach
that does not assume such knowledge.

7. CONCLUSION
We presented our initial work on composable services in me-
dia gateways. A computation on a media stream is divided



into multiple sub-computations and is sent to multiple gate-
ways for execution. In this paper, we focus on two fun-
damental design issues, how a computation can be decom-
posed, and how to assign the sub-computations to gateways.
There are still many open issues that remain to be studied.

We plan to improve our system to allow a computation that
changes frequently to be distributed onto multiple gateways.
This is a common class of computations, because multicast
sessions are dynamic in nature. It is also important because
currently our gateways manage resources by modifying the
computation when resources are low, for example, by reduc-
ing frame rate, resolutions or changing the output to gray
scale. The research issues involved include how to commu-
nicate the changes to helper gateways, and how to re-assign
the helper gateways efficiently when changes occur.

We also plan to look at the global picture of services running
on all gateways. An interesting issue is how sub-computations
with the same operation and inputs can be identified and
shared among multiple services. Another issue we plan to
look at is fairness among the services. We want to assign
the sub-computations such that each user gets a fair share
of overall resources in the gateways. The challenge is to do
this in a decentralized and scalable manner.
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