
Congestion Control in Distributed Media Streaming
Lin Ma

School of Computing
National University of Singapore

malin@comp.nus.edu.sg

Wei Tsang Ooi
School of Computing

National University of Singapore
ooiwt@comp.nus.edu.sg

Abstract— Distributed media streaming, which uses multiple
senders to collaboratively and simultaneously stream media
content to a receiver, poses new challenges in congestion control.
Such approach establishes multiple flows within a session. Since
conventional congestion control only aims to make each of these
flows TCP-friendly, selfish users can increase the number of
flows to grab a larger share of the bandwidth, introducing
more congestion and degrading the overall network performance.
To address this issue, we propose the idea of task-level TCP-
friendliness, which enforces TCP-friendliness upon a set of flows
belonging to a task instead of upon individual flow. We design
DMSCC, a congestion control scheme, to achieve task-level
TCP-friendliness in distributed media streaming. By observing
shared congestion, DMSCC identifies the set of flows experiencing
congestion and dynamically adjusts those flows such that their
combined throughput is TCP-friendly. To achieve this goal,
DMSCC addresses two issues: (i) given aβ (β < 1), how to
control a flow using AIMD such that it consumes β-times the
throughput of a TCP flow, and (ii) how to identify the set of
flows that share a bottleneck. In our simulations, DMSCC can
effectively regulate the throughput of flows on every bottleneck,
resulting in a TCP-friendly combined throughput.

I. I NTRODUCTION

The termdistributed media streaming, coined by Nguyen
and Zakhor [1], refers to a new model in media streaming in
which a client receives a media stream from multiple servers
simultaneously. This new framework can be applied to several
settings. In media-on-demand services, media content can be
mirrored by different CDN servers, and a client can stream
concurrently from these servers. In peer-to-peer file sharing
applications, a receiver can stream from multiple peers that
seed the same media file.

There are two main advantages in streaming from multiple
senders concurrently. First, it improves robustness. By exploit-
ing path-diversity among the senders, the receiver experiences
average loss and congestion behavior of the paths. Careful
selection of senders and allocation of packets to different
senders lead to significant reduction in bursty loss [2]. In
peer-to-peer settings with transient peers, the receiver can still
receive and play parts of the media stream when one of the
sending peer fails [3].

Second, distributed media streaming allows aggregation of
bandwidth among peers. Most home computers have asym-
metric Internet connections, where the down-link data rate is
higher than the up-link data rate. Such asymmetry limits the
ability of a peer to stream to another peer at full quality. For
instance, a peer might request for a 128Kbps audio, but few

peers would be able to, or willing to, dedicate this amount
of bandwidth to serve another peer. A more likely situation
is for, say, four peers, each contributing 32Kbps, to serve the
requesting peer.

Streaming from multiple senders simultaneously poses
many new research challenges. Existing work in the literature
has studied issues such as rate allocation [1], allocation of
packets [4], and selection of senders [3]. The existence of
multiple senders has brought a new dimension to classic
problems in media streaming as well. For instance, we recently
studied error recovery via retransmission of loss packets in the
context of distributed media streaming [5]. In this paper, we
investigate another fundamental issue in media streaming –
TCP-friendly congestion control.

Congestion control in media streaming with one sender is
an important and well studied problem (e.g., see the survey
by Widmer et al. [6] and references therein). In distributed
media streaming, however, the problem of congestion control
is more complicated than the single sender scenario.

A distributed media streaming session contains multiple
media flows (calledDMS flows) from different senders. These
flows may or may not pass through the same bottleneck.
Ensuring TCP-friendliness of each DMS flow is not sufficient:
their combined throughput is larger than the other TCP flows
on the same bottleneck. This unfairness encourages abuse by
selfish users — by increasing the number of concurrent flows,
a user can grab larger bandwidth share at the bottlenecks. We
need a different type of congestion control – one that controls
the aggregatethroughput of the DMS flows such that their
combined throughput is TCP-friendly. We call such aggregate
congestion control astask-level congestion control.

Aggregate congestion control methods exist in the literature
[7]–[10], but do not apply to distributed media streaming. In
distributed media streaming, the flows from multiple senders
converge on their way to the receiver, forming a reverse tree
(see Fig. 1 for an example). The DMS flows only share
parts of their links, so they may experience different delay
and congestion. The existing methods of aggregate congestion
control, however, assume that the flows traverse through the
same path and share the same bottleneck.

We now illustrate the problem of congestion control in
distributed media streaming through an example (see Fig. 1).
A host R requests for some media content from sendersSi.
DMS flows (fi) from the senders travel through different IP-
level paths and join each other at routersA andB. We term

S0

S1

S2

f0

f1

f2

R

A

B

Fig. 1. Reverse Tree Topology in Distributed Media Streaming.

routers likeA and B as aggregation points. Throughout this
paper, we use the termlink to refer to the set of physical links
between a sender and an aggregation point (e.g.,S0-A), two
aggregation points (e.g.,A-B), or an aggregation point and the
receiver (e.g.,B-R). The set of DMS flows on a link is unique.
Determining the set of DMS flows on a link is important, as
it is the element upon which TCP-friendliness is enforced.
Section II elaborates on this point.

In the reverse tree, congestion can occur on any link. If
it occurs onR-B, the aggregate off0, f1 and f2 should be
friendly to TCP flows on linkR-B. But if the congestion
occurs onA-B, only the aggregate off1 andf2 needs to be
friendly to TCP flows on linkA-B. Flow f2, on the other
hand, can consume as much bandwidth as it wants. Similarly,
if the congestion occurs on linkS0-A, only f0 needs to be
TCP-friendly.

The above example shows the difficulty in congestion
control of distributed media streaming – the set of DMS flows
to be controlled depends on where congestion appears. So
the solution needs to first identify the flows sharing the same
congestion, and then regulate them accordingly.

This paper proposes a complete framework called DMSCC
to achieve the above tasks. DMSCC tracks packet losses at
the receiver as an indication of congestion and identifies the
location of congestion by correlating the one-way delays be-
tween sender/receiver pairs. Additive increase, multiplicative
decrease (AIMD) algorithm, with carefully adjusted increasing
factor, regulates the throughput of the DMS flows on a
bottleneck and produces a TCP-friendly flow aggregate. If
there arek DMS flows on a bottleneck, they are regulated
such that, in ideal situation, each flow consumes1/k of the
bandwidth of a TCP flow in a comparable network condition.
As a result, the flow aggregate consumes as much as one TCP
flow and is friendly to TCP. We use only TCP Reno in this
paper, but the scheme is applicable to other versions of TCP.

When the throughput of the each flow is regulated, the
receiver needs to decide which packets each sender should
send to conform to the new throughput constraint. This and
other issues (e.g., what to retransmit, media coding methods
used) are orthogonal to congestion control and are beyond the
scope of this paper.

The rest of the paper is organized as follows. In Sec-
tion II, we make a case for task-level TCP-friendliness and
formulate the congestion control problem to achieve task-
level TCP-friendliness in distributed media streaming. Section
III describes the framework of DMSCC and presents our
assumptions. Section IV presents the methods to control
throughput of DMS flows. Section V describes how DMSCC

locates congestion in a reverse tree. Section VI shows how
DMSCC combines congestion location and throughput control
to achieve TCP-friendliness at the task level. Section VII
presents simulation results, which validate our design. Some
related work is presented in Section VIII. Section IX concludes
the paper.

II. PROBLEM FORMULATION

A. Task-level TCP-Friendliness

The term TCP-friendly is commonly used to describe a
flow whose arrival rate at steady state is no more than the
arrival rate of a TCP flow under the same network condition
(such as packet loss rate and round trip time). We refer to
congestion control schemes that aim to produce TCP-friendly
flows as flow-level congestion control. Several work in the
literature extends the notion of TCP-friendliness to coarser
granularity. Hacker et al. [10] consider parallel TCP flows and
propose an approach where multiple parallel TCP flows in
one download session are friendly to a single (unmodified)
TCP flow. We call this approach astask-level congestion
control. Finally, congestion manager [7] seeks fairness of flow
aggregate between a pair of hosts. We refer to this approach
ashost-level congestion control.

We believe that task-level congestion control is appropriate
for Internet applications, including distributed media stream-
ing. Congestion control pursues fair sharing of bandwidth at a
bottleneck, and fairness is meaningful only when the entity of
bandwidth consumption is identified. Such entity should have
two properties: (i) An entity consumes bandwidth to complete
a well-defined task for an end user; (ii) Creating more entities
does not make completing the task better or faster. The second
property is crucial in removing the motivation to abuse the
network using multiple entities.

For example, an FTP file downloading session is an entity
– the task is well defined, and downloading another file does
not accelerate the completion of the current task. In this
single-flow task, task-level congestion control is equivalent
to flow-level congestion control. On the other hand, some
applications (e.g., FlashGet1) allow users to download the
same file with multiple flows concurrently. In this case, the
multi-flow downloading session is one entity – (i) the task
is still downloading of a file, and (ii) creating another multi-
flow session for the same file does not speed up the current
downloading. Task-level congestion control takes the whole
downloading task as the entity of bandwidth consumption and
keeps the total throughput friendly to TCP. Contrarily, flow-
level congestion control only requires TCP-friendliness of
individual flow. Therefore, the task consumes more bandwidth
than a TCP flow, gaining advantage over other single-flow
tasks. Without task-level TCP-friendliness, selfish users can
use more flows to grab more bandwidth on bottlenecks.

B. The Criterion for Task-Level TCP-Friendliness

We now formally describe the goal of task-level congestion
control.

1www.flashget.com

0f
f1

f

TCP
A B

(a) a single flow task

TCP
A B

(b) a two−flow task

Fig. 2. A Single-Flow Task and a Two-Flow Task.

1) A Single-Flow Task:First, let’s consider a task with only
one flow, as shown in Fig. 2(a). The flowf and a TCP flow
share bottleneckA-B. As the task has only one flow, task-level
TCP-friendliness is equivalent to flow-level TCP-friendliness.
Assuming that the RTT of both flows are the same, TCP-
friendliness is achieved if the following equation holds:

B = BTCP

whereB andBTCP are the throughput off and the TCP flow,
respectively.

Consider a more general case where the two flows expe-
rience different RTT. TCP’s congestion control algorithm is
biased against flows with larger RTT [11]. Despite efforts to
correct such unfairness (e.g., TCP Libra [12]), this unfairness
persists in current TCP implementations. On the other hand,
B×RTT of the two TCP flows remain the same if they
experience the same loss rate. For flowf and the TCP flow
in Fig. 2(a), it is reasonable to assume a similar loss rate:
A-B is the only bottleneck on their paths, and active queue
management, such as RED, tries to drop packets from both
flows in a fair manner. Therefore, under different RTT, TCP-
friendliness is ensured by:

B ×RTT = BTCP ×RTTTCP (1)

whereRTT andRTTTCP are the RTT of flowf and the TCP
flow, respectively.

2) A Multi-Flow Task:We now extend Equation 1 to handle
a multi-flow task sharing the same bottleneck with other TCP
flows.

Consider a multi-flow task (e.g., Fig. 2(b)). The two flows
f0 andf1 share bottleneckA-B with a TCP flow. Task-level
TCP-friendliness requires the flow aggregate to be friendly to
a TCP flow. If we treat the flow aggregate as a single flow,
task-level TCP-friendliness is the same as flow-level TCP-
friendliness. Therefore, Equation 1 holds; except that,B is
now the combined throughput offi, andRTT is the average
round trip time offi:

RTT =
1
B

∑
fi∈O

(bi × rtti)

whereO is the set of flows in the flow aggregate,bi andrtti
are the throughput and round trip time of flowfi. By replacing
B and RTT , we extend Equation 1 to consider multi-flow
tasks: ∑

fi∈O

(bi × rtti) = BTCP ×RTTTCP (2)

Equation 2 provides the criterion for task-level TCP-
friendliness on a given bottleneck.Formally, a task is TCP-
friendly if the combinedB×RTT of its flows is equal to that
of a TCP flow on the same bottleneck.

3) The Goal of DMSCC:We now apply Equation 2 to the
problem of congestion control in distributed media streaming.
Consider a distributed media streaming session as shown
in Fig. 1. As bottlenecks form on different links, the flow
aggregates on them contain different sets of DMS flows. The
criterion of task-level TCP-friendliness for distributed media
streaming should consider multiple bottleneck locations with
different sets of flows.

Let lj be a link, and a TCP flow passing throughlj be
TCPj . As the set of DMS flows flowing through each link is
distinct, we can represent a link using its set of DMS flows.
We use set notations to represent relationships among the flows
and the links. The notationfi ∈ lj means that flowfi passes
through link lj ; and li ⊃ lj means that the flows onli are a
proper superset of flows onlj , or li dominateslj for short.

Distributed media streaming is task-level TCP-friendly
when,on any bottlenecklj , the following inequality holds:∑

fi∈lj

(bi × rtti) ≤ BTCPj
×RTTTCPj

(3)

The above criterion is an inequality, as a DMS flow may
experience multiple bottlenecks.

III. M ODEL AND ASSUMPTIONS

DMS
Congestion

Control

DMS flows
Sender 0

Receiver

AIMD

AIMD

AIMD

Sender 1

Sender 2

Increasing

Factors

Fig. 3. A Three-Sender Session.

Our congestion control scheme, DMSCC, is designed to
ensure that Inequality 3 is satisfied on any congested link
in a distributed media session. DMSCC is a receiver-driven
protocol – the receiver pulls the data from the senders by
sending requests with sequence numbers, and the senders reply
with data. The receiver therefore controls the sending rate
of each senders and is the natural place to implement the
congestion control protocol.

Fig. 3 shows the relationship between DMSCC and the
DMS flows in a distributed media streaming session with three
senders. There are three connections between the receiver and
the senders. At the receiver, each connection is controlled by
an AIMD loop similar to TCP. The increasing factors of these
AIMD loops are controlled by the DMSCC module in the
receiver. We will show in Section IV how the increasing factors
of individual DMS flows are determined. But first, in this
section, we introduce the framework of DMSCC and present
our assumptions in the design of our protocol.

A. AIMD versus TFRC

AIMD and equation-based method [13] are two common
methods for regulating the throughput of a non-TCP flow. We
use AIMD method to regulate DMS flows in DMSCC for the
following reason.

Equation-based methods rely on long term observation of
network parameters such as loss rate and smoothed RTT.
These parameters are used in an equation to estimate the
long term throughput that is fair to TCP. This long term
observation is meaningful only in cases where flows share
the same path, and bottlenecks affect the same set of flows.
In distributed media streaming, the congestion may affect
different set of DMS flows at different bottlenecks. Thus,
a long term observation might become outdated and fail to
capture the congestion on a particular bottleneck. On the other
hand, AIMD methods respond quickly to a packet loss and
adapt swiftly to congestion on new bottleneck. Although it
is argued that AIMD produces saw-tooth like throughput, in
non-interactive streaming, as in the case of distributed media
streaming, buffering can be used to smooth the playback at
the receiver.

B. DMSCC

The framework of DMSCC is shown in Fig. 4. DMSCC has
two relatively independent functionalities: throughput control
(Section IV) and congestion location (Section V). These two
functionalities cooperate to perform task-level congestion con-
trol on DMS flows. When congestion occurs, the congestion
location module identifies the bottleneck. The throughput
control module then updates the increasing factor of AIMD
loops of each DMS flow on that bottleneck.

DMS Flows

Throughput
ControlLocation

Congestion

Algorithm
Congstion Control

Fig. 4. Framework of DMSCC

C. Assumptions

Before proceeding to descriptions of DMSCC, we first
clarify our assumptions. First, we assume that the paths among
the receiver and senders form a reverse tree rooted at the
receiver, and this topology is known by the receiver. Second,
we assume that DMS flows on the same bottleneck link
experience similar loss rate. This assumption is reasonable
when active queue management schemes such as RED is used.
Third, we focus on links with high multiplexing factors, where
loss rate is decided by the background traffic rather than the
DMS flows. Lastly, we can reasonably assume that the number
of senders in a DMS session is typically small (less than 10).
Thus, scaling DMSCC to large number of senders is not an
issue.

IV. T HROUGHPUTCONTROL

In this section, we describe how to control the throughput
of a DMS flow using AIMD algorithm such that it achieves
a fixed fraction of the throughput of a TCP flow. In order for
an aggregate ofk DMS flows to be fair to a single TCP flow,
DMSCC tries to control the throughput of each of the DMS
flow to be1/k of the throughput of a conformant TCP flow.

We derived our method from the well-known Mathis Equa-
tion [14]. Mathis et al. assume that packet losses are distributed
in such a way that, if the loss rate isp, then for every1/p
packets, one packet is lost. Fig. 5 shows the variation of
congestion window in such an ideal lossy channel.W denotes
the size of the congestion window (in number of packets)
before packet loss. Every packet loss reduces the congestion
window toW/2. The congestion window then increases byα
packets for every RTT, until the next packet loss occurs.

C
on

ge
st

io
n

W
in

do
w

(p
ac

ke
ts

)

  

L = W/2α

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Time (RTT)

W/2

W

Fig. 5. Evolution of Congestion Window Under Periodic Loss.

The variableα is the increasing factor. If we let the period
(in RTT) between every two packet losses beL, then

L =
W/2
α

.

The total number of packets received during that period can
be calculated as the size of the shaded areaS:

S =
3
2
× W

2
× L =

3W 2

8α
. (4)

From the assumption of ideal packet loss pattern, we know
that the number of packets between two packet losses is1/p,
that is,

S =
1
p
. (5)

From Equation 4 and 5, we obtain:

W =
√

α×
√

8
3p

.

The throughput of a flow is proportional to the average size
of congestion window, which is:

W =
3
4
W =

√
α× 3

4

√
8
3p

. (6)

Equation 6 provides us a way to change the throughput by
adjusting its increasing factorα. If we want a DMS flow to
haveβ times the throughput of a TCP flow, whose increasing
factor is 1, then

W = β ×WTCP

⇒
√

α× 3
4

√
8
3p

= β × 3
4

√
8
3p

⇒α = β2. (7)

Equation 7 tells us that, for the throughput of a DMS flow
to be β times of a conformant TCP flow, we need to set its
increasing factorα to β2. We tested this observation in the
following simulation (Simulation 1) using ns-2.28.

B

S R

......

A

TCP Senders TCP Receivers

50ms

50ms

50ms

50ms
10Mbps

10Mbps10Mbps

50ms

10Mbps10Mbps

Fig. 6. Topology of Simulation 1.

The topology of the simulation is shown in Fig. 6. The
bottleneck between nodesA and B has a bandwidth of
10Mbps and a delay of 50ms. NodeA is a RED gateway using
ns-2.28 default setting2. Fifty TCP Reno flows pass through
the bottleneck and produce congestion. A DMS flow is sent
from S to R. Its increasing factorα changes based on the
value ofβ according to Equation 7. We increasedβ from 0.1
to 1.4 (note that in DMSCC, we are interested only inβ ≤ 1)
and observed the ratio of the throughput of the DMS flow to
the average throughput of TCP flows. For each value ofβ, we
repeated the simulation 20 times and computed the average
ratio.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

T
hr

ou
gh

pu
t R

at
io

Expected Throughput Ratio, β

Confidence Interval: 95%

B/BTCP

Fig. 7. Simulation 1: Throughput Ratio asβ Changes.

The result is plotted in Fig. 7. The x-axis,β, is the expected
throughput ratio (β). The y-axis is the ratio observed when
setting α to β2. Fig. 7 shows that asβ changes, the actual
throughput ratio is close toβ whenβ ranges from 0.2 to 1.0.
The result shows the effectiveness of Equation 7.

Mismatch between the actual throughput ratio andβ is ob-
served in Fig. 7 for smallβ and largeβ. This mismatch is due
to bursty packet losses in the simulation, which violates the
assumption that packet losses are evenly distributed. During
the bursty loss period, the congestion window becomes small.

2queue length = 50, minthresh = 5, maxthresh = 15, gentle-enabled, and
mark p = 0.1

  

W0L=(W−)/ α

C
on

ge
st

io
n

W
in

do
w

(p
ac

ke
ts

)

W0

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

Time (RTT)

W

Fig. 8. Effects of Minimum Congestion Windows.

When the halved congestion window is less than the minimum
window, the latter dominates the throughput and skews the
throughput ratio fromβ. We elaborate on this below.

To study the effects of minimum congestion window over
throughput, we make a similar deduction as in Fig. 5. Let
W0 be the minimum window. When the loss rate is high,
congestion window is rarely greater than2 × W0, since it
encounters packet losses frequently. On every packet loss, as
W0 > W/2, the congestion window is reduced toW0. Fig. 8
shows the evolution of window size in this situation. We can
deriveW as:


L = W−W0

α

S = WL− (W−W0)L
2

S = 1
p

⇒W =
√

2α

p
+ W 2

0 .

In a TCP flow,α equals to 1, hence the throughput ratio
can be represented as:

B

BTCP
=

W

WTCP
=

√
2α + pW 2

0

2 + pW 2
0

We further divide this value byβ and denote the resulting
value asR. Ideally,R equals to 1 (i.e., throughput ratio equals
β).

R =
B/BTCP

β
=

√
2 + pW 2

0 /α

2 + pW 2
0

(8)

=

√
1 +

(1− α)W 2
0

2α/p + αW 2
0

(9)

Equation 8 tells us that when the size of congestion win-
dow is dominated by the minimum window size, smallerα
(therefore smallerβ) increasesR, i.e., the throughput of the
DMS flow becomes larger than expected. Similarly, largerα
(andβ) decreasesR, and the throughput of DMS flow is less
than expected. This equation explains the discrepancy between
B/BTCP curve and the expected line in Figure 7.

Equation 9 tells us that, for a DMS flow with a givenα
(α < 1), if loss ratep increases,R (R > 1) will increase, i.e.,
the actual throughput will be larger than the expected value,
and the difference will be enlarged.

Although mismatch of the throughput ratio exists and is
found to be inevitable in lossy environment, the method still
manage to control the throughput of a flow to reasonable level

of accuracy. Note that when the channel is highly lossy, media
streaming is generally not usable anyway. Thus the larger
mismatch in throughput ratio in this case is less of a concern
in our context.

We have described our method to control the throughput
of a DMS flow on a bottleneck. To apply it in DMSCC, we
need to find out where the bottlenecks are, so that we can
regulate the throughput of DMS flows on these bottlenecks.
We describe our approach to locate the congested bottlenecks
in the next section.

V. CONGESTIONLOCATION

An ideal solution to locate a congestion should work as
follow: (i) when a congestion causes a packet loss on a DMS
flow, the solution should be able to tell which link is congested,
so that DMS flows on the affected link can be regulated, (ii)
when the congestion subsides, the solution should sense it, so
that the regulation on the DMS flows previously imposed can
be lifted. Such ideal solution is difficult to achieve in a tree
topology: (i) there may be multiple, simultaneous congestion
on different links in the tree, and (ii) the same flow might
experience congestion on different links.

Rubenstein et al. [15] partially solved this problem for the
case with one shared bottleneck. Based on the observation that
a shared congestion produces highly correlated one-way delay
on flows, they compare the cross-correlation of two flows and
the auto-correlation of one of them. The shared bottleneck link
is identified as one where the cross-correlation is larger. For
details of Rubenstein’s technique, please refer to the original
paper [15].

Rubenstein’s method works well when each flow experi-
ences one congestion. To use the same correlation test when
a flow passes through multiple congested links is difficult. On
a shared bottleneck, the delay of the flows might contain too
much noise induced by other congested links. Solving the con-
gestion location problem completely in the distributed media
streaming scenario remains a difficult and open problem. In
this paper, we extend Rubenstein’s method to identify multiple
bottlenecks in the case where the delay values on the shared
bottleneck has limited interference from other congested links.

We useCorrTest(i,j)to denote the correlation test of Ruben-
stein applied on flowi and flowj. WhenCorrTest(i,j) returns
1, the two flows share a bottleneck; when it returns 0, no
shared bottleneck is detected. We apply the test over a window
of one-way delays recorded using probe packets sent together
with flows i andj. We use probes to maintain certain minimum
sampling frequency. Without probes, flowsi and j may not
send any packet for a long period due to congestion windows.
Probes are tiny packets that consume negligible bandwidth
(0.8KBps in our simulation). In the rest of this section, we
explore congestion location step by step, and then propose
our method.

First, consider a simple case where only one link is con-
gested. In this case, we can directly apply the correlation test.
The method is listed as Algorithm 1, The method is called
whenever a packet loss is detected on flowfi. It applies

correlation test on (the probes of)fi and other DMS flows
and adds DMS flows that are correlated withfi into a setCf .
The least dominant link that contains the set of flows inCf

is returned as the shared bottleneck.

1 OneBottleneck(fi)
INPUT: fi {the flow whose packet is lost}
Let F be the set of all flows andL be the set of all links;
Cf ← {fj |CorrTest(i, j) = 1,∀fj ∈ F};
Cl ← {l|l ⊇ Cf , l ∈ L};
OUTPUT: Link l ∈ Cl such thatlk ⊇ l,∀lk ∈ Cl;

The situation is more complex when two links are congested
simultaneously. For instance, in Fig 1, when two bottlenecks
S0-A and A-B coexist, one-way delay off0 is worsen by
both congestion, but one-way delay off1 is only affected by
congestion atA-B. When a packet is lost,CorrTest(0, 1) can
return either 1 or 0, depending on which bottleneck dominates
value of delay during that sampling period. When the queuing
delay on one bottleneck is temporally reduced by congestion
control of background traffic or packet dropping, the queuing
delay on the other bottleneck can remain high and continue
to dominate the end-to-end delay. So,CorrTest(0, 1) may
return 0 even whenA-B is congested due to domination of
bottleneckS0-A on the one-way delay off0, making it less
correlated withf1.

Whereas aCorrTest(0, 1) value of 0 does not necessary
imply no shared bottleneck, a value of 1, however, does
confirm the existence of shared congestion onf0 andf1. Our
observation is that, if the congestion is shared,CorrTest(0, 1)
may return 1 from time to time after every packet loss. Based
on this observation, we use a history-based method to update
the set of current bottlenecks. We denoteC as a set of current
congested links andH as a FIFO queue of previously detected
congested links due to the most recenth packet loss. When a
packet loss is detected onfi, H is updated as in Algorithm 2.

2 OnPacketLoss (fi)
INPUT: fi, H, h
l← OneBottleneck(fi);
if |H| = h then

dequeue(H); {phase out old bottleneck}
end if
enqueue(H, l); {phase in new bottleneck}
C ← {l|l in H};
OUTPUT: C, H

We can viewH as a history of bottleneck detection record.
On every packet loss, the oldest record inH is phased out.
If no other record inH refers to the same bottleneck, the
bottleneck is removed from the output. In other words, if a
link is not identified as a bottleneck during the most recenth
packet loss event, the congestion on the link is likely to have
subsided. The length of the queue,h, should be long enough

so thatH is able to buffer all current congested links. Ifh is
too small,H may phase out existing bottlenecks and update
C incorrectly. On the other hand,h needs not be too large,
as the probability of having many simultaneous bottlenecks
is small. Our experiments on a four-sender session show that
value ofh beyond 8 produces little improvement in accuracy
of C, so we useh = 8 in our protocol.

After C is updated by Algorithm 2,C contains the set of
current bottlenecks. For instance, in the previous example with
simultaneous congestion on linkS0-A and A-B, Algorithm
2 may returnC ={S0-A, A-B} or {S0-A, A-B, S1-A}.
In the second set,S1-A is a false detection. To understand
this, imagine that the bottleneckA-B causes a packet loss on
f1. When performingCorrTest(1, 0), the result can be 0 as
we have analyzed. Therefore, Algorithm 1 returnsS1-A as a
bottleneck. But, fortunately, the false detection does not affect
the correctness of DMSCC, as we shall see in the next section.

VI. CONGESTIONCONTROL

A. Updating the Increasing Factors

After identifying the set of bottlenecks, the next step is
to adjust the increasing factors of the DMS flows on the
bottlenecks so that their combined throughput is TCP-friendly.
GivenC, the set of current bottlenecks, Algorithm 3 constructs
another setC ′ containing the set of bottlenecks that are not
dominated by any other bottlenecks inC. For each of the
bottlenecks inC ′, the algorithm sets the increasing factor
of the DMS flows that pass through it to1/n2 according
to Equation 7, wheren is the number of DMS flows going
through a bottleneck.

3 UpdateAlpha (C)
INPUT: C
C ′ ← {l| 6 ∃li ∈ C : li ⊃ l, l ∈ C};
for all l ∈ C ′ do

n← |{fi}|, fi ∈ l; {number of DMS flows}
αi ← 1/n2, ∀fi : fi ∈ l; {increasing factor}

end for

To understand the reason why DMS flows are adjusted
according to the dominant bottlenecks, let us consider the
previous example of simultaneous congestion onS0-A and
A-B in Fig. 1. Suppose that, after a packet loss, Algorithm
2 returnsC ={S0-A, A-B, S1-A}. Link A-B dominates the
other two links. Congestion onA-B requires the aggregate of
f0 and f1 to be TCP-friendly. According to Equation 7,α0

andα1 should be set to1/4. Congestion on the other two links
requires each off0 andf1 to be TCP-friendly and thus both
α0 and α1 should be set to 1. Setting the increasing factor
to 1, however, makes the flow aggregate onA-B unfriendly.
Considering the goal of DMSCC (Equation 3),αi should be
set conservatively to1/4. In short, the dominant bottleneck
restricts the aggresiveness of the DMS flows, and therefore
the increasing factor should be set according to the dominant
links. This property also allows Algorithm 2 to return false

bottlenecks (e.g.S1-A) that are dominated by the shared
bottleneck (e.g.,A-B). Such false bottlenecks do not affect
the correctness of DMSCC.

B. Bottleneck Recovery

The above mentioned algorithms run whenever a packet loss
is detected. When congestion subsides and there is no more
packet loss, we need to resetαi to 1 so that the network
bandwidth can be fully utilized. Having no packet loss to
trigger the reset ofαi, we adopt a timer-based method. A timer
is refreshed when packet loss is detected. If no packet loss is
detected withint seconds, the increasing factors of all DMS
flows are reset to 1. This method ensures that after congestion
disappears, in at mostt seconds,αs are reset to allow DMS
flow to fully utilize available bandwidth. But if the bottleneck
is still there when timer expires, resetting allα will make
the flow aggregate unfriendly to TCP. To prevent such over
aggresiveness of DMS flows, we (i) sett conservatively long
(15 seconds in our simulation), and (ii) retain the value ofC
andH while resettingαi. The latter helps Algorithm 2 to set
αi back to the right value immediately if packet loss reappears.

VII. S IMULATION AND DISCUSSION

We constructed Simulation 2 in ns-2.28 to validate our
design. Fig. 9 shows a topology with four sendersS0, S1, S2,
and S3, and one receiverR. DMS flows converge on the
way to R in the order ofS0, S1, S2, andS3. Besidesfi, the
senders also send CBR probes to the receiver using UDP, at 40
bytes per packet, 20 packets per seconds. The sample length
for one-way delay records is 20 (one second in length) for
correlation computation; according to Rubenstein et al. [15]
this length gives nearly 90% of accuracy in correlation test.
All links are configured with bandwidth of 5Mbps, delay of
20ms, and default RED setting in ns-2.28. Background traffic
may congest linkl0, l1, l2 or l3 to produce bottleneck. The
background traffic consists of 20 TCP Reno flows on every
bottleneck. The RTTs of background TCP flows are set to
120ms.

C D E

S2 0SS1S3

R A B

2 1 0

3

Fig. 9. Topology of Simulation 2.

The simulation aims to show that DMSCC leads to task-
level TCP friendliness, achieving our goal stated at the end
of Section II. When background traffic produces congestion
on a link, the throughput offi and theRTTi are measured
to calculate B×RTT of the flow aggregate on the link. The
average B×RTT of the TCP background flows is also cal-
culated. If B×RTT of the flow aggregate is less than or
equal to the average of a TCP flow, then task-level TCP-
friendliness (Equation 3) is achieved. Fig. 10 shows B×RTT of
the TCP flows (average) and the flow aggregate; each subgraph
corresponds to one link.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 50 100 150 200 250 300 350 400

B
*R

T
T

 (
pa

ck
et

)

Time (s)

Link 0, B*RTT: f0 vs. TCP

DMS
TCP

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 50 100 150 200 250 300 350 400

B
*R

T
T

 (
pa

ck
et

)

Time (s)

Link 1, B*RTT: (f0, f1) vs. TCP

DMS
TCP

 0
 10
 20
 30
 40
 50
 60

 0 50 100 150 200 250 300 350 400

B
*R

T
T

 (
pa

ck
et

)

Time (s)

Link 2, B*RTT: (f0, f1, f2) vs. TCP

DMS
TCP

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 50 100 150 200 250 300 350 400

B
*R

T
T

 (
pa

ck
et

)

Time (s)

Link 3, B*RTT (f0, f1, f2, f3) vs. TCP

DMS
TCP

Fig. 10. B×RTT of Aggregate DMS flows and TCP Flow on Each Links.

To show the ability of DMSCC to identify the dominant
bottleneck, we generate background traffic such that Link 0
is congested during time 0 - 100s and Link 2 is congested
during time 50 - 150s. The first subgraph in Fig. 10 shows that
during time 0 - 50s, B×RTT of the flow aggregate on Link 0
roughly equals to a TCP flow; and the third subgraph shows
that during time 100 - 150s, B×RTT of the flow aggregate on
Link 2 is also similar to a TCP flow. This confirms that task-
level TCP-friendliness is achieved when only one congestion
exists in the topology. During time 50 - 100s, when both Link
0 and Link 2 are congested, we find that B×RTT of the flow
aggregate on Link 2 equals to a TCP flow, and that B×RTT
of the flow aggregate on Link 0 is less than a TCP flow. This
result demonstrates that DMSCC is able to identify that Link
2 dominates Link 0, and therefore sets the increasing factor
accordingly to achieve task-level TCP-friendliness in the case
of simultaneous congestion.

To show that DMSCC is able to utilize bandwidth fully
when congestion disappears, Link 1 and Link 3 are congested
during time 150 - 200s and 250 - 350s respectively. The
streaming session completes at time 400s. In the second
subgraph (Link 1), at 200s, TCP flows disappear. The value
of B×RTT of the flow aggregate increases quickly to the

maximum playback rate of the media, demonstrating that the
available bandwidth is fully utilized when there is no conges-
tion. We can also see in the last subgraph (Link 3), starting
from time 350s, B×RTT of the flow aggregate increases slowly
at first and increases faster later. The small slope is due to the
small increasing factor (αi = 1/16), which is determined by
the congestion on Link 3. But when packet loss is not seen for
a period of 15 sec (value oft in this simulation), it is likely
that the congestion has disappeared. DMSCC therefore setsαi

to 1, allowing throughput to increase quickly, achieving better
bandwidth utilization.

A. The sensitivity ofh

When presenting Algorithm 2, we mentioned that the length
of congestion historyh controls the update frequency ofC,
and, therefore, affects the accuracy ofα. The value ofh is em-
pirically set to 8 in the simulation. We changedh from 1 to 20
and ran the above simulation 50 times each. On every packet
loss,C (the detected bottlenecks) is compared with the actual
bottlenecks, and the detected dominant bottlenecks (which
affects the value ofα) are compared with the real dominant
bottlenecks. The accuracy is defined as the number of correctly
detected bottlenecks over the number of bottlenecks. Fig. 11
shows the average accuracy ofC and dominant bottlenecks,
when h changes. The accuracy of dominant bottleneck is
higher than that ofC, indicating that even if false detection
on bottlenecks exists, the dominant bottleneck could still be
correctly detected. After the value ofh exceeds 8, both curves
increase slower: largerh contributes less to the accuracy ofα.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

A
cc

ur
ac

y

h: length of congestion history

C
Dominant Bottlenecks

Fig. 11. Effects ofh on Accuracy ofC and Dominant Bottlenecks.

VIII. R ELATED WORK

Congestion control is a well studied problem in unicast [6].
We believe, however, that flow-level TCP-friendliness is not
sufficient for multi-flow applications (Section II). Congestion
control has also been studied in the context of multicast. Even
though the topology of distributed media streaming resembles
that of multicast, the research focus in congestion control is
different: we focus on achieving task-level TCP-friendliness,
while research on multicast congestion control [16] focuses on
scalability as well as flow-level TCP-friendliness. Congestion
control in multi-path streaming (e.g., [17]) also shares a similar

topology with distributed media streaming, but their goal is to
achieve flow-level friendliness.

Our work is more related to the study on aggregate con-
gestion control. Aggregate congestion control pursues the
fairness of a group of flows. Congestion Manager (CM) [7]
uses one AIMD congestion window adjustment loop for the
flow aggregate to achieve a fair combined throughput. CP [9]
adopts equation-based rate adaptation [13] with packets sub-
sampling to achieve fair bandwidth share. MPAT [8] keeps
multiple bandwidth estimation loops and allows the application
to allocate bandwidth to different flows while ensuring that the
total throughput is fair. Hacker et al. study parallel TCP flows
[10] and mimic TCP flows with longer RTT, so that flows
in the aggregate consume less bandwidth than a TCP flow,
making the aggregate TCP-friendly.

Aggregate congestion control is relatively new, and re-
searchers still have different views on the definition of TCP-
friendliness of flow aggregate. Some believe that the flow
aggregate should be fair to one TCP flow, so that software
that uses concurrent downloading do not gain advantage by
establishing multiple flows, and therefore does not encourage
abuse using multiple flows [10] Others allow an aggregate
of n flows to have equal bandwidth share to that ofn TCP
flows [8], [9]. Their argument is that, since traditional TCP-
friendliness is between flows, grantingn flows a throughput
equivalent ton TCP flows does not breach TCP-friendliness.

Regardless of the differences, these studies apply congestion
control on a fixed set of flows. In distributed media streaming,
congestion control needs to be applied on different sets of
flows on different links. A new congestion control method is
therefore required.

IX. CONCLUSION

In this paper, we introduce the problem of congestion con-
trol in DMS system. It differs from previous congestion control
problems as it involves multiple flows traversing through
different paths. A better definition of TCP-friendliness is
needed to further explore the problem. We therefore introduce
the notion of task-level TCP-friendliness in this paper. We
then formulate a criterion for task-level fairness in the context
of distributed media streaming. We divide the problem of
congestion control in distributed media streaming into two sub-
problems. The first is how to locate congestion in a reverse
tree topology. The second is how to control the throughput
of a DMS flow using AIMD loop such that the combined
throughput on the bottleneck is TCP-friendly.

This paper is the first one to address the problem of con-
gestion control in distributed media streaming. The concept of
task-level TCP-friendliness gives a different perspective to the
meaning of TCP-friendliness, and it is usable in other scenario
such as peer-to-peer file sharing. Our method to control the
aggregate throughput of DMS flows might be useful in other
context as well, including controlling the throughput of parallel
TCP connections.

DMSCC has several limitations. Our throughput control
algorithm is based on Mathis equation, and therefore does not

work accurately in all network conditions (e.g., when loss is
frequent and bursty). Our congestion location algorithm relies
on Rubenstein’s method. Identifying location of congestion
in multiple congestions scenario with high delay inteference
remains a challenging problem. Our future work aims to
address these limitations.

X. ACKNOWLEDGMENTS

We would like to thank Xiuchao Wu, Wei Cheng, Eric Liu
and the anonymous reviewers for their precious comments.

REFERENCES

[1] T. Nguyen and A. Zahkor, “Distributed Video Streaming over the
Internet,” inProceedings of SPIE Conference on Multimedia Computing
and Networking, San Jose, California, USA, January 2002.

[2] J. Apostolopoulos, T. Wong, W. Tan, and S. Wee, “On Multiple
Description Streaming with Content Delivery Networks,” inProceedings
of IEEE INFOCOM’02, New York, NY, June 2002.

[3] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “PROMISE:
Peer-to-Peer Media Stream-ing Using Collectcast,” inProceedings of
ACM International Conference on Multimedia (MM’03), Berkeley, Cal-
ifornia, USA, November 2003.

[4] R. Rajaie and A. Ortega, “PALS: Peer-to-Peer Adaptive Layered Stream-
ing,” in Proceedings of the 13th International Workshop on Network and
Operating System Support for Digital Audio and Video (NOSSDAV),
Monterey, California, USA, June 2003.

[5] L. Ma and W. T. Ooi, “Retransmission in Distributed Media Streaming,”
in Proceedings of the 15th International Workshop on Network and
Operating System Support for Digital Audio and Video (NOSSDAV),
Stevenson, Washington, USA, June 2005.

[6] J. Widmer, R. Denda, and M. Mauve, “A Survey on TCP-Friendly
Congestion Control,” inIEEE Network Magazine, Special Issue on
Control of Best Effort Traffic, vol. 15, no. 3, May 2001.

[7] H. Balakrishnan, H. Rahul, and S. Seshan, “An Integrated Congestion
Management Architecture for Internet Hosts,” inACM SIGCOMM,
Cambridge, MA, September 1999.

[8] M. Singh, P. Pradhan, and P. Francis, “MPAT: Aggregate TCP Conges-
tion Management as a Building Block for Internet QoS,” inProceedings
of IEEE International Conference on Network Protocols (ICNP’04),
Berlin, Germeny, October 2004.

[9] D. E. Ott, T. Sparks, and K. Mayer-Patel, “Aggregate Congestion
Control for Distributed Multimedia Applications,” inProceedings of
IEEE INFOCOM’04, Hong Kong, China, March 2004.

[10] T. J. Hacker, B. D. Noble, and B. D. Athey, “Improving Throughput
and Maintaining Fairness Using Parallel TCP,” inProceedings of IEEE
INFOCOM’04, Hong Kong, China, March 2004.

[11] S. Floyd and V. Jacobson, “Traffic Phase Effects in Packet-Switched
Gateways,”ACM SIGCOMM Computer Communication Review, vol. 21,
no. 2, pp. 26–42, April 1991.

[12] G. Marfia, C. Palazzi, G. Pau, M. Gerla, M. Sanadidi, and M. Roccetti,
“TCP-Libra: Exploring RTT Fairness for TCP,”Accepted in IEEE
Journal on Selected Areas in Communications, Special Issue on Non
Linear Optimization of Communication Systems, 2006.

[13] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-Based
Congestion Control for Unicast Applications,” inACM SIGCOMM’00,
Stockholm, Sweden, August 2000.

[14] M. Mathis, J. Semke, and J. Mahdavi, “The Macroscopic Behavior of the
TCP Congestion Avoidance Algorithm,” inComputer Communication
Review, vol. 27, July 1997.

[15] D. Rubenstein, J. Kurose, and D. Towsley, “Detecting Shared Congestion
of Flows Via End-to-end Measurement,” inIEEE/ACM Transactions on
Networking, vol. 10, June 2002.

[16] A. Matrawy and I. Lambadaris, “A Survey of Congestion Control
Schemes for Multicast Video Applications,” inIEEE Communications
Surveys & Tutorials, vol. 5, no. 2, Fourth Quater, 2003.

[17] H. Han, S. Shakkottai, C. Hollot, R. Srikant, and D. Towsley, “Overlay
TCP for Multi-Path Routing and Congestion Control,” inENS-INRIA
ARC-TCP Workshop, Paris, France, November 2003.

