Congestion Control in Distributed Media Streaming

Lin Ma Wei Tsang Ooi
School of Computing School of Computing
National University of Singapore National University of Singapore
malin@comp.nus.edu.sg ooiwt@comp.nus.edu.sg

Abstract—Distributed media streaming, which uses multiple peers would be able to, or willing to, dedicate this amount
senders to collaboratively and simultaneously stream media of bandwidth to serve another peer. A more likely situation

content to a receiver, poses new challenges in congestion controlis o say four peers, each contributing 32Kbps, to serve the
Such approach establishes multiple flows within a session. Smcerequesting peer

conventional congestion control only aims to make each of these < . .
flows TCP-friendly, selfish users can increase the number of Streaming from multiple senders simultaneously poses
flows to grab a larger share of the bandwidth, introducing many new research challenges. Existing work in the literature
more congestion and degrading the overall network performance. has studied issues such as rate allocation [1], allocation of
To address this issue, we propose the idea of task-level TCP-packats [4], and selection of senders [3]. The existence of
friendliness, which enforces TCP-friendliness upon a set of flows . ; .)

belonging to a task instead of upon individual flow. We design multiple senders_ has erUth a new d_lmenS|on to classic
DMSCC, a congestion control scheme, to achieve task-levelProblems in media streaming as well. For instance, we recently
TCP-friendliness in distributed media streaming. By observing studied error recovery via retransmission of loss packets in the
shared congestion, DMSCC identifies the set of flows experiencing context of distributed media streaming [5]. In this paper, we

congestion and dynamically adjusts those flows such that their j,egtigate another fundamental issue in media streaming —
combined throughput is TCP-friendly. To achieve this goal, - -
TCP-friendly congestion control.

DMSCC addresses two issues: (i) given @& (6 < 1), how to) - X . . .
control a flow using AIMD such that it consumes j3-times the Congestion control in media streaming with one sender is

throughput of a TCP flow, and (ii) how to identify the set of an important and well studied problem (e.g., see the survey
flows that share a bottleneck. In our simulations, DMSCC can py Widmer et al. [6] and references therein). In distributed
effectively regulate the throughput of flows on every bottleneck, megia streaming, however, the problem of congestion control
resulting in a TCP-friendly combined throughput.
is more complicated than the single sender scenario.

A distributed media streaming session contains multiple
media flows (calledMS flow3 from different senders. These

The termdistributed media streamingoined by Nguyen flows may or may not pass through the same bottleneck.
and Zakhor [1], refers to a new model in media streaming Bnsuring TCP-friendliness of each DMS flow is not sufficient:
which a client receives a media stream from multiple servetiseir combined throughput is larger than the other TCP flows
simultaneously. This new framework can be applied to sevetal the same bottleneck. This unfairness encourages abuse by
settings. In media-on-demand services, media content cansefish users — by increasing the number of concurrent flows,
mirrored by different CDN servers, and a client can streamuser can grab larger bandwidth share at the bottlenecks. We
concurrently from these servers. In peer-to-peer file sharinged a different type of congestion control — one that controls
applications, a receiver can stream from multiple peers thk aggregatethroughput of the DMS flows such that their
seed the same media file. combined throughput is TCP-friendly. We call such aggregate

There are two main advantages in streaming from multipt®ngestion control atask-level congestion control
senders concurrently. First, it improves robustness. By exploit-Aggregate congestion control methods exist in the literature
ing path-diversity among the senders, the receiver experienfgs[10], but do not apply to distributed media streaming. In
average loss and congestion behavior of the paths. Carefigtributed media streaming, the flows from multiple senders
selection of senders and allocation of packets to differembnverge on their way to the receiver, forming a reverse tree
senders lead to significant reduction in bursty loss [2]. Ifsee Fig. 1 for an example). The DMS flows only share
peer-to-peer settings with transient peers, the receiver can gilits of their links, so they may experience different delay
receive and play parts of the media stream when one of thed congestion. The existing methods of aggregate congestion
sending peer fails [3]. control, however, assume that the flows traverse through the

Second, distributed media streaming allows aggregation sfme path and share the same bottleneck.
bandwidth among peers. Most home computers have asymWe now illustrate the problem of congestion control in
metric Internet connections, where the down-link data rate dsstributed media streaming through an example (see Fig. 1).
higher than the up-link data rate. Such asymmetry limits the host R requests for some media content from sendgrs
ability of a peer to stream to another peer at full quality. FADMS flows (f;) from the senders travel through different IP-
instance, a peer might request for a 128Kbps audio, but fésvel paths and join each other at routersand B. We term

I. INTRODUCTION

locates congestion in a reverse tree. Section VI shows how
DMSCC combines congestion location and throughput control
to achieve TCP-friendliness at the task level. Section VII
presents simulation results, which validate our design. Some
related work is presented in Section VIII. Section IX concludes

Fig. 1. Reverse Tree Topology in Distributed Media Streaming. the paper.

Il. PROBLEM FORMULATION

routers like A and B as aggregation pointsThroughout this A Task-level TCP-Friendliness
paper, we use the terlimk to refer to the set of physical links The term TCP-friendly is commonly used to describe a
between a sender and an aggregation point (§g4), two flow whose arrival rate at steady state is no more than the
aggregation points (e.g4-B), or an aggregation point and thearrival rate of a TCP flow under the same network condition
receiver (e.g.B-R). The set of DMS flows on a link is unique. (such as packet loss rate and round trip time). We refer to
Determining the set of DMS flows on a link is important, asongestion control schemes that aim to produce TCP-friendly
it is the element upon which TCP-friendliness is enforceflows asflow-level congestion controlSeveral work in the
Section Il elaborates on this point. literature extends the notion of TCP-friendliness to coarser
In the reverse tree, congestion can occur on any link. gfanularity. Hacker et al. [10] consider parallel TCP flows and
it occurs onR-B, the aggregate ofy, fi1 and f» should be propose an approach where multiple parallel TCP flows in
friendly to TCP flows on linkR-B. But if the congestion one download session are friendly to a single (unmodified)
occurs onA-B, only the aggregate of; and f, needs to be TCP flow. We call this approach asisk-level congestion
friendly to TCP flows on linkA-B. Flow f,, on the other control. Finally, congestion manager [7] seeks fairness of flow
hand, can consume as much bandwidth as it wants. Similadggregate between a pair of hosts. We refer to this approach
if the congestion occurs on linky-A, only f, needs to be ashost-level congestion control
TCP-friendly. We believe that task-level congestion control is appropriate
The above example shows the difficulty in congestiofor Internet applications, including distributed media stream-
control of distributed media streaming — the set of DMS flowifig. Congestion control pursues fair sharing of bandwidth at a
to be controlled depends on where congestion appears. [®itleneck, and fairness is meaningful only when the entity of
the solution needs to first identify the flows sharing the sanb@ndwidth consumption is identified. Such entity should have
congestion, and then regulate them accordingly. two properties: (i) An entity consumes bandwidth to complete
This paper proposes a complete framework called DMSGCwell-defined task for an end user; (ii) Creating more entities
to achieve the above tasks. DMSCC tracks packet losseglaes not make completing the task better or faster. The second
the receiver as an indication of congestion and identifies theoperty is crucial in removing the motivation to abuse the
location of congestion by correlating the one-way delays beetwork using multiple entities.
tween sender/receiver pairs. Additive increase, multiplicative For example, an FTP file downloading session is an entity
decrease (AIMD) algorithm, with carefully adjusted increasing the task is well defined, and downloading another file does
factor, regulates the throughput of the DMS flows on ®BoOt accelerate the completion of the current task. In this
bottleneck and produces a TCP-friendly flow aggregate. single-flow task, task-level congestion control is equivalent
there arek DMS flows on a bottleneck, they are regulateto flow-level congestion control. On the other hand, some
such that, in ideal situation, each flow consunigs of the applications (e.g., FlashGgtallow users to download the
bandwidth of a TCP flow in a comparable network conditiorgame file with multiple flows concurrently. In this case, the
As a result, the flow aggregate consumes as much as one T@#ti-flow downloading session is one entity — (i) the task
flow and is friendly to TCP. We use only TCP Reno in thigs still downloading of a file, and (ii) creating another multi-
paper, but the scheme is applicable to other versions of TdPw session for the same file does not speed up the current
When the throughput of the each flow is regulated, tr#ownloading. Task-level congestion control takes the whole
receiver needs to decide which packets each sender shalfnloading task as the entity of bandwidth consumption and
send to conform to the new throughput constraint. This akeeps the total throughput friendly to TCP. Contrarily, flow-
other issues (e.g., what to retransmit, media coding methd@gel congestion control only requires TCP-friendliness of
used) are orthogonal to congestion control and are beyond theividual flow. Therefore, the task consumes more bandwidth
scope of this paper. than a TCP flow, gaining advantage over other single-flow
The rest of the paper is organized as follows. In Setasks. Without task-level TCP-friendliness, selfish users can
tion Il, we make a case for task-level TCP-friendliness ari¢se more flows to grab more bandwidth on bottlenecks.
formulate the co.ngest_ion.co_ntrol problgm to ac_hieve ta;g—_ The Criterion for Task-Level TCP-Friendliness
level TCP-friendliness in distributed media streaming. Section
Il describes the framework of DMSCC and presents our
assumptions. Section IV presents the methods to contF&erI'
throughput of DMS flows. Section V describes how DMSCC www.flashget.com

We now formally describe the goal of task-level congestion

Equation 2 provides the criterion for task-level TCP-
friendliness on a given bottleneckormally, a task is TCP-
friendly if the combined x RT'T of its flows is equal to that

of a TCP flow on the same bottleneck

3) The Goal of DMSCCWe now apply Equation 2 to the
problem of congestion control in distributed media streaming.
Consider a distributed media streaming session as shown
in Fig. 1. As bottlenecks form on different links, the flow
aggregates on them contain different sets of DMS flows. The
criterion of task-level TCP-friendliness for distributed media

026 ﬂ%W’tt?S sh;wjg '2 Ftlr? tz(al)(' hThe fI(I)y‘vandﬂa TCt:P lIIcIJW Ftreaming should consider multiple bottleneck locations with
share bottleneck-B. As the task has only one flow, task-level. . ' oie of flows.

TCP-friendliness is equivalent to flow-level TCP-friendliness. Let I; be a link, and a TCP flow passing through be

A_ssurmng that th? RTT. of both flqws are the same,. TCPT_CPj. As the set of DMS flows flowing through each link is
friendliness is achieved if the following equation holds:

distinct, we can represent a link using its set of DMS flows.
We use set notations to represent relationships among the flows
and the links. The notatiorf; € I; means that flowf; passes
whereB and Brc p are the throughput of and the TCP flow, ,rqygh linkl;; andl; D I; means that the flows oh are a
respectively. proper superset of flows a, or /; dominates; for short.
Consider a more general case where the two flows expepjsyriputed media streaming is task-level TCP-friendly

rience different RTT. TCP’s congestion control algorithm i§vhen,on any bottleneck;, the following inequality holds:
biased against flows with larger RTT [11]. Despite efforts to

correct such unfairness (e.g., TCP Libra [12]), this unfairness Z (bs x rtt;) < Brep, X RTTrep, (3)
persists in current TCP implementations. On the other hand, fi€l;

BxRTT of the two TCP flows remain the same if they
experience the same loss rate. For flgvand the TCP flow i .
in Fig. 2(a), it is reasonable to assume a similar loss rafesPerience multiple bottlenecks.
A-B is the only bottleneck on their paths, and active queue 1
management, such as RED, tries to drop packets from both
flows in a fair manner. Therefore, under different RTT, TCP-
friendliness is ensured by: Reoeiver

(a) a single flow task (b) a two—flow task

Fig. 2. A Single-Flow Task and a Two-Flow Task.

1) A Single-Flow TaskFirst, let's consider a task with only

B = Brcp

The above criterion is an inequality, as a DMS flow may

. M ODEL AND ASSUMPTIONS

DMS flows
- AIMD Sender 0
(1) DMS Increasing
Congestion -~~~ --=-= AIMD Sender 1
control | _ Factors

whereRTT andRTTrcp are the RTT of flowf and the TCP -

flow, respectively.
Fig. 3. A Three-Sender Session.

B x RTT = BTCP X RTTTCP

i

2) A Multi-Flow Task: We now extend Equation 1 to handle
a multi-flow task sharing the same bottleneck with other TCP
flows.

Consider a multi-flow task (e.g., Fig. 2(b)). The two flows Our congestion control scheme, DMSCC, is designed to
fo and f; share bottlenecki-B with a TCP flow. Task-level ensure that Inequality 3 is satisfied on any congested link
TCP-friendliness requires the flow aggregate to be friendly io a distributed media session. DMSCC is a receiver-driven
a TCP flow. If we treat the flow aggregate as a single floyrotocol — the receiver pulls the data from the senders by
task-level TCP-friendliness is the same as flow-level TCBending requests with sequence numbers, and the senders reply
friendliness. Therefore, Equation 1 holds; except thatis with data. The receiver therefore controls the sending rate
now the combined throughput ¢f, and RTT is the average of each senders and is the natural place to implement the
round trip time of f;: congestion control protocol.

1 Fig. 3 shows the relationship between DMSCC and the
RIT =& > (bi x rtt;) DMS flows in a distributed media streaming session with three
fi€0 senders. There are three connections between the receiver and

Whereo iS the set Of ﬂOWS in the ﬂOW aggregafg,and T‘ttl the Senders. At the receiver, eaCh COI‘lneCtion iS Controlled by
are the throughput and round tnp time of ﬂQW By rep|acing an AIMD |00p similar to TCP. The increasing factors of these

B and RTT, we extend Equation 1 to consider multi-flonAIMD loops are controlled by the DMSCC module in the
tasks: receiver. We will show in Section IV how the increasing factors

of individual DMS flows are determined. But first, in this
> (b x rtt;) = Brop x RTTrop (2) section, we introduce the framework of DMSCC and present
fi€0 our assumptions in the design of our protocol.

A. AIMD versus TFRC IV. THROUGHPUTCONTROL

AIMD and equation-based method [13] are two common In this section, we describe how to control the throughput
methods for regulating the throughput of a non-TCP flow. We&f a DMS flow using AIMD algorithm such that it achieves
use AIMD method to regulate DMS flows in DMSCC for thea fixed fraction of the throughput of a TCP flow. In order for
following reason. an aggregate of DMS flows to be fair to a single TCP flow,

Equation-based methods rely on long term observation BMSCC tries to control the throughput of each of the DMS
network parameters such as loss rate and smoothed Rfldw to bel/k of the throughput of a conformant TCP flow.
These parameters are used in an equation to estimate th@/e derived our method from the well-known Mathis Equa-
long term throughput that is fair to TCP. This long terntion [14]. Mathis et al. assume that packet losses are distributed
observation is meaningful only in cases where flows shaire such a way that, if the loss rate js then for everyl/p
the same path, and bottlenecks affect the same set of flopackets, one packet is lost. Fig. 5 shows the variation of
In distributed media streaming, the congestion may affeepngestion window in such an ideal lossy chanfiéldenotes
different set of DMS flows at different bottlenecks. Thushe size of the congestion window (in number of packets)
a long term observation might become outdated and fail hefore packet loss. Every packet loss reduces the congestion
capture the congestion on a particular bottleneck. On the othgndow to /2. The congestion window then increasesdy
hand, AIMD methods respond quickly to a packet loss amhckets for every RTT, until the next packet loss occurs.
adapt swiftly to congestion on new bottleneck. Although it

is argued that AIMD produces saw-tooth like throughput, in §

non-interactive streaming, as in the case of distributed media %Tg‘

streaming, buffering can be used to smooth the playback at %g

the receiver. g NNNNN

L =W/2a Time (RTT)

B. DMSCC

The framework of DMSCC is shown in Fig. 4. DMSCC has Fig. 5. Evolution of Congestion Window Under Periodic Loss.
two relatively independent functionalities: throughput control)))))
(Section V) and congestion location (Section V). These two The variablex is theincreasing factor If we let the period
functionalities cooperate to perform task-level congestion cofi? RTT) between every two packet losses bethen

trol on DMS flows. When congestion occurs, the congestion I_ W/2
location module identifies the bottleneck. The throughput a
control module then updates the increasing factor of AIMDhe total number of packets received during that period can
loops of each DMS flow on that bottleneck. be calculated as the size of the shaded &tea
o R 3 W 3W?
f ; o ot s o e v
f Algorithm } From the assumption of ideal packet loss pattern, we know
(" Congestion | [Throughput } that the number of packets between two packet losségpis
! Location Control ! that iS,
,,,,,,,,,,,,,,,,,,,,,, / 1
S=-. 5
(DMS Flows) P ©®)

From Equation 4 and 5, we obtain:

W:\/ax,/é.
3p

C. Assumptions The throughput of a flow is proportional to the average size
Before proceeding to descriptions of DMSCC, we firgyt congestion window, which is:

clarify our assumptions. First, we assume that the paths among 3 3 3

the receiver and senders form a reverse tree rooted at the W=-W=Vax——. (6)

receiver, and this topology is known by the receiver. Second, 4 4V 3p

we assume that DMS flows on the same bottleneck link Equation 6 provides us a way to change the throughput by

experience similar loss rate. This assumption is reasonafusting its increasing factar. If we want a DMS flow to

when active queue management schemes such as RED is u3@¥e times the throughput of a TCP flow, whose increasing
Third, we focus on links with high multiplexing factors, wherd@ctor is 1, then

Fig. 4. Framework of DMSCC

loss rate is decided by the background traffic rather than the W =8 x Wrep

DMS flows. Lastly, we can reasonably assume that the number 3 /8 3 /3

of senders in a DMS session is typically small (less than 10). FVax /3— =[x 1”37
p P

Thus, scaling DMSCC to large humber of senders is not an

issue. =a =/ (7)

Equation 7 tells us that, for the throughput of a DMS flow
to be 3 times of a conformant TCP flow, we need to set its
increasing factor to 32. We tested this observation in the
following simulation (Simulation 1) using ns-2.28.

@ 10Mbps
O
ey

Congestion Window
(packets)

— — —

@ L=(wj\7v(9/ a Time (RTT)

Fig. 8. Effects of Minimum Congestion Windows.

10Mbps
50ms
10Mbps J—
50ms U : O :

O When the halved congestion window is less than the minimum

@ e IOMZ'Z;S A i window, the latter dominates the throughput and skews the
O ToP St ToP Recavare O throughput ratio froms. We glgborate on th|§ beloyv.
To study the effects of minimum congestion window over

throughput, we make a similar deduction as in Fig. 5. Let
Wy be the minimum window. When the loss rate is high,

The topology of the simulation is shown in Fig. 6. Thé&ongestion window is rarely greater thanx Wy, since it
bottleneck between noded and B has a bandwidth of €ncounters packet losses frequently. On every packet loss, as
10Mbps and a delay of 50ms. Nodeis a RED gateway using Vo > W/2, the congestion window is reduced . Fig. 8
ns-2.28 default settirig Fifty TCP Reno flows pass throughSho,WS the evolution of window size in this situation. We can
the bottleneck and produce congestion. A DMS flow is seffrive W as:
from S to R. Its increasing factorx changes based on the
value of 5 according to Equation 7. We increasgdrom 0.1 L -
to 1.4 (note that in DMSCC, we are interested only3ir< 1) S —WI — w

S =1
p

Fig. 6. Topology of Simulation 1.

and observed the ratio of the throughput of the DMS flow to
the average throughput of TCP flows. For each valug,afie

repeated the simulation 20 times and computed the average T — 20 W2
ratio. V » 0

In a TCP flow,a equals to 1, hence the throughput ratio
can be represented as:

1.6

B/Brcp

1.4 + R
S 10l g B W 204 pW§
5 '1] W Brep Wrep 2+ pWg
§_ 08 =L Rl We further divide this value by3 and denote the resulting
§) 06 | value asR. Ideally, R equals to 1 (i.e., throughput ratio equals
o - B).
£ 04}

L gl ’ | 2
02 2~ Confidence Interval: 95% R = B/Brcp _ |2 +pWy' /e 8)
0 : I} 2+ pW¢

0 0.2 04 06 0.8 1 1.2 14 5
Expected Throughput Ratio, =1+ (I - a)Ws 9)
2a/p + oW

Equation 8 tells us that when the size of congestion win-
. - I dow is dominated by the minimum window size, smalter
th The ;eSltm |i,_plotte_cli_r:n Fig. 7 The;hx-ang, IS Lhe expdectid (therefore smallefs) increasesR, i.e., the throughput of the
rt(t).UQ pl: ra2|olé(_}). - ehy-athlst c rz; 100 setrr\]/e V\tl elrbMS flow becomes larger than expected. Similarly, larger
settinga to 5°. Fig. 7 shows that ag' changes, the actua (and) decreasest, and the throughput of DMS flow is less

EH:OUghplljtt rgtm |strc]:los?f tﬁtlwhenﬁ re}nlges ftr_om $'2 to 1.0. than expected. This equation explains the discrepancy between
€ resuft snows the eliectiveness of equation /. B/Brcp curve and the expected line in Figure 7.

M'S(;n.at?:h be7t\;veen the ac':juial throu_lg_jrr:_put ratio ﬁ:‘* 03' Equation 9 tells us that, for a DMS flow with a given
served in Fig. 7 for smalf and larges. This mismatch is due kﬁa < 1), if loss ratep increasesR (R > 1) will increase, i.e.,

o bursty packet losses in the simulation, Whlch violates t fe actual throughput will be larger than the expected value,
assumption that packet losses are evenly distributed. Duri the difference will be enlarged

the bursty loss period, the congestion window becomes smal.Although mismatch of the throughput ratio exists and is

2queue length = 50, mithresh = 5, masthresh = 15, gentle-enabled, andfOUNd t0 be inevitable in lossy environment, the method still
markp = 0.1 manage to control the throughput of a flow to reasonable level

Fig. 7. Simulation 1: Throughput Ratio @& Changes.

of accuracy. Note that when the channel is highly lossy, mediarrelation test on (the probes of) and other DMS flows
streaming is generally not usable anyway. Thus the largand adds DMS flows that are correlated wjthinto a setC'.
mismatch in throughput ratio in this case is less of a concefine least dominant link that contains the set of flowsip
in our context. is returned as the shared bottleneck.

We have described our method to control the throughput
of a DMS flow on a bottleneck. To apply it in DMSCC, wel OneBottleneck(;)
need to find out where the bottlenecks are, so that we carlNPUT: f; {the flow whose packet is Iost
regulate the throughput of DMS flows on these bottlenecks.Let F' be the set of all flows and be the set of all links;
We describe our approach to locate the congested bottleneck€'; — {f;|CorrTest(i,j) =1,V f; € F};
in the next section. C—{ll>2Cy,leL};

OUTPUT: Link [€ C; such thatly, D [, VI, € Cy;

V. CONGESTIONLOCATION

An ideal solution to locate a congestion should work as The situation i | hen two link ted
follow: (i) when a congestion causes a packet loss on a DMS € situation’is more complex when two finks are congeste

flow, the solution should be able to tell which link is congeste |m11iltan§o;sg. For '|ntstance, n Fégll’ wheq two bottlegecks
so that DMS flows on the affected link can be regulated, (if°=** 2" -t' cosxtls ' one-w?jyl ea¥_of0 ;S V\flforster(; by
when the congestion subsides, the solution should sense it, 8&' Cotnge;'f% VL\J/hone-wayk Et}.aylﬁ IS ?hTy 3 gcle Y
that the regulation on the DMS flows previously imposed ca ngestion ati-5. Yvhen a packet 1s O.SCOM est(0,)ca.n

be lifted. Such ideal solution is difficult to achieve in a tre¢£Ieturn either 1 or 0 depending on wh|ch bottleneck domma}es

topology: (i) there may be multiple, simultaneous congesticy lue of delay during that.samplmg period. When the queuing

on different links in the tree, and (ii) the same flow migh elay on one bottleneck is temporally reduced by congestion

experience congestion on dif’ferent links control of background traffic or packet dropping, the queuing

Rubenstein et al. [15] partially solved this problem for thQGIay on the other bottieneck can remain high and continue
{Ragommate the end-to-end delay. SGorrTest(0,1) may

case with one shared bottleneck. Based on the observation 0 heml-B i ted due to dominati f
a shared congestion produces highly correlated one-way di%g':lrgneci\;iilwor? th-e olr?ec-:\?vr;g/eje?ay cl):lf(z ?n a;)i:]ng;ni::\ :2280

on flows, they compare the cross-correlation of two flows a lated with

the auto-correlation of one of them. The shared bottleneck IiﬁQ\r/(/ia e W;ny Test(0.1 | 0 d i

is identified as one where the cross-correlation is larger. For'/nereas aorrTest(0,) value of 0 does not necessary
ply no shared bottleneck, a value of 1, however, does

gztpzzlrs[i);]Rubenstems technique, please refer to the Orlglr#c%nfirm the existence of shared congestionfgrand f,. Our

Rubenstein’s method works well when each flow experf2Servation is that, if the congestion is shak€dyrTest(0, 1)
ences one congestion. To use the same correlation test wmeari/ Fet”m 1 fro_m time to time e_tfter every packet loss. Based
a flow passes through multiple congested links is difficult. O) this observation, we use a history-based method to update
a shared bottleneck, the delay of the flows might contain t(t) e set of Cl_ment bottlenecks. We denctas a _set of current
much noise induced by other congested links. Solving the cocf%)-nQESted I|_nks andl as a FIFO queue of previously detected
gestion location problem completely in the distributed medlcaongested I|_nks due 1o the mqst recﬁrpacke_t loss. When a
streaming scenario remains a difficult and open problem. Wf‘Cket loss is detected ofy, H is updated as in Algorithm 2.

this paper, we extend Rubenstein’s method to identify multiple
bottlenecks in the_cas_e where the delay values on the S_hdé"'d’JnPacketLossz)
bottleneck has limited interference from other congested links: -
- . INPUT: f;, H, h
We useCorrTest(i,j)to denote the correlation test of Ruben- .
: : : _ . [— OneBottleneck(f;);
stein applied on flowi and flowj. WhenCorrTest(i,j) returns .
.) if |H| = h then
1, the two flows share a bottleneck; when it returns 0, no dequeue(H); {phase out old bottlenegk
shared bottleneck is detected. We apply the test over a windovvend ?f P
of one-way delays recorded using probe packets sent together) :
:) , o o enqueue(H,1); {phase in new bottlene¢k
with flows ¢ and;. We use probes to maintain certain minimum C e {lin HY;
sampling frequency. Without probes, flowsand j may not ' !
. . . OUTPUT:C, H
send any packet for a long period due to congestion windows
Probes are tiny packets that consume negligible bandwidth
(0.8KBps in our simulation). In the rest of this section, we We can viewH as a history of bottleneck detection record.
explore congestion location step by step, and then propd3e every packet loss, the oldest recordAnis phased out.
our method. If no other record inH refers to the same bottleneck, the
First, consider a simple case where only one link is cobottleneck is removed from the output. In other words, if a
gested. In this case, we can directly apply the correlation telétk is not identified as a bottleneck during the most redent
The method is listed as Algorithm 1, The method is calleplacket loss event, the congestion on the link is likely to have
whenever a packet loss is detected on flgw It applies subsided. The length of the queug,should be long enough

so thatH is able to buffer all current congested links.Zlfis bottlenecks (e.g.S;-A) that are dominated by the shared
too small, H may phase out existing bottlenecks and updatmttleneck (e.g.,A-B). Such false bottlenecks do not affect
C incorrectly. On the other hand, needs not be too large,the correctness of DMSCC.
as the probability of having many simultaneous bottlenec
is small. Our experiments on a four-sender session show that . _
value of . beyond 8 produces little improvement in accuracy The above mentioned algorithms run whenever a packet loss
of C, so we useh = 8 in our protocol. is detected. When congestion subsides and there is no more
After C is updated by Algorithm 2¢' contains the set of Packet loss, we need to resef to 1 so that the network
current bottlenecks. For instance, in the previous example wRndwidth can be fully utilized. Having no packet loss to
simultaneous congestion on linf-A and A-B, Algorithm ~ trigger the reset ofy;, we adoptgtlmer—based method. Atimer
2 may returnC ={So-A, A-B} or {S,-A, A-B, S;-A}. IS refresheo_l V_/hen packet loss is detepted. If no packet loss is
In the second setS;-A is a false detection. To understandétected withint seconds, the increasing factors of all DMS
this, imagine that the bottleneck-B causes a packet loss orflows are reset to 1. This method ensures that after congestion
1. When performingCorrTest(1,0), the result can be 0 asdisappears, in_ at m0$.tsecondsas are reset to allow DMS
we have analyzed. Therefore, Algorithm 1 retufisA as a flow to fully utilize av_a|lable bgndwdth. But if the .bottleneck
bottleneck. But, fortunately, the false detection does not affdet Still there when timer expires, resetting all will make

the correctness of DMSCC, as we shall see in the next sectiBiif flow aggregate unfriendly to TCP. To prevent such over
aggresiveness of DMS flows, we (i) setonservatively long

VI. CONGESTIONCONTROL (15 seconds in our simulation), and (i) retain the value_of
and H while resettinge;. The latter helps Algorithm 2 to set

a; back to the right value immediately if packet loss reappears.
After identifying the set of bottlenecks, the next step is

to adjust the increasing factors of the DMS flows on the VII. SIMULATION AND DISCUSSION

bottlenecks so that their combined throughput is TCP-friendly. We constructed Simulation 2 in ns-2.28 to validate our
Given(, the set of current bottlenecks, Algorithm 3 construc@esign. Fig. 9 shows a topology with four sendg8gs.S;, Sa,
another setC’ containing the set of bottlenecks that are natnd S;, and one receiveiR. DMS flows converge on the
dominated by any other bottlenecks @. For each of the way to R in the order ofSy, S1, 52, and Ss. Besidesf;, the
bottlenecks inC’, the algorithm sets the increasing factosenders also send CBR probes to the receiver using UDP, at 40
of the DMS flows that pass through it tb/n? according bytes per packet, 20 packets per seconds. The sample length
to Equation 7, where: is the number of DMS flows going for one-way delay records is 20 (one second in length) for

Bottleneck Recovery

A. Updating the Increasing Factors

through a bottleneck. correlation computation; according to Rubenstein et al. [15]
this length gives nearly 90% of accuracy in correlation test.
3 UpdateAlpha Q) All links are configured with bandwidth of 5Mbps, delay of
INPUT: C 20ms, and default RED setting in ns-2.28. Background traffic
C'—{l| Al; eC:l;D l,leC} may congest linky, {1, Iz or I3 to produce bottleneck. The
for all I € C’ do background traffic consists of 20 TCP Reno flows on every
n — |[{fi}, f; € l; {number of DMS flow} bottleneck. The RTTs of background TCP flows are set to
o — 1/n2,Yf; : f; € I; {increasing factdr 120ms.
end for

To understand the reason why DMS flows are adjusted
according to the dominant bottlenecks, let us consider the
previous example of simultaneous congestion $pA and
A-B in Fig. 1. Suppose that, after a packet loss, Algorithm Fig. 9. Topology of Simulation 2.

2 returnsC' ={Sp-A4, A-B, S;-A}. Link A-B dominates the

other two links. Congestion oA-B requires the aggregate of The simulation aims to show that DMSCC leads to task-
fo and f1 to be TCP-friendly. According to Equation é, level TCP friendliness, achieving our goal stated at the end
anda; should be set td /4. Congestion on the other two linksof Section 1. When background traffic produces congestion
requires each ofy, and f; to be TCP-friendly and thus bothon a link, the throughput of; and the RT'T; are measured
ap and o7 should be set to 1. Setting the increasing fact@o calculate B<RTT of the flow aggregate on the link. The
to 1, however, makes the flow aggregate 443 unfriendly. average BXRTT of the TCP background flows is also cal-
Considering the goal of DMSCC (Equation 3), should be culated. If B<RTT of the flow aggregate is less than or
set conservatively td /4. In short, the dominant bottleneckequal to the average of a TCP flow, then task-level TCP-
restricts the aggresiveness of the DMS flows, and therefdreendliness (Equation 3) is achieved. Fig. 10 showd g T of

the increasing factor should be set according to the dominainé TCP flows (average) and the flow aggregate; each subgraph
links. This property also allows Algorithm 2 to return falseorresponds to one link.

Link 0, B*RTT: f, vs. TCP maximum playback rate of the media, demonstrating that the
available bandwidth is fully utilized when there is no conges-
tion. We can also see in the last subgraph (Link 3), starting
from time 350s, B<RTT of the flow aggregate increases slowly
at first and increases faster later. The small slope is due to the
small increasing factora = 1/16), which is determined by
the congestion on Link 3. But when packet loss is not seen for
a period of 15 sec (value dafin this simulation), it is likely
that the congestion has disappeared. DMSCC thereforexsets
to 1, allowing throughput to increase quickly, achieving better
bandwidth utilization.

B*RTT (packet)

0 50 100 150 200 250 300 350 400
Time (s)

Link 1, B*RTT: (fy, f,) vs. TCP

B*RTT (packet)

A. The sensitivity of:

0 50 100 150 200 250 300 350 400
Time (s)

Link 2, B*RTT: (fy, f1, ;) vs. TCP

When presenting Algorithm 2, we mentioned that the length
of congestion historyx controls the update frequency of,
and, therefore, affects the accuracyofThe value ofh is em-
pirically set to 8 in the simulation. We changkdrom 1 to 20
and ran the above simulation 50 times each. On every packet
loss, C (the detected bottlenecks) is compared with the actual
‘ bottlenecks, and the detected dominant bottlenecks (which
0 50 100 150 200 250 300 350 400 affects the value ofy) are compared with the real dominant
Time (s) bottlenecks. The accuracy is defined as the number of correctly
Link 3, B*RTT (fo, fy, fp, f3) vs. TCP detected bottlenecks over the number of bottlenecks. Fig. 11
8r * * * * * Y — shows the average accuracy @fand dominant bottlenecks,
when h changes. The accuracy of dominant bottleneck is
higher than that of”, indicating that even if false detection
on bottlenecks exists, the dominant bottleneck could still be
correctly detected. After the value bfexceeds 8, both curves

B*RTT (packet)

T B]

B*RTT (packet)
N
o

0 50 100 150 200 250 300 350 400

Time (s) increase slower: largér contributes less to the accuracy®f
Fig. 10. BxRTT of Aggregate DMS flows and TCP Flow on Each Links. 1
09t

To show the ability of DMSCC to identify the dominant . 08!
bottleneck, we generate background traffic such that Link O 8
is congested during time 0 - 100s and Link 2 is congested g o1y
during time 50 - 150s. The first subgraph in Fig. 10 shows that < 06}
during time 0 - 50s, BRTT of the flow aggregate on Link O 05| /
roughly equals to a TCP flow; and the third subgraph shows 04) . Dominant Bottlenecks -~
that during time 100 - 150s, BRTT of the flow aggregate on "0 2 4 6 8 10 12 14 16 18 20
Link 2 is also similar to a TCP flow. This confirms that task- h: length of congestion history

level TCP-friendliness is achieved when only one congestion _
exists in the topology. During time 50 - 100s, when both Link Fig. 11. Effects ofh on Accuracy ofC' and Dominant Bottlenecks.
0 and Link 2 are congested, we find thakBTT of the flow
aggregate on Link 2 equals to a TCP flow, and thatRB'T
of the flow aggregate on Link O is less than a TCP flow. This
result demonstrates that DMSCC is able to identify that Link Congestion control is a well studied problem in unicast [6].
2 dominates Link 0, and therefore sets the increasing facte believe, however, that flow-level TCP-friendliness is not
accordingly to achieve task-level TCP-friendliness in the casefficient for multi-flow applications (Section 1l). Congestion
of simultaneous congestion. control has also been studied in the context of multicast. Even
To show that DMSCC is able to utilize bandwidth fullythough the topology of distributed media streaming resembles
when congestion disappears, Link 1 and Link 3 are congestbdt of multicast, the research focus in congestion control is
during time 150 - 200s and 250 - 350s respectively. Thifferent: we focus on achieving task-level TCP-friendliness,
streaming session completes at time 400s. In the secamldile research on multicast congestion control [16] focuses on
subgraph (Link 1), at 200s, TCP flows disappear. The valgealability as well as flow-level TCP-friendliness. Congestion
of BXRTT of the flow aggregate increases quickly to theontrol in multi-path streaming (e.g., [17]) also shares a similar

VIll. RELATED WORK

topology with distributed media streaming, but their goal is twork accurately in all network conditions (e.g., when loss is
achieve flow-level friendliness. frequent and bursty). Our congestion location algorithm relies
Our work is more related to the study on aggregate coon Rubenstein’'s method. Identifying location of congestion
gestion control. Aggregate congestion control pursues thlemultiple congestions scenario with high delay inteference
fairness of a group of flows. Congestion Manager (CM) [#emains a challenging problem. Our future work aims to
uses one AIMD congestion window adjustment loop for thaddress these limitations.
flow aggregate to achieve a fair combined throughput. CP [9] X ACKNOWLEDGMENTS
adopts equation-based rate adaptation [13] with packets sub- '
sampling to achieve fair bandwidth share. MPAT [8] keeps We would like to thank Xiuchao Wu, Wei Cheng, Eric Liu
multiple bandwidth estimation loops and allows the applicatiotd the anonymous reviewers for their precious comments.
to allocate bandwidth to different flows while ensuring that the
total throughput is fair. Hacker et al. study parallel TCP flows

P ; [1] T. Nguyen and A. Zahkor, “Distributed Video Streaming over the
[10] and mimic TCP flows with Ionger RTT, so that flows Internet,” inProceedings of SPIE Conference on Multimedia Computing

in the aggregate consume less bandwidth than a TCP flow, and NetworkingSan Jose, California, USA, January 2002.
making the aggregate TCP-friendly. [2] J. Apostolopoulos, T. Wong, W. Tan, and S. Wee, “On Multiple

: - : _ Description Streaming with Content Delivery Networks, Rroceedings
Aggregate congestion control is relatively new, and re- "= INFOCOM02 New York, NY. June 2002.

searchers still have different views on the definition of TCPf3] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “PROMISE:
friendliness of flow aggregate. Some believe that the flow Peer-to-Peer Media Stream-ing Using Collectcast, Pinceedings of

f ACM International Conference on Multimedia (MM'Q3erkeley, Cal-
aggregate should be fair to one TCP flow, so that software ifornia, USA, November 2003,

that uses concurrent downloading do not gain advantage Iy R. Rajaie and A. Ortega, “PALS: Peer-to-Peer Adaptive Layered Stream-
establishing multiple flows, and therefore does not encourage ing.” in Proceedings of the 13th International Workshop on Network and

; : Operating System Support for Digital Audio and Video (NOSSPAV)
abuse using multiple flows [10] Others allow an aggregate Monterey, California, USA, June 2003.

of n flows to have equal bandwidth share to thatrofCP [5] L. Ma and W. T. Ooi, “Retransmission in Distributed Media Streaming,”
flows [8], [9]. Their argument is that, since traditional TCP- in Proceedings of the 15th International Workshop on Network and

: : : : Operating System Support for Digital Audio and Video (NOSSPAV)
friendliness is between flows, grantingflows a throughput Stevenson, Washington. USA, June 2005.

equivalent ton TCP flows does not breach TCP-friendliness.[s] J. widmer, R. Denda, and M. Mauve, “A Survey on TCP-Friendly
Regardless of the differences, these studies apply congestion Congestion Control,” inlEEE Network Magazine, Special Issue on

. P . . Control of Best Effort Trafficvol. 15, no. 3, May 2001.
control on a fixed set of flows. In distributed media streaming | H. Balakrishnan, H. Rahul. and S. Seshan, .‘Xn Integrated Congestion

congestion control needs to be applied on different sets of Management Architecture for Internet Hosts;” ACM SIGCOMM
flows on different links. A new congestion control method is[8] slargbrlcr!]ge's %A.dieptem%e; 1299. PAT: A rop G
: . Singh, P. Pradhan, and P. Francis, “ . Aggregate onges-
therefore reql‘"red' tion Management as a Building Block for Internet QoS,Froceedings
of IEEE International Conference on Network Protocols (ICNP;04)
IX. CONCLUSION Berlin, Germeny, October 2004.

; ; ; 9] D. E. Ott, T. Sparks, and K. Mayer-Patel, “Aggregate Congestion
In this Paper, we introduce the prOblem of congestion ConL Control for Distributed Multimedia Applications,” irfProceedings of

trol in DMS system. It differs from previous congestion control |EEe INFOCOM'04 Hong Kong, China, March 2004.
problems as it involves multiple flows traversing througkO] T. J. Hacker, B. D. Noble, and B. D. Athey, “Improving Throughput

; s i _fri ; ; and Maintaining Fairness Using Parallel TCP,"Rroceedings of IEEE
different paths. A better definition of TCP-friendliness is INFOCOM04, Hong Kong, China, March 2004.

needed to further explore the problem. We therefore introdu@€) s. Fioyd and V. Jacobson, “Traffic Phase Effects in Packet-Switched
the notion of task-level TCP-friendliness in this paper. We Gateways’ ACM SIGCOMM Computer Communication Revigal. 21,

then formulate a criterion for task-level fairness in the conteﬁrz] goﬁ\iégir; %:G‘F‘,‘;;Zpir”cslggalu M. Gerla. M. Sanadidi. and M. Roccet

of distributed media streaming. We divide the problem of * «Tcp-Libra: Exploring RTT Fairness for TCPAccepted in IEEE
congestion control in distributed media streaming into two sub- Journal on Selected Areas in Communications, Special Issue on Non

: : ; ; Linear Optimization of Communication Systerf806.
problems. The first is how to locate congestion in a rever %] S, Floyd’p M. Handley, J. Padhye, andyJ.eWidmer’ “Equation-Based

tree topology. The second is how to control the throughput™ congestion Control for Unicast Applications,” RCM SIGCOMM0Q
of a DMS flow using AIMD loop such that the combined Stockholm, Sweden, August 2000.

; _fri [14] M. Mathis, J. Semke, and J. Mahdavi, “The Macroscopic Behavior of the
throu.ghput On,the bqttleneck Is TCP fnendly' TCP Congestion Avoidance Algorithm,” i€omputer Communication
This paper is the first one to address the problem of con- Review vol. 27, July 1997.

gestion control in distributed media streaming. The concept [@$] D. Rubenstein, J. Kurose, and D. Towsley, “Detecting Shared Congestion
task-level TCP-friendliness gives a different perspective to the ,c\’lfe't:v'fg:lfir:gavglnc‘l'éo'j:r?e"g%%z“reme”t’ fREE/ACM Transactions on
meaning of TCP-friendliness, and it is usable in other scenafi@] A. Matrawy and I. Lambadaris, “A Survey of Congestion Control
such as peer-to-peer file sharing. Our method to control the Schemes for Multicast Video Applications,” i EEE Communications

; ; Surveys & Tutorialsvol. 5, no. 2, Fourth Quater, 2003.
aggregate throthpUt of DMS flows mlght be useful in oth {7] H. Han, S. Shakkottai, C. Hollot, R. Srikant, and D. Towsley, “Overlay

context as well, including controlling the throughput of parallel ~ Tcp for Multi-Path Routing and Congestion Control,” ENS-INRIA
TCP connections. ARC-TCP WorkshqpParis, France, November 2003.

DMSCC has several limitations. Our throughput control
algorithm is based on Mathis equation, and therefore does not

REFERENCES

