
Games are Up for DVFS

Yan Gu Samarjit Chakraborty Wei Tsang Ooi
Department of Computer Science
National University of Singapore

{guyan,samarjit,ooiwt}@comp.nus.edu.sg

ABSTRACT
Graphics-intensive computer games are no longer restricted to high-
performance desktops, but are also available on a variety of portable
devices ranging from notebooks to PDAs and mobile phones. Bat-
tery life has been a major concern in the design of both the hard-
ware and the software for such devices. Towards this, dynamic volt-
age and frequency scaling (DVFS) has emerged as a powerful tech-
nique. However, the showcase application for DVFS algorithms so
far has largely been video decoding, primarily because it is compu-
tationally expensive and its workload exhibits a high degree of vari-
ability. This paper investigates the possibility of applying DVFS
to interactive computer games, which to the best of our knowl-
edge has not been studied before. We show that the variability in
the workload associated with a popular First Person Shooter game
like Quake II is significantly higher than video decoding. Although
this variability makes game applications an attractive candidate for
DVFS, it is unclear if DVFS algorithms can be applied to games due
to their interactive (and hence highly unpredictable) nature. In this
paper, we show using detailed experiments that (surprisingly) inter-
active computer games are highly amenable to DVFS. Towards this
we present a novel workload characterization of computer games,
based on the game engine for Quake II. We believe that our findings
might potentially lead to a number of innovative DVFS algorithms
targeted towards game applications, exactly as video decoding has
motivated a variety of schemes for DVFS.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]: Real-time
and embedded systems; C.4 [Performance of systems]: Design
studies

General Terms
Experimentation, Measurement, Performance

Keywords
Dynamic Voltage and Frequency Scaling, Computer Games, Com-
puter Graphics, Animation, Multimedia, Graphics Workload Char-
acterization, Power-aware Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2006, July 24–28, 2006, San Francisco, California, USA.
Copyright 2006 ACM 1-59593-381-6/06/0007 ...$5.00.

1. INTRODUCTION
Computer games have recently experienced a sharp increase in

popularity and have attracted considerable attention in both the in-
dustry and the academia. They are driving a number of innovations
in areas ranging from graphics hardware and high-performance com-
puter architecture to networking and software engineering. Al-
though most of the graphics-rich games are still largely played on
high-performance desktops, over the last couple of years a number
of games are also available on portable devices such as PDAs (e.g.
www.doompda.com). Since such devices are becoming increas-
ingly popular and powerful, this trend will certainly continue.

Energy efficiency is one of the most critical issues in the design
of such battery-powered portable devices. The availability of dy-
namic voltage and frequency-scalable processors has lead to power
management schemes for portable devices that are based on dy-
namic voltage and frequency scaling (DVFS) algorithms. Since the
power consumed by a processor depends linearly on its frequency
and on the square of its operating voltage, DVFS algorithms scale
the operating frequency and voltage of the processor to match a
varying computational workload as closely as possible. The show-
case application for DVFS algorithms so far has largely been video
decoding [2, 4, 5, 6], primarily because of two reasons: (i) video
decoding applications are computationally expensive, and (ii) their
workload exhibits high variability. These reasons make video de-
coding applications ideal candidates to illustrate the potential en-
ergy savings that may be achieved by DVFS algorithms. A number
of innovative DVFS schemes have indeed been motivated by video
decoding applications.

Contributions of this paper: Motivated by the abovementioned
line of work and the increasing availability of game applications
on portable devices, this paper attempts to answer the following
natural questions. Are interactive game applications amenable to
DVFS? Is the workload associated with game applications suffi-
ciently variable, so that DVFS schemes are worthwhile? Can we
predict the workload of game applications so that we can scale
the operating frequency and voltage of the processor to match the
workload? To answer these questions, we have carried out detailed
experiments using an open source, popular First Person Shooter
game called Quake II [8]. Our experiments studied the changes
in processor cycle requirements for different frames as the game
is played, and the distribution of these processor cycles among the
different computation and rendering tasks.

We performed our measurements based on Quake II for several
reasons. First, it was the only open source, main stream, First Per-
son Shooter game available when we started our project1. Second,
Quake II belongs to an older generation of games, which can be

1Source code for Quake III has since been released.

played without a powerful CPU and special hardware accelerators.
Since we are targeting portable devices such as PDAs, where spe-
cial graphics hardware is not likely to be available, we believe it is a
representative game that can be played on current, general purpose
portable devices. Finally, the game engine of Quake II is the basis
of other popular First Person Shooter games. Here, we would like
to clarify that a game engine is the reusable core of a game appli-
cation. By adding details (which are often referred to as “assets”)
like models, animation, sound and story to a game engine, a (con-
crete) game is derived. Since our experimental results are based
on Quake II, they immediately extend to other First Person Shooter
games (e.g., Hexen II) derived from the same game engine. We be-
lieve that our results serve as a good starting point for research in
this area and they would also be valid for many other game appli-
cations that are based on different game engines, but have similar
software architectures.

Given the interactive and hence unpredictable nature of game
applications, apparently it might seem that they are not amenable
to DVFS. However, our results show that surprisingly games are
highly amenable to DVFS. Further, the nature of their workload is
very different from those arising from video decoding applications,
which motivate the need for different DVFS schemes compared to
the ones traditionally used for video decoding. There are two fun-
damental differences between the workloads arising from game and
video decoding applications:

• The magnitude of the variation in the number of processor
cycles required to process a frame is significantly higher in
the case of games compared to video decoding. However,
the frequency of this variation is much higher in the case of
video decoding applications. In other words, compared to
the workload arising from a game, a video decoding work-
load exhibits a smaller but more rapid variation. This obser-
vation indicates that the potential energy savings that may be
obtained from applying DVFS to games is higher than what
may be obtained from video decoding applications.

• In the case of game applications, the frames contain “struc-
ture” which can be exploited to predict their workload or
processor cycle requirements. While processing a frame,
the workload depends heavily on the scene that the frame
is depicting. More specifically, the workload depends on the
content of the frame or the constituting objects that need to
be processed. We discuss this issue further in detail in Sec-
tion 4. In contrast, video frames offer much less structure,
apart from their frame type (I, B, or P frames).

The rest of this paper mostly elaborates on the above two argu-
ments and presents experimental results to support them. Following
these arguments, our main contribution is a novel workload char-
acterization of graphics-intensive game applications. We believe
that based on this workload characterization, it will be possible to
develop several DVFS schemes that are targeted towards computer
games.

Organization of this paper: In the next section we discuss the
architecture of common game engines. In Section 3 we investi-
gate the possibility of lowering the frame-rate of a game, thereby
reducing its processing workload. This reduction would enable
the game application to run at a constant, but lower processor fre-
quency, thereby reducing power consumption. Although this ap-
proach would be a competing approach to DVFS, we discuss what
are its disadvantages and why dynamically changing the proces-
sor’s voltage/frequency might be better in the case of games. In

Event Rendering

AI

Particle

Collision
Detection

Physics

Display

Computing

Figure 1: Frame processing in a game application.

Section 4 we present a framework for characterizing the workload
of games and use it to discuss how DVFS schemes might be de-
signed for games. We also outline how such schemes might differ
from those used in the context of video decoding. Finally, in Sec-
tion 5 we list a number of possible directions in which this work
may be extended.

2. ANATOMY OF A GAME ENGINE
A game engine runs in an infinite loop, where the body of this

loop consists of tasks responsible for processing a single frame.
This loop body is shown in Figure 1. Here Event denotes the user
inputs or interactions with the game, which along with the current
state of the game is used to generate the next frame to be displayed.
This involves two sequential steps—computing and rendering—
which we describe below. A more detailed discussion may be found
in [1, 10].

The computing step comprises tasks such as collision detection,
AI, simulation of game physics and particle systems. Collision de-
tection includes algorithms for checking collisions between the dif-
ferent objects and characters in the game. Such algorithms compute
intersections between two given solids, their trajectories as they
move, impact times during a collision and their impact points. In
some engines, the AI tasks determine the movement of the charac-
ters in the game. Game physics incorporates physical laws into the
game engine so that different effects (e.g. collisions) appear more
realistic to a player. Typically, simulation physics is only a close
approximation of real physics, and computation is performed using
discrete rather than continuous values. Finally, a particle system
model allows a variety of other physical phenomenon to be simu-
lated. These include smoke, moving water, blood, explosions and
gun fires. The number of particles that may be simulated are typ-
ically restricted by the computing power of the machine on which
the game is being played.

The rendering step involves algorithms to generate an image (or
a frame) from a model, which is then displayed as shown in Fig-
ure 1. In this case, the model is typically a description of sev-
eral three dimensional objects using a predefined language or data
structure. It consists of geometry, viewpoint, texture and lighting
information. In the case of 3D graphics, rendering may be done
offline, as in pre-rendering, or in real time. Pre-rendering is a com-
putationally intensive process that is typically used for movie cre-
ation, while real-time rendering is commonly done in 3D computer
games, which often rely on the use of a specialized processor called
a Graphics Processing Unit (GPU).

The rendering steps include the transformation of the vertices of
solid objects to the screen space, deletion of invisible pixels by clip-
ping, rasterization, deletion of occluded pixels, and interpolation of
various parameters. The outcome of these steps is the transforma-
tion of the 3D data onto the 2D screen. Rendering is computa-
tionally expensive and occupies a significant fraction of the total
processing time of a frame.

3. A FIRST CUT: REDUCING FRAME RATES

A rule of thumb in game design is that users prefer high frame
rates. As a result, most game applications are designed to maximize
frame rates without any consideration towards resource usage or
power consumption. The loop described in Section 2 therefore runs
at the maximum possible rate and fully utilizes the available CPU
bandwidth. We measured the CPU usage of Quake II running on
a 1298 MHz notebook computer using the Intel VTune Analyzer
7.2 [9] and noticed that it occupies 95% of the CPU bandwidth on
an average. However, the frame rate varies over time and depends
on the state of the game (e.g. the number of characters and the
complexity of the scene).

A recent study [3] on the effects of frame rates and resolution
in First Person Shooter games concluded that although frame rates
have a significant impact on the perceived quality-of-service, for
most parts of a game very high frame rates are not required. More
specifically, the resulting frame rate when a game application fully
utilizes the CPU bandwidth might be unnecessarily high. As a re-
sult, a natural question that comes up is: Why not run the game at
a constant (but lower) frequency?

It turns out that this is not a good strategy, because the varia-
tion in the number of processor cycles required to process different
frames is considerably high, as we show in Section 4. While run-
ning the CPU at a constant but lower frequency would reduce the
overall frame rate, the rate might drop below the tolerable range
when rendering complex scenes. Before we present the results
supporting this observation, let us briefly outline the experimen-
tal setup that we use throughout this paper.

Experimental setup: We conducted all our experiments on an
IBM notebook with a 1298 MHz Intel Mobile Processor built with
Speedstep technology, 768 MB of DRAM, and an ATI Radeon Mo-
bility Video card with a 144 MHz M6 GPU. The CPU supports
five different frequency operating points: 1298, 1199, 999, 799 and
599 MHz. All our results are based on the “vanilla” Quake II, ver-
sion 3.21, whose source code was instrumented and compiled to
run on Windows XP. To ensure that the game is not preempted by
other processes, we ran it with the highest priority and rendered
the game with the “software” option. The “software” option dis-
ables the use of the GPU, causing the 3D functions to be executed
on the CPU. This option uses DirectDraw to draw the pixels on
the screen. Sounds were disabled during measurements, as our ini-
tial results show that the workload in loading and playing audio
during games is negligible (approximately 1.8% of the total work-
load). All the processor cycle measurements were carried out using
RDTSC (read time-stamp counter) instruction. We chose to use a
software-only renderer as many battery-powered personal mobile
devices such as (low-end) laptops, PDAs and mobile phones do not
support GPUs yet.

To ensure reproducibility, instead of actually playing the game,
we replayed pre-recorded demo files in Quake II. All measure-
ments were done by replaying the default demo file that comes
with Quake II unless when indicated otherwise. The game reso-
lution was set to 1024×768, running in full-screen mode. While
replaying demos allows us and the research community to repeat
our experiments, the workload measured is slightly lower than the
workload incurred by games played in real-time. The difference
arises from the fact that, the demo has certain pre-recorded states
(such as position of objects in each frame and input from users) and
therefore these states are not computed again during playback. Our
experiments suggest that this computation accounts for approxi-
mately 3% of the total workload of the game.

 0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

 10000 20000 30000 40000 50000

F
ra

m
e

ra
te

 (
fr

am
es

/s
ec

)

Time (ms)
 Frame resolution = 1024x768 pixels

Processor frequency = 599 MHz
Processor frequency = 1298 MHz

Figure 2: Resulting frame rates when the processor frequency
is set to 599 MHz and 1298 MHz.

15.0

20.0

25.0

30.0

35.0

1298 MHz1199 MHz999 MHz799 MHz599 MHz

P
ow

er
 (

W
at

t)

Frame resolution = 1024x768 pixels

20.8 24.5 26.5 28.7 30.8

Figure 3: Average power consumption for different processor
frequencies.

For power measurements, we removed the battery from the note-
book and connected it to the external power supply using an AC
power adapter. We then tapped the cable leading from the power
adapter to the notebook using special probes connected to a digital
oscilloscope (DL1540CL Yokogawa) which measured the instanta-
neous current and voltage drawn by the notebook.

Figure 2 shows an excerpt of how the instantaneous frame rate
varies with time for replaying the default Quake II demo with the
processor frequency set to 599 MHz and 1298 MHz. We measured
the instantaneous frame rate as the reciprocal of the frame process-
ing time. Note that with 1298 MHz, the frame rate varies between
approximately 30 and 70 frames per second (fps). With 599 MHz,
the frame rate varies roughly between 10 and 40 fps. With frequen-
cies set to values between 599 and 1298 MHz, the frame rates lie
between the two plots shown in Figure 2. A frame rate of 70 fps is
much higher than necessary [3]. On the other hand, if we run the
processor at a constant frequency of 599 MHz, we achieve undesir-
ably low frame rates on certain frames exhibiting complex scenes.

The average power consumptions corresponding to the five fre-
quency values supported by our notebook with the game running
on it are shown in Figure 3. We computed these values by record-
ing the instantaneous current c(t) and voltage v(t) drawn by the
notebook every 5 ms, and calculating the power consumption over
a duration of length T as

�T
t=0(c(t)v(t)δt)/T , where δt is the

sampling interval (5 ms). Note that these values correspond to the
total system power consumption and not the power consumed by
the processor alone.

4. THE CASE FOR DVFS

Figure 3 shows the potential energy savings that can be achieved
by running the processor at a lower (but constant) frequency. How-
ever, Figure 2 clearly indicates that by using DVFS, the fluctuations
in the frame rate can be reduced, thereby resulting in an acceptable
perceptual quality and at the same time a reduced energy consump-
tion.

(a) Outer Base. (b) Installation

Figure 4: Two game maps in Quake II.

In this section we construct the case for such a DVFS scheme.
Towards this, we start by presenting a framework for characterizing
the workload of game applications. We then discuss how such a
framework might be used to design DVFS algorithms for games.
Finally, we outline how such DVFS algorithms would differ from
those used for video decoding applications.

4.1 Workload Characterization of Games

As mentioned in Section 2, a game engine is designed to sequen-
tially execute the computing and rendering tasks. For each frame,
the engine polls the user’s input and passes it over to the computing
subsystems responsible for collision detection, AI, particle simula-
tion etc. These subsystems compute new locations and appearances
of the visible objects based on the user input. We refer to the re-
sulting workload as the computation workload. The results of these
computations are passed to the rendering task, which renders all the
visible objects in the current frame and displays them on the screen.
A significant component of this rendering task involves rasterizing
objects on the screen. From this point on, we will primarily be
concerned with this rasterization component of the rendering task,
for reasons which we explain later in this section. Henceforth, we
call the workload resulting from the rasterization task as the ras-
terization workload. When Quake II uses its software renderer,
all tasks—including geometry processing, rasterization and texture
processing—are performed on the CPU.

Before proceeding further, we will need to understand what a
game map (also referred to as a level) is. The storyline of a game
can be considered to progress from one location (or level) to the
next, where each of these locations is represented using a game
map. Examples of game maps might be cities, buildings, rooms
and corridors. Intuitively, a game map may be considered to be
a data structure which stores all the objects and characters in the
scenario represented by the map. Snapshots of two different game
maps from Quake II, called Outer Base and Installation are shown
in Figures 4(a) and 4(b) respectively. The game map Installation is
used in the default demo.

A commonly used data structure to represent a game map is a
Binary Space Partition (BSP) tree [10]. A BSP tree represents a re-
cursive, hierarchical partitioning or subdivision of space into con-
vex subspaces. The BSP tree is constructed by partitioning a space
using a hyperplane, with the resulting partitions being further par-
titioned by recursively applying the same procedure. For each leaf
in the BSP tree, a set of leaves that are visible from this leaf are
calculated and updated as the game is played. This set is referred
to as the Potentially Visible Set (PVS). In addition, the BSP tree
also records information related to texture and lighting. Both the
computation and the rendering steps shown in Figure 1 involve tra-
versing and manipulating the BSP tree.

In Quake II, a game map is divided into convex regions, forming
the leaves of the BSP tree. To render a game map, first the BSP tree

0.0

20.0

40.0

60.0

 0 10000 20000 30000 40000 50000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Processor frequency = 1298 MHz, Frame resolution = 1024x768 pixels

Figure 5: Rasterization workload per frame.

0.0

20.0

40.0

60.0

 0 10000 20000 30000 40000 50000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Processor frequency = 1298 MHz, Frame resolution = 1024x768 pixels

Figure 6: Total processing workload for per frame.

is traversed to determine the leaf in which the camera is located
Once this leaf is identified, the PVS associated with this leaf lists
the potentially visible leaves from this camera location [7]. The
bounding box of these leaves are then used to quickly cull leaves
from the PVS that are not within the viewing frustum. The remain-
ing leaves are then passed to the subsequent rendering tasks, which
includes matrix transformations on the data and the rasterizing of a
frame as 2D image onto the screen.

4.1.1 Workload as a Function of Scene Complexity
The rasterization workload of a frame clearly has a direct corre-

spondence with the objects that are contained in the frame. In other
words, it depends on the “complexity” of the scene to be rendered.
Figure 5 shows how this rasterization workload changes with time.
The total workload involved in processing a frame also has a corre-
spondence with the complexity of the frame. This correspondence
can be seen from Figure 6, which shows how the total workload
changes with time. Note that the fluctuations in the processor cy-
cle demands in Figures 5 and 6 are highly correlated. Further, our
measurements show that the rasterization workload constitutes ap-
proximately 38% of the total workload generated in processing a
frame.

From these two observations, we believe that one can predict the
total processing workload to reasonable accuracy if one can esti-
mate the rasterization workload. The rest of this paper shows how
the rasterization workload can be predicted. We propose a work-
load characterization in which the workload associated with raster-
izing a frame depends on the objects constituting the frame. Our
experimental results show that for Quake II, the type of objects that
contribute to this workload are the brush model, the Alias model,
the texture, light maps and particles. Below we discuss the work-
load characterization of each object type.

Brush Model: A brush model is a 3D convex solid composed of
polygons. Brush models are used to construct the geometry of a
game map and they define the “world space” in which the player
can move around. The workload resulting from rasterizing a frame
will depend on the number of brush models in the frame and also

 0.00

 1.00

 2.00

 3.00

 4.00

 5.00

 0 100 200 300

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Number of polygons (p)
 Processor frequency = 1298 MHz, Frame resolution = 1024x768 pixels

Figure 7: Workload for a brush model versus the number of
polygons constituting the brush model (Game Map: Command
Center).

 0.00

 1.00

 2.00

 3.00

 4.00

 5.00

 0 100 200 300

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Number of polygons (p)
 Processor frequency = 1298 MHz, Frame resolution = 1024x768 pixels

Figure 8: Workload for a brush model versus the number of
polygons constituting the brush model (Game Maps: Outer
Base and Installation).

the types of these models. We therefore parameterize a brush model
using the number of polygons constituting it. To identify the work-
load involved in rasterizing a brush model with a specified number
of polygons, we collected the number of polygons constituting each
brush model and the number of processor cycles involved in raster-
izing them. Our results are shown in Figure 7, which were obtained
from the replay of a demo using the game map Command Center.
The figure shows that the number of processor cycles required to
rasterize a brush model increases almost linearly with the number
of polygons in it.

Let np denote the number of brush models in a frame with p
polygons. Let w be the average workload resulting from a single
polygon. Then the total workload arising from all the brush models
in this frame is equal to

�
p np × p × w. Parameter w is the slope

of the line in Figure 7.
To see if the relationship between the rasterization workload and

the number of polygons in a brush model hold for different game
maps, we repeated the experiments using other game maps as well.
Figure 8 shows the workload involved in rasterizing brush mod-
els with different number of polygons from two other game maps,
Outer Base and Installation (see Figures 4(a) and 4(b)). Note that
the value of w is consistent across the three game maps and the
workload involved in rasterizing a brush model also increases lin-
early with the number of polygons for the latter two game maps.

Alias Model: Alias models are used to represent the different enti-
ties in Quake II (such as monsters, soldiers and weapons). Usually
an Alias model consists of the geometry and the skin texture of the
entity being modeled. The geometry in turn is composed of trian-
gles. Since the rasterization of the triangles is done on the CPU in-
stead of a graphics hardware, the number of pixels constituting each
triangle affects the CPU workload. The software renderer renders
the skin texture of an Alias model with two rendering modes called
opaque and alpha blend. These modes call different functions and
therefore incur different rasterization workloads.

 0.00

 2.00

 4.00

 6.00

 8.00

 0 20000 40000 60000 80000 100000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Number of pixels (x)
 Processor frequency = 1298 MHz, Frame resolution = 1024x768 pixels

Figure 9: Workload involved in rasterizing Alias models for
different values of x (t = 0).

 0.00

 2.00

 4.00

 6.00

 8.00

 0 100000 200000 300000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Number of pixels (x)
 Processor frequency = 1298 MHz, Frame resolution = 1024x768 pixels

Figure 10: Workload involved in rasterizing Alias models for
different values of x (t = 1).

For each mode, we characterize the rasterization workload of an
Alias model by the total number of pixels rendered. This number
can be obtained by summing up the area of the triangles constitut-
ing an Alias model. Let x denote the total number of pixels of an
Alias model. Let t = 0 denote the case where Alias models with
alpha blended texture are being used, and t = 1 denote the case
where models with opaque texture are being used. To compute the
rasterization workload of Alias models with different values of x
and t, we capture all the models arising in different frames along
with their rasterization workloads. Figure 9 and 10 show the results
for Alias models with different x, for t = 0 and t = 1 respectively.

These figures show that the rasterization workload of Alias mod-
els scale almost linearly with x. The same linear relationship also
holds for Alias models with different values of t. Further, these re-
lationships are also consistent across game maps.

Texture: Texture is the 2D image applied to the face of a brush
model to give it the appearance of a real surface, examples of which
are concrete slabs, brick walls and metal plates. A texture is typi-
cally composed of multiple surfaces. We therefore characterize the
rasterization workload of a texture in terms of the number of sur-
faces constituting it. As in the case of brush models, we capture
the textures arising from a sample game play and plot their raster-
ization workload versus their number of surfaces. In this case we
found that the rasterization workload increases almost linearly with
the number of surfaces in a texture. Again, this function remains
consistent across different game maps.

Light Map: Light maps are used to store pre-calculated lighting
information for different scenes in a game. Static light maps in
Quake II are low resolution bitmaps which are rendered as multiple
surfaces. Hence, the workload involved in rasterizing light maps
is already included in the workload resulting from rasterizing tex-
tures. Therefore it need not be accounted for separately.

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

Sprite
model

ParticlesTextureAlias
model

Brush
model

P
er

ce
nt

ag
e

(%
)

Processor frequency = 1298 MHz, Frame resolution = 1024x768 pixels

21.5 64.7 9.8 4 0.01

Figure 11: Contributions of the different objects in a frame
towards the rasterization workload.

Particles: Particles are often used to model small debris resulting
from gun shots hitting a target. They are usually generated as a
set of 3D points. The number of pixels of the points generated in
rasterization is used to parameterize the rasterization workload of
particles. This workload scales almost linearly with the number of
pixels, as expected, and the scaling factor again remains consistent
across game maps.

The contributions of the abovementioned five types of objects to
the rasterization workload are summarized in Figure 11 (the work-
load resulting from light maps is not shows for reasons already de-
scribed). Rasterizing Alias models is clearly the most expensive.
Lastly, note that apart from these five objects, sprite models are
also responsible for a small fraction (almost negligible) of the ras-
terization workload. These models are often used to represent dust
particles or special effects like sparkles.

4.2 Predicting Frame Workload for DVFS
Most DVFS algorithms targeted towards video decoding appli-

cations rely on predicting the processing workload of future frames
or macroblocks and then adjusting the processor’s operating volt-
age and frequency to match this workload as closely as possible.
Such predictions are often based on the decoding times (or equiva-
lently, processor cycle requirements) of previously decoded frames.

As mentioned in Section 1, we believe that DVFS schemes for
game applications would require fundamentally different approaches.
More specifically, the workload prediction for a frame should not
rely on the processing times of previous frames. Instead, the “struc-
ture” in the frame should be exploited to predict its workload. The
framework for workload characterization that we presented in the
previous subsection can be used towards this. Using this frame-
work, the rasterization workload of a frame can be computed as the
sum of the rasterization workloads of its constituent objects. The
computed workload can then be appropriately scaled to predict the
total processing workload of the frame, which can be used to adjust
the processor’s voltage and frequency.

While computing, or rather predicting, the rasterization work-
load of the different objects constituting a frame, several data struc-
tures or tables need to be created, as discussed in the previous sub-
section. An example of such a table is the workload of each (single)
Alias model for different values of the parameters (x, t). Exactly
how these tables are created, and more importantly how they are
maintained or updated would depend on the specifics of the DVFS
scheme. In contrast to such schemes, the only “structure” informa-
tion that DVFS algorithms for video decoding applications can use
is whether the frame is of type I, B or P.

Figure 6 shows how the number of processor cycles required to
completely process a sequence of frames vary in Quake II. The
corresponding variations in the case of video decoding have much

smaller magnitude. As discussed in Section 1, this observation
points to the potentially greater energy savings that can be achieved
in the case of game applications. Finally, we would like to conclude
by pointing out that buffering techniques to smooth out the varia-
tions in the decoding times of frames, which are widely used in
video decoding applications, cannot be used for games due to their
interactive nature.

5. CONCLUDING REMARKS
This paper was concerned with building a case for DVFS algo-

rithms specifically targeted towards interactive games. Our main
contribution was a framework for characterizing the workload of
game applications. Towards this we presented several experimen-
tal results using the Quake II game engine. We also outlined how
the proposed workload characterization framework may be used to
design concrete DVFS algorithms and how such algorithms might
differ from those used for video decoding applications.

The logical future work that stems from this paper is to use the
proposed framework to predict the processor cycle requirements
of frames and use this prediction to scale the processor’s voltage
and frequency. Our initial experimental results show significant
system-wide energy savings. However, more work needs to be
done to efficiently maintain the various tables and compute/predict
the frame workloads.

Acknowledgements: Thanks are due to Ying Chee Woo and Chan-
dra Mukaya from the ECE Department of NUS for their help in
setting up our experiments for power measurement.

6. REFERENCES
[1] L. Bishop, D. Eberly, T. Whitted, M. Finch, and M. Shantz.

Designing a PC game engine. IEEE Computer Graphics and
Applications, 18(1):46–53, 1998.

[2] K. Choi, K. Dantu, W.-C. Cheng, and M. Pedram.
Frame-based dynamic voltage and frequency scaling for a
MPEG decoder. In IEEE/ACM International Conference on
Computer-aided Design (ICCAD), pages 732–737, San Jose,
California, 2002.

[3] M. Claypool, K. Claypool, and F. Dama. The effects of
frame rate and resolution on users playing First Person
Shooter games. In Multimedia Computing and Networking
(MMCN) Conference, San Jose, California, 2006.

[4] C. J. Hughes and S. V. Adve. A formal approach to frequent
energy adaptations for multimedia applications. In
International Symposium on Computer Architecture (ISCA),
pages 138–149, Munich, Germany, 2004.

[5] C. Im, S. Ha, and H. Kim. Dynamic voltage scheduling with
buffers in low-power multimedia applications. ACM
Transactions in Embedded Computing Systems,
3(4):686–705, 2004.

[6] Z. Lu, J. Lach, M. R. Stan, and K. Skadron. Reducing
multimedia decode power using feedback control. In
International Conference on Computer Design (ICCD),
pages 489–497, San Jose, California, 2003.

[7] M. McGuire. Quake 2 BSP File Format
http://www.flipcode.com/articles/article q2bsp.shtml.

[8] Quake II, http://www.idsoftware.com/games/quake/quake2/.
[9] Intel VTune Performance Analyzer

http://www.intel.com/cd/software/products/asmo-
na/eng/vtune/vpa/index.htm.

[10] A. Watt and F. Policarpo. 3D Games: Real-time Rendering
and Software Technology, Volume 1. Addison-Wesley, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

