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Abstract— In this paper, we consider the problem of
packetizing progressive 3D geometry models for streaming
over a lossy network. We adopt a graph-theoretic approach
to model packetization of progressive 3D models, with the
goal of minimizing dependencies among packets. We show
that this packetization problem is strongly NP-complete,
and we propose two packing heuristics. Our experiments
show that both heuristics perform better than the naive
method. In particular, the greedy packing heuristic pro-
duces significant improvement in the number of rendered
nodes when the network is lossy.

I. INTRODUCTION

Advancements in 3D rendering and scanning hardware

have led to the increasing availability of 3D models. In

this paper, we consider an emerging class of applica-

tions that require on-demand streaming and rendering of

large-scale 3D models over the Internet, such as virtual

museums and networked games. Similar to streaming of

video and audio data, streaming of 3D data poses QoS

challenges to applications, and has drawn the attention

of network researchers. For example, issues such as

unequal error protection [10], selective retransmission

[1], and delivery to heterogeneous clients [7] have been

considered in recent research.

In this paper, we consider the problem of packetizing

3D models for transmission over lossy networks. As in

many previous studies, we employ progressive meshes

[6] as the data model for network delivery. Encoding

a 3D model as progressive meshes allows incremental

rendering of the model with increasing details. Such

encoding, however, introduces dependencies among ver-

tices in the model, which may delay the rendering of a

vertex if the packet containing the vertices it depends

on is lost during transmission and has to be retransmit-

ted. To minimize such delay, we should pack vertices

into packets such that dependencies among packets are

minimal. This problem can be modeled as a graph

optimization problem called the acyclic equipartition

problem. We show that this problem is NP-complete in

a strong sense, which therefore does not admit FPTAS.

As such, we adapt the subtree packing method from [5]

to our packetization model. In addition, we propose an

improved heuristic based on the subtree method for the

packetization problem. We implement these algorithms

and compare their performance in streaming progressive

meshes over a network with different simulated loss

rates. Our experiments show that for a dependency graph

with 15150 nodes, the subtree algorithm can achieve up

to 20% improvement in terms of number of renderable

nodes at a time instance, compared to a breadth-first

packing algorithm, and our greedy algorithm can achieve

as much as 27% improvement over the breadth-first al-

gorithm. Furthermore, we conduct the same experiments

by transmitting progressive meshes between two nodes

over PlanetLab and achieve similar performance im-

provement, indicating that our packetization algorithms

are applicable and beneficial in the real network.

We briefly summarize the main contributions of our

work as follows:

• We propose a packetization model for 3D pro-

gressive meshes and formulate the packetization

problem as a graph optimization problem.

• We show that the packetization problem is NP-

complete in a strong sense by reduction from 3-

PARTITION. The proof is given in the previous

paper [4]. Thus, no polynomial time algorithm

exists unless P=NP.

• We design two heuristics to reduce dependencies

among packets.

• We evaluate the performance of the two heuristics

by streaming 3D models over LAN and PlanetLab.

The results demonstrate that the heuristics achieve

significant improvements in terms of rendering

speed.

The remainder of the paper is organized as follows.

Section II gives an overview of related work. We intro-

duce the hierarchical 3D data model and investigate the

packetization problem in Section III. In Section IV, we

give our packing algorithms. We validate our heuristics

in Section V. Section VI concludes our work.



II. RELATED WORK

3DMC [8] specifies progressive meshes as one of

MPEG-4’s 3D model coding schemes. It encodes the

topology data, connectivity and geometry information

of a 3D model into a vertex graph (VG), triangle tree

(TT) and triangle data (TD). VG contains the most

important connectivity data while TT and TD contain

geometry information. Different types of partitions are

used for different important data. However, 3DMC does

not consider dependency among partitions when they

packetize a 3D model.

Our problem of acyclic equipartition is closely related

to the well-studied graph partitioning problem, which is

known to be NP-hard [3]. There have been attempts to

solve these problems for the undirected graph with a

polynomial time heuristic [2]. Wong has modified these

algorithms and applied them to the directed graph to

solve the acyclic multi-way partitioning problem with

applications in VLSI design [9]; however, he has not

considered equal-size partition in the work. Furthermore,

the computational complexity of these algorithms is very

high, and they are not suitable for real-time applications

such as 3D meshes streaming.

The work closest to ours is Harris and Kravets’ [5],

which considers the problem of packetizing the bounding

sphere tree for 3D models to possible subtrees, subject

to the packet size constraint in breadth-first order. Since

there is no correlation among sibling nodes in the tree,

they do not consider inter-packet dependencies at all. In

our work, we consider packetization of the dependency

graph of progressive meshes, and explicitly consider

dependencies among packets.

III. DATA MODEL AND PROBLEM DEFINITION

In this section, we briefly review what progressive

mesh is and present a graph-theoretic model for our

packetization problem.

A. Progressive Meshes

The progressive meshes scheme [6] is the most popu-

lar method to encode a 3D geometry model into different

levels of details. It begins with the highest resolution

model, which is defined as the original model. To get

a lower resolution model, an operation called edge-

collapse is performed to collapse an edge into a vertex.

The edge-collapse operation is repeatedly performed

until the model is reduced to its designated minimal reso-

lution, which is referred to as the base model. A reversed

operation, vertex-split, is executed during decoding. In

vertex-split, a vertex v is split into two new vertices, v1

and v2. An example of vertex-split is shown in Fig 1.

Given a base model and a series of vertex-split operations

to be performed, we can completely reconstruct the

original model. To deliver progressive meshes over a

network, we would send the base model, followed by a

series of vertex-split operations. We encode each vertex-

split into a structure containing the vertices and faces

involved in the operation.

u w
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F4 F3
v2

u w
F1 F2

F4 F3v

v1
vertex-split

edge-collapse

Fig. 1. Vertex-split and edge-collapse

Dependencies exist among vertex-splits. A face or

a vertex needed in the current vertex-split operation

might be the result of a previous vertex-split. If a

packet p is lost, subsequent vertex-split operations that

depend on the vertex-splits contained in p cannot be

performed until p is retransmitted, resulting in rendering

delay. It is therefore important to minimize dependencies

among vertex-splits across packets, especially in a lossy

network.

We can model dependencies among vertex-splits with

a connected, directed acyclic graph G = (V, E), called

the dependency graph. Each node in V represents one

vertex-split. An edge (u, v) ∈ E exists if node v depends

on node u. An example of the dependency graph is

shown in Fig 2.
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Fig. 2. Dependency graph

B. Problem Formulation

We will now define our packetization problem for-

mally. Before we proceed with our problem formulation,

we first define the notion of partition.

Given a dependency graph G = (V, E), we can

partition V into disjoint sets V1, V2, .. Vc, such that

∪1≤i≤cVi = V and ∩1≤i≤cVi = φ. Given any par-

titioning of G, we can construct a partition graph

GP = (V P , EP ), where V P = {V1, V2, ..., Vc}, and

(Vi, Vj) ∈ EP if and only if (vi, vj) ∈ E for some

vi ∈ Vi and some vj ∈ Vj . We also define the cut of
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a given partitioning as the set of edges whose incident

nodes belong to different partitions. The number of edges

in a cut is called the cut size. The intuitive meanings

of these definitions are as follows: a partition models

a packet, the partition graph gives the dependencies

among packets, and cut size represents the degree of

dependencies among the packets.

For convenience, we will use the terms partition and

packet interchangeably in the rest of this paper.

We can now formally define our problem. Given a

connected directed acyclic graph G = (V, E), |V | = cB

for c ∈ Z+ and a bound B ∈ Z+, find a partitioning

of V into {V1, V2, V3, ..., Vc} such that the cut size is

minimized, subject to the constraints that the resulting

partition graph is acyclic and each partition is of equal

size.

We define any partitioning with equal size partitions

and resulting in an acyclic partition graph as acyclic

equipartition. The packetization problem defined above

is called the CONNECTED ACYCLIC EQUIPARTI-

TION (CAEP) problem. We prove that CAEP is NP-

complete in a strong sense by reducing a known strongly

NP-complete problem called 3-PARTITION [3] to CAEP

in [4].

Theorem 1: CAEP is NP-complete in a strong sense.

IV. PACKING ALGORITHMS

In this section, we present our subtree packing algo-

rithm and our greedy heuristic.

A. Breadth-first (BFS) Packing Algorithm

Due to the hierarchical structure of the dependency

graph, it is reasonable for us to use the breadth-first

search idea to achieve an evenly rendered quality in

the 3D model. By rendering the model level by level,

we would guarantee the resolution increases equally

throughout the model.

The BFS algorithm in this paper extends the basic

breadth-first search strategy by checking the parents of

the traversed node u that have already been packed either

in the same partition or in the precedent partitions such

that packing u does not incur any cycle in the partition

graph. The algorithm traverses the dependency graph

level by level, and does not aim to minimize dependency

at all.

B. Breadth-first Subtree (BSub) Packing Algorithm

We extend the subtree idea from [5] to pack the

dependency graph, which is presented as BSub. First,

we put the root of the graph into a FIFO queue. For

every new packet, we pick one node from the queue as

the root of the new packet and traverse the subgraph of

this node. Once we find the child in the subgraph whose

parents have been packed, we pack this child until the

packet is full, then we put the child into the queue.

Before we present the pseudo code of BSub, we first

define some data structures and variables in the BSub

algorithm. Variable B is the total number of nodes per

packet. Variable root is the root node of dependency

graph G. Variables Qt, Qp, Qr are FIFO queues in which

each element is one node of G. Queue Qr contains each

new packet of B nodes; the last packet may contain less

than B nodes in case |V | is not divisible by B. Queue

Qp contains the nodes with packed parents. Queue Qt

contains the nodes dumped from Qp when Qr is full. For

each full packet, GenPkt(Qr) is called to generate a new

packet for elements in Qr and initialize Qr to empty.

The function Dump(Qp,Qt) removes every element from

Qp to the tail of Qt. The sets child[u] and parent[u]
for u ∈ V contain the children of u and the parents of

u respectively. The function Enqueue(Q, x) inserts the

node x into Q and Dequeue(Q) removes the head of Q.

The function Ready(x) returns TRUE if all parents of

node x have been packed in previous packets or returns

FALSE otherwise. The BSub algorithm is shown below.

1 BSub(root)

1: Qt ⇐ ∅
2: Qp ⇐ ∅
3: Enqueue(Qt,root)

4: while |Qt| > 0 do

5: while |Qr| < B and (|Qp| > 0 or |Qt| > 0) do

6: if |Qp| > 0 then

7: w ⇐ Dequeue(Qp)

8: Enqueue(Qr,w)

9: for all u ∈ child[w] do

10: if Ready(u) then

11: Enqueue(Qp,u)

12: end if

13: end for

14: else if |Qt| > 0 then

15: w ⇐ Dequeue(Qt)

16: Enqueue(Qp,w)

17: end if

18: end while

19: GenPkt(Qr)

20: Dump(Qp,Qt)

21: end while

C. Greedy Subtree (GSub) Packing Heuristic

The BSub packetization algorithm does not seek to

minimize dependencies. In this section, we describe a
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heuristic which greedily packs nodes such that the local

cut size is minimized. We term this new heuristic GSub.

In the GSub algorithm, we adopt the subtree idea

from BSub. Furthermore, every time we consider one

child to be packed from a subgraph, we choose the child

whose parents have been packed and which introduces

the minimal cut size as well. We maintain a max-priority

queue of children. After we pack a packet, we update

the key value key[u] for each child u ∈ V , where

key[u] = |parentin[u]| − |child[u]|.
Fig 3 illustrates the general case of the greedy

picking strategy where node u and node v are both

non-leaf nodes. V1 and V2 are two packets. We as-

sume V1 is fully packed before the current packet

V2. The sets parentout[u] and parentin[u] for u ∈
V contain the parents of u which are not in the

current packet V2 and which are within V2 respec-

tively. Thus, we have |parentout[u]| + |parentin[u]| =
|parent[u]|. The current cut is cut = |parentout[u]| +
|parentin[u]| + |parentout[v]| + |parentin[v]| =
|parent[u]| + |parent[v]|. The cut after we pick node

x is updated as cut
′

= |parent[u]| + |parent[v]| −
(|parentin[x]|− |child[x]|). To minimize cut

′

, we max-

imize |parentin[x]| − |child[x]|.

u v

parentout[u]

V1

V2

parentin[u]

parentout[v]

parentin[v]

child[u] child[v]

Fig. 3. GSub greedy packing: pick the first node from two non-leaf
nodes u and v. Since |parentin[u]| − |child[u]| = |parentin[v]| −

|child[v]| = 0, we randomly pick any u or v. cut
′

= 4+ 3− 0 = 7.

In the pseudo code of GSub, Hp and Ht are defined as

max-priority queues implemented with heap. The func-

tion Extract-Max(H) removes and returns the element of

H with the largest key. The function Insert(H ,u) inserts

node u into H , maintaining the max-priority property.

The other structures and functions shown in GSub follow

the same definitions as in BSub.

D. Time Complexity

The complexity of BSub is O(|V | + |E|). For GSub,

since the complexity of Extract-Max(H) and Insert(H ,u)

2 GSub(root)

1: Ht ⇐ ∅
2: Hp ⇐ ∅
3: Insert(Ht,root)

4: key[root] ⇐ −|child[root]|
5: while |Ht| > 0 do

6: while |Qr| < B and (|Hp| > 0 or |Ht| > 0) do

7: if |Hp| > 0 then

8: w ⇐ Extract-Max(Hp)

9: Enqueue(Qr,w)

10: for all u ∈ child[w] do

11: if Ready(u) then

12: key[u] ⇐ |parentin[u]| − |child[u]|
13: Insert(Hp,u)

14: end if

15: end for

16: else if |Ht| > 0 then

17: w ⇐ Extract-Max(Ht)

18: Insert(Hp,w)

19: end if

20: end while

21: GenPkt(Qr)

22: while |Hp| > 0 do

23: w ⇐ Extract-Max(Hp)

24: Insert(Ht,w)

25: end while

26: end while

is O(lg |V |), the running time of GSub is O(|V | +
|E| lg |V |) in the worst case.

V. PERFORMANCE EVALUATION

A. Experiment Setup

We set up our experiment on a 1 Mbps LAN con-

necting two Redhat 9.0 Linux servers. In our experi-

ment, we encode a 3D model as a base model and a

sequence of vertex-split structures which are modeled in

a dependency graph. In the sender, we apply the BFS

or BSub or GSub packing algorithm to the dependency

graph on the fly. We pack 18 vertex-splits into one packet

according to the constraint of Maximal Transmission

Unit (MTU). We use TCP to transmit the base model

as it is required for the decoding of sequential vertex-

split structures. The vertex-splits are transmitted with

UDP. Lost packets are retransmitted. In the experiment,

we simulate different network scenarios with different

packet loss rates ranging from 2% to 10%.

In addition, to verify the applicability and performance

of the packetization algorithms over wide-area network,

we stream 3D models from Berkeley to Hong Kong over
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TABLE I

CUT SIZE OF DEPENDENCY GRAPH GENERATED BY DIFFERENT

PACKETIZATION ALGORITHMS

model |V | |E| B BFS BSub GSub

goblet 496 1353 18 1350 1054 1007

epcot 764 1778 18 1777 1306 1189

sphere 3333 4468 18 4465 2036 1626

horse 15149 10582 18 10570 2845 2297

horse 45149 81244 18 81244 44112 36623

horse 48149 98813 18 98798 58652 50384

PlanetLab and measure the loss rate between the two

nodes in addition to the rendering speed.

When the user receives a packet, it decodes all packets

in the rendering buffer. Any renderable nodes are de-

coded at once. Due to the dependency among nodes in

the dependency graph, some nodes may not be decoded

as their ancestors may not be in the rendering buffer at

that time, which accounts for the increment in cut size

would delay the decoding of nodes.

B. Cut Size

To evaluate the performance of GSub and BSub, we

first compare the resulting cut sizes of different models

with different levels of refinement. The results are shown

in Table I. GSub produces a smaller cut size than BSub,

and achieves a large improvement over BFS.

C. Number of Rendered Nodes

In our experiment, each time we receive a new packet,

we decode all available nodes and count the total number

of decoded nodes. In an ideal network without any

packet loss, the cut sizes of different packing algorithms

are irrelevant to the quality of the 3D model. However,

when packets are lost and need to be retransmitted, the

difference in cut size of different packing algorithms will

have a significant impact on rendering quality. Hence,

we measure the number of rendered nodes at a certain

moment to evaluate the performance of different packing

algorithms.

Fig 4 to Fig 6 show the number of rendered nodes with

the simulated loss rate of 2% to 10% for a horse model

with 15150 vertex-splits. Each figure compares the three

algorithms introduced in Section IV. All nodes packed

with three different algorithms take the same amount of

time to finish rendering on account of the same total

nodes transmitted with the same speed. The differences

in the number of rendered nodes during transmission

demonstrate GSub minimizes the delay and achieves a

best user experience among the three algorithms.

Fig 7 shows the improvement of BSub and GSub

over BFS with the simulated loss rate. We measure

the improvement of BSub over BFS using the maximal

difference in the number of rendered nodes between

BSub and BFS over BFS. The improvement of GSub

over BFS is measured using the maximal difference

in the number of rendered nodes between GSub and

BFS over BFS. We can see the improvement of BSub

increases from 3% to 20% when the loss rate rises from

2% to 10%. The improvement of GSub increases from

5% to 27% when the loss rate increases from 2% to

10%. GSub outperforms BSub in terms of the number

of rendered nodes as well. Meanwhile, we notice that the

superiority of GSub over BSub is not so significant as

that of GSub over BFS because a considerable amount

of dependencies are reduced when packing the children

with their parents from the same subgraph in BSub.

In our experiments over wide-area network, we

achieve similar performance improvement. Fig 8 com-

pares the packetization algorithms over the PlanetLab

nodes from Berkeley to Hong Kong with a loss rate of

18%. In order to measure the results with the same loss

rate, we repeat the experiments for three packetization

algorithms and pick the ones with loss rate of 18% for

comparison. The improvement of BSub over BFS is 30%

while the improvement of GSub over BFS is 44%.

VI. CONCLUSION

We have presented a dependency-aware packetization

model for hierarchical progressive meshes to speed up

the rendering of 3D models delivered over a lossy

network. We adapt the BSub packing method to our

dependency graph and achieve a better cut size and an

improved number of rendered nodes over BFS. To reduce

the cut size, we propose the GSub packing heuristic.

Evaluations show that the GSub algorithm works well

compared to BSub in terms of number of rendered nodes

when the network is lossy.
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