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ABSTRACT
We propose an access pattern-driven distributed caching middle-
ware named APRICOD, which can be built on top of any existing
content discovery system. APRICOD caters for fast and scalable
content discovery in peer-to-peer media streaming systems, espe-
cially when user interactions that leads to non-continuous media
access (such as random seek in video and teleportation in virtual
environment) are present. APRICOD caches query results based
correlations among media objects accessed by users, reducing the
content discovery time. Our evaluation using a VoD access trace
shows that close to 70% of non-continuous access queries can be
resolved with a single hop using APRICOD.

Categories and Subject Descriptors: H.2.4 [Systems]: Query
processing; H.3.4 [Systems and Software]: Distributed systems

General Terms: Design, Performance

Keywords: Content discovery system, user interaction, caching,
non-continuous media access, peer-to-Peer

1. INTRODUCTION
Content discovery is a process by which a peer identifies where

to retrieve a required object from. The requirement for content dis-
covery time varies across different applications. File sharing appli-
cations can tolerate long content discovery time, while interactive
media streaming applications such as VoD and networked virtual
environment, require shorter lookup time to ensure a smooth user
experience. For instance, De Silvaet al. [4] show that over 95% of
users can tolerate a delay up to only 1 second in progressive mesh
streaming.

Approaches to content discovery can be classified into either
centralized, DHT-based, gossip-based, or cell-based approaches.
The centralized approach relies on a central server to index the con-
tent and to respond to content discovery queries. Media streaming
systems such as Kangaroo [8] adopt this approach. With the cen-
tralized approach, queries take only one hop to resolve, but it is not
scalable and has a single-point of failure.
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DHT is a scalable and distributed content discovery approach. It
employs a structured overlay to route queries to their destination
through intermediate nodes. Queries can be resolved within max-
imal log(N) hops, whereN is the number of nodes in the DHT
overlay. DHT is highly scalable, but is not suitable for content
discovery in interactive media streaming applications due to its po-
tentially long lookup time.

The gossip-based approach is widely used in media streaming
systems. With this approach, peers periodically exchange data avail-
ability information with their neighbors. To support non-continuous
access, gossip-based approach often groups peers into clusters ac-
cording to their playback point. A peer maintains neighborhood re-
lationship with not only peers in its own cluster, but also some peers
in other clusters. If the peer jumps to another cluster due to non-
continuous access, it reestablishes its new neighborhood through
either its current neighbors or through a neighborhood discovery
mechanism (such as through a centralized server or DHT). Dif-
ferent variations of this approach are adopted by systems such as
InstantLeap [7] and RINDY [1]. Gossip-based approach works ef-
fectively when the number of clusters is small. When the number of
clusters increases, however, the content discovery time and neigh-
borhood maintenance overhead increase.

In the cell-based approach, resources are managed distributedly
by selected nodes, usually called super peers or cell managers.
Each cell manager behaves like a central server for the resource
it manages. Hence, the content discovery problem is converted to
the problem of finding the cell manager that manages the required
resources. Unlike DHT, which routes queries based on the hashed
key value, the cell-based approach directs peers to the right cell
manager based on temporal or spatial adjacency relations among
the cells. For instance, Chenget al. [2] group vertices in a progres-
sive mesh into cells and use this approach to enable content dis-
covery in peer-to-peer progressive mesh streaming. Fast discovery
of the right cell manager during non-continuous access, however,
remains a problem.

Given the drawbacks of existing content discovery approaches,
a fast and scalable content discovery system that supports non-
continuous media access is needed. In this paper, we propose such a
system called APRICOD. APRICOD is a distributed caching mid-
dleware that exploits the access correlations among media objects
so as to shorten the content discovery time, especially for non-
continuous media access.

We say objectObj2 is correlated withObj1 if peers are likely
to accessObj2 after accessingObj1. In media systems, the two
basic sources of data correlation are spatial and temporal relations.
For instance, in a virtual environment, two nearby objects are cor-
related spatially. Two consecutive video segments are correlated



temporally. Such obvious correlations are results of continuous ac-
cess to media.

Other forms of correlations exist due to non-continuous access.
Such correlations can be caused by reasons such as features in user
interfaces (bookmarked playback point in a video or teleporters
and landmarks in a virtual environment). These correlations can
be exploited for provision of fast content discovery during non-
continuous access. Existing systems, however, do not exploit such
correlations. In particular, DHT-based approaches are unable to ex-
ploit these correlations since〈key, value〉 pairs are looked up inde-
pendently of each other. Existing gossip-based and cell-based sys-
tems only exploit those obvious correlations, which support contin-
uous media accesses effectively, but incur longer latency for non-
continuous access.

APRICOD is the first system that exploit the non-obvious cor-
relations for content discovery. In APRICOD, the convolving cor-
relations (including those non-obvious correlations) are mined in a
black-box way, making our system application-independent. More
specifically, we use the user interaction history to infer the correla-
tions. The mined correlations are further used to facilitate content
discovery. In contrast to the existing data-driven content discovery
systems such as DHT and many others, APRICOD is user access
pattern driven. To the best of our knowledge, we are the first to
explore this new paradigm for content discovery.

We now describe the design philosophies of APRICOD, which
lead to the improvements of APRICOD over the existing content
discovery systems. Firstly, APRICOD is a caching middleware on
top of an underlying content discovery system. It tries to resolve
as many queries as possible with merely a single hop. Secondly,
APRICOD resolves popular queries faster than unpopular ones.
Thirdly, instead of viewing queries issued from different peers as
independent from each other, we allow peers (even those offline
ones) to collaborate by sharing their query information. Fourthly,
APRICOD does not use a fixed overlay structure, rather it adapts to
user access pattern by automatically changing its overlay structure
over time. Finally, the APRICOD overlay is conceptually separate
from either the data dissemination or the content discovery overlay,
which makes it general and can be used for various applications
and attached to different existing content discovery systems.

2. RELATED WORK
We now briefly discuss related work that considers non-continuous

access in peer-to-peer media streaming.
Qiu et al. [7] design a content discovery scheme called InstantLeap

for P2P VoD streaming. It divides peers into groups according to
their playback point and each peer maintains connections to a por-
tion of those groups. Content discovery is achieved through neigh-
bor list exchange. Even though theoretically a constant number
of hop is needed at high probability, it is at the cost of scalability
because the number of connections a peer has to keep grows lin-
early with respect to the number of groups. Yanget al. [8] adopt
a centralized approach to perform content discovery. As a result,
it requires peers to continuously update the server about their data
availability, which places significant amount of workload on the
server when the peer population is large.

MOPAR [9] supports non-continuous access such as teleporta-
tion by using DHT to provide global connectivity. When peers
teleport to another location, MOPAR discovers peers around the
destination by querying the DHT. As a result, it is hard to en-
sure fast response to user interactions due to the potentially long
lookup time of DHT. Chenget al. [2] propose a content discovery
scheme specifically for progressive mesh streaming by exploiting
the parent-child relation among vertices. However, similar tech-

niques cannot be applied to other systems where such elegant hier-
archical relation does not exist.

Several recent research work investigated into exploiting social
relationship among users for content discovery. These systems as-
sume that two users who are in the same social group are likely to
be interested in the same set of files. Based on this assumption,
Pouwelseet al. [6] develop Tribler, a social-based peer-to-peer file
sharing system. Chenget al. [3] develop NetTube, which exploits
social relations to assist in streaming of YouTube videos. It is not
clear, however, how social relationship relates to non-continuous
access patterns in media.

3. SYSTEM MODEL
As a caching middleware, APRICOD should be used together

with an underlying content discovery system that provides query
resolution guarantees so as to ensure global connectivity. Fig. 1
shows two possible configurations, where APRICOD provides sup-
port for a centralized content discovery system and a DHT-based
system respectively.

APRICOD overlay

Server

Data dissemination overlay

(a) Attached with server

DHT overlay

APRICOD overlay

Data dissemination overlay

(b) Attached with DHT

Figure 1: APRICOD used together with underlying content
discovery systems. (Arrows indicate query resolution path.
Queries are passed to the upper layer if they cannot be resolved
by APRICOD.)

Fig. 1 shows that the APRICOD overlay is designed separately
from the data dissemination and the content discovery overlay. All
layers in Fig. 1 are conceptually independent of each other, even
though in real implementation they may be combined together. The
data dissemination layer issues query to the APRICOD layer. If
APRICOD cannot resolve the query, it relays the query to the con-
tent discovery layer. Both configurations in Fig. 1 have their re-
spective advantages and drawbacks: the system architecture shown
in Fig. 1(a) trades scalability for shorter lookup time. It is the other
way round for Fig. 1(b). Our work focuses on the APRICOD over-
lay and we treat the content discovery layer as a black box.

The key construct behind APRICOD is a resource map. All
media objects accessible by users constitute an-dimensional re-
source space, which is partitioned into small cells. For instance, in
a VoD system, a video is partitioned in the temporal dimension. A
cell is thus a video segment. In a virtual environment, the virtual
space can be partitioned in the spatial dimension, where a cell is an
area. Each cell is managed by a logical node calledcell manager.
Content discovery in APRICOD is achieved by exploiting correla-
tions among media objects managed by these cell managers. Recall
that objectObj2 is correlated withObj1 if peers are likely to ac-
cessObj2 after accessingObj1. Accordingly, two cell managers
are correlated if the objects they manage are correlated. Each cell
manager maintains a small number of links pointing to their most
correlated cell managers. Links can be either fixed links, which
corresponds to the obvious correlations, or dynamic links, which
corresponds to non-obvious correlations and are updated on the fly.
These cell managers and the links they maintain constitute the re-
source map.

Suppose a peer is currently accessing resources managed by a



cell managerH. The peer attaches to the cell managerH, and uses
it as the query resolver to perform content discovery. Every cell
manager maintains a content provider list for objects it manages.
Therefore, if the peer queries for a list of content providers for ob-
jects managed byH, H would be able to answer the query directly.
If the peer starts accessing objects in a cell that is out of the respon-
sibility of H, the peer should find the corresponding cell manager
K who is in charge of that cell first and then request a list of content
providers fromK. To discoverK, the peer queries cell manager
H as well, because it is very likely thatH has a link pointing toK
given the way we construct the resource map. If so, the query is a
hit and resolves in just a single hop.

WhenH does not have a link toK, it resorts to the content dis-
covery layer to findK and returnK ’s IP address to the peer. In
addition,H should establish a dynamic link pointing toK, since
the query indicates thatK is correlated toH. Even though estab-
lishing the dynamic link does not help the querying peer, it will
help future peers issuing the same query. In other words,H caches
the query result. As the peer moves to access resources managed
by another cell manager, it changes the cell manager it is attaching
to and repeats the same querying process as described above.

We can observe that the resource map is constructed incremen-
tally: a new dynamic link is established if a query misses. This
construction process is indeed a learning process, which learns the
correlations among cell managers, reflecting user access patterns.
Due to the capacity limitation at each cell manager, we may want
to limit the number of links a cell manager can maintain. If the
capacity limit is reached, an existing dynamic link should be re-
placed. State-of-the-art cache replacement policies (such as LRU/k

and LFU) can be used to determine which dynamic link to replace.
If the peer has cached enough content managed by a cell man-

ager, it registers itself as a content provider to that cell manager
for those media objects it has cached. Accordingly, deregistration
should be carried out when deleting the content from its cache.

Note that cell managers are logical nodes, which can be mapped
to different peers in real implementation. Cell managers employ
appropriate replication scheme (and thus logically never fail) to
preserve the learnt correlations in the system.

4. EVALUATION
We evaluate APRICOD by collecting traces from a VoD flash

player, which log the seeking behavior of 54 users while watching
a lecture video over one semester. The857s video is quantized into
segments with equal length of10s. Each segment is managed by a
cell manager. Whenever the playhead moves from segmentSA to
segmentSB , a query is issued toMA (the cell manager in charge
of segmentSA) to discoverMB . Each cell manager maintains two
fixed links pointing to its neighbors, i.e., the cell managers that
manage the previous segment and next segment in temporal order
in the video. Apart from that, each cell manager also maintainsn

dynamic links pointing to non-neighboring cell managers (n = 10
by default), using LFU as the cache replacement policy.

First, we examine the correlations among non-neighboring seg-
ments since that is the fundamental assumption APRICOD is built
on. Correlations among neighboring segments are obvious, so we
do not examine them. Fig. 2 shows the correlations among non-
neighboring segments mined from the trace. The X-axis denotes
the topx portion of most popular non-continuous access links, and
the Y-axis denotes the portion of queries attracted by the topx

portion of most popular non-continuous access links. Meanwhile,
the greendotted line denotes random user access pattern. The red
solid line denotes user access pattern observed in the trace. Within
the huge non-continuous access link space, only a small portion of

them get accessed. From the figure, we can conclude that there
is significant amount of correlations even among non-neighboring
segments. By knowing a small number of non-continuous access
links, we would be able to answer a significant portion of non-
continuous access queries.

Next we use the trace data to demonstrate how APRICOD evolves
over time and to show how APRICOD works. For clarity, we limit
the number of dynamic links to5 and focus on the cell managers
in charge of segments60, 61, 62, 63 and64 only (shown as blue
nodes). Fig. 5 shows a serial of snapshots of the system states.
Outgoing links of black nodes are not shown in Fig. 5. Neighbor
links are not shown as well since they are always present. Each link
is labeled with its access count. The thicker the link is, the more
often it is accessed, indicating a stronger correlation.

When the simulation starts (Fig. 5(a)), there are no dynamic links
in the system. After receiving700 queries, dynamic link starts ap-
pearing. From Fig. 5(b) to 5(c) we start observing link replacement.
For instance, the links62 → 55 and62 → 57 in Fig. 5(b) are re-
placed by62 → 59 and62 → 69 in Fig. 5(c). As more queries
are received, the dynamic links adapt automatically to the user ac-
cess pattern. One phenomenon that can be easily observed from
Fig. 5(a) to 5(f) is that those links that indicate strong correlations
tend to be kept over time. Note that access count of each link may
not increase monotonically from Fig. 5(a) to 5(f). For instance, the
link 62 → 65 has an access count of3 in Fig. 5(e), but only1
in Fig. 5(f). This is because the link is replaced and later added
back between the2800th and3500th query. When adding back a
previously replaced link, its access count restarts from1.

Finally, the trace is fed into an APRICOD simulator to examine
the caching efficiency. We group every 50 queries into a round ac-
cording the order they are issued, and then compute the hit rate of
each round. Fig. 3 plots the CDF of query hit rate, including both
continuous access queries and non-continuous access queries. The
green line denotes the query hit rate when only neighboring links
(fixed links) exist, handling only continuous access queries. The
red line shows the hit rate when we have 10 dynamic links in ad-
dition to the fixed links to handle non-continuous access queries.
Fig. 3 shows that the median hit rate increases from about 0.6 to
0.85 with the dynamic links introduced by APRICOD. The im-
provement is achieved by exploiting the correlations among non-
neighboring segments as shown in Fig. 2.

Since neighboring links will always be present, continuous ac-
cess queries will always hit with peer failure as an exception. Thereby,
we focus our evaluation below on non-continuous access queries.
Fig. 4 shows the hit rate of non-continuous access queries over
time. We can observe the learning process from the curve. At the
beginning of the simulation, the hit rate of non-continuous access
queries is almost0. After receiving 15 rounds of queries (each
round consists of50 queries), the hit rate increases to0.7. We ob-
serve1464 non-continuous access queries with781 hits and683
misses. Majority of the missed queries (668 out of683) are due to
the fact that they are seen for the first time. This observation sug-
gests that we can get a higher query hit rate by training the system
with more data.

We also evaluated APRICOD in a peer-to-peer virtual environ-
ment using traces from Second Life [5]. Similar improvement is
observed. We omit the details here due to space constraint.

5. CONCLUSION
In this work, we proposed a general distributed content discovery

caching middleware named APRICOD, aiming at shortening the
content discovery time for non-continuous media access. APRI-
COD exploits the correlations among media objects, and is general
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trace
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Figure 5: Evolution of dynamic links over time

enough to be used for various P2P media streaming applications
such as VoD, virtual environment, zoomable video, and many oth-
ers. The evaluation of APRICOD by user traces collected from a
VoD player shows that it is able to shorten the content discovery
time for a significant portion of non-continuous access queries to
just one hop.
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