
Towards Peer-Assisted Rendering
in Networked Virtual Environments∗

Minhui Zhu
National University of Singapore

Sebastien Mondet
University of Oslo

Géraldine Morin
University of Toulouse

Wei Tsang Ooi
National University of Singapore

Wei Cheng
Manovega Pte. Ltd.

ABSTRACT
This paper introduces a new technique, called peer-assisted render-
ing, that aims to enable interactive navigation in a 3D networked
virtual environment using a resource-constrained device, by speed-
ing up the rendering. A resource-constrained client requests part of
the rendered scenes from other peers with similar viewpoints within
the virtual environment, and merges the rendered parts into its own
view. This approach is more scalable than previous solutions based
on server-based pre-rendering. The goal of this paper is to make a
strong case for the feasibility of peer-assisted rendering through the
following two messages. First, by analyzing a large number of user
traces from a popular virtual world called Second Life, we show
that there are surprisingly many users with similar viewpoints and
encompass large number of common objects in their viewing areas,
indicating that a client can potentially find multiple other peers that
can assist in rendering. Second, by combining three different ren-
dering methods, each contributing to rendering of different classes
of objects in the scene, we show that it is possible for a client to
render the scene efficiently with little visual artifacts.

Categories and Subject Descriptors
I.3.2 [Graphics Systems]: Distributed/network graphics

General Terms
Performance, Measurement, Design

Keywords
Peer-Assisted Rendering, Image-based Rendering, Networked Vir-
tual Environments, Resource-constrained Devices

1. INTRODUCTION
Networked virtual environments (NVEs) are becoming an im-

portant class of distributed multimedia applications and are getting

∗Area chair: Xian-Sheng Hua

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’11, November 28–December 1, 2011, Scottsdale, Arizona, USA.
Copyright 2011 ACM 978-1-4503-0616-4/11/11 ...$10.00.

increasing attention commercially, with applications such as on-
line education, teleconferencing, and entertainment. For example,
Second Life, a user-generated NVE built by Linden Lab, reports
more than 21 million accounts registered and about 55,000 concur-
rent users as of April 2011.

On the other hand, as Internet access via hand-held devices be-
comes prevalent, there is an increasing demand from users to ac-
cess NVE interactively with these devices. Hardware manufactur-
ers have been enhancing mobile device’s performance and capabil-
ities, with 3G and IEEE 802.11 chips, better computational capa-
bilities, and higher screen resolutions, enabling rich multimedia ap-
plications. Some devices are even equipped with GPUs (Graphical
Processing Units), improving the audio-visual experience. These
GPUs, however, are still limited in their processing capability. For
instance, NVidia’s GoForce 5300 does not contain any 3D engine1,
but instead is designed to decode a large amount of multimedia for-
mats. Powerful GPUs, such as PowerVR SGX graphics processor,
which can support between 7–28 MPoly/s, are only available on
high end devices, such as iPhone 4 and Palm Pre. These GPUs,
however, increase the power consumption of the devices dramati-
cally [20]. Hence, despite an increase in the networking capability,
rendering high quality and realistic 3D scenes on mobile devices
remains a bottleneck for mobile access to NVE.

A common approach to enable mobile access to NVE is to re-
duce the rendering workload at the mobile client, by migrating the
rendering tasks elsewhere. We say that the mobile client is assisted
by an assistant that renders on behalf of the mobile client, and we
call the mobile client the assistee.

A large class of previous work on mobile access to NVE can be
classified under the server-assisted rendering approach. A server
acts as the assistant and continuously renders the 3D scene accord-
ing to the assistee’s viewpoint (defined by a set of synthetic camera
parameters). The resulting rendered images are encoded as a video
stream and transmitted to the assistee for decoding and display.

There are two main issues with server-assisted rendering. First,
the approach is not scalable. 3D rendering and video encoding are
computationally expensive operations. Sterkin [26] reported that a
high-end server can support only 14 simultaneous assistees using
this approach. One can expand the server capacity to support more
assistees. For instance, Shi et al. proposed moving 3D rendering
and video encoding into a cloud [25]. While such cloud-based solu-
tion provides the convenience and flexibility of instantiating a ren-
dering server as needed, the rendering cost still increases linearly
with the number of clients.

Second, server-assisted rendering introduces additional latency.
NVE is a highly interactive application. With server-assisted ren-

1http://en.wikipedia.org/wiki/GoForce

dering, however, its takes at least one round-trip time for the new
viewpoint to be rendered at the assistee. Bao and Gourlay have
proposed a method to reduce the interaction latency, by warping
the rendered images received from the server immediately at the
assistee when viewpoint changes [1]. Despite introducing some vi-
sual artifacts due to warping, this approach works well generally.
It is limited, however, to a static, single user, virtual world (such
as building walk-through). In a dynamic scene (e.g., with multi-
ple moving avatars), the warp image would not have included the
updated avatars, causing these avatars to appear frozen as the view-
point changes.

1.1 Peer-Assisted Rendering
These drawbacks of the existing proposals motivate the need for

a scalable method to support rendering of dynamic scenes from a
complex multi-user virtual environments on a mobile device.

This paper introduces a new technique to reduce the rendering
workload of an assistee, by distributing the rendering tasks to other
clients, or peers, in the same virtual world. We call this approach
peer-assisted rendering. Clients accessing the virtual world are het-
erogeneous in nature. Some clients are running on hosts with good
rendering capabilities (most desktops are equipped with GPU). These
clients can act as assistants, render parts of the scene separately,
and send them to the assistee. We call the partial scene rendered
at the assistants rendering elements. The assistee then merges the
rendering elements to create its view of the scene.

A fundamental question that peer-assisted rendering approach
needs to address is how to split the rendering tasks and what is
a rendering element. In our design, we choose to have three types
of rendering elements, to balance between the rendering load on
the assistee and the assistants, to maintain interactivity, and to min-
imize visual artifacts.

The first type of rendering elements consists in the furthest ob-
jects, the sky, and the ground. These objects are rendered as one
single depth-enabled image by the assistants according to their own
viewpoint. We call this image the background impostor. Since the
assistants are rendering them for their own use in any case, render-
ing the background impostor does not incur much additional over-
head.

The second type of rendering elements consists in the static near
objects. These objects are rendered as individual images by the
assistants. We call these rendering elements the object impostors.
The objects are also rendered according to the viewpoint of the as-
sistants, so it incurs very little additional overhead for them. More-
over, the assistants may already use some of these rendering ele-
ments for themselves (e.g. for rendering shadows, and reflections).
The impostors and the corresponding depth maps are sent to the
assistee, which warps them to its view point.

The final type of rendering elements consists of dynamic objects,
such as other avatars. These objects are rendered locally by the
assistee as “normal” 3D objects.

We now explain how to generate a new rendered image when the
assistee changes its viewpoint. When the viewpoint of the avatar
changes, the background impostors are warped using McMillan and
Bishop’s Image Warping Algorithm [19] and are composed into the
assistee’s background. Since the background impostors consists of
far objects, it changes very little as the viewpoint changes. Warp-
ing the background impostors therefore does not incur much vi-
sual artifacts. If background and near objects are warped from the
same image, however, exposure gaps often appear (holes in back-
ground). These near objects are therefore rendered separately to re-
duce the exposure gaps when the viewpoint changes (the occluded
parts would be rendered by the assistants anyway, c.f. Section 3.1).

Finally, in order to maintain interactivity with other avatars, the as-
sistee renders all other close/dynamic objects itself. This way, their
updates or movements are reflected with minimal delay and maxi-
mal quality at the assistee.

The strengths of peer-assisted rendering are the following. First,
it is more scalable than a server-assisted approach. It uses the ren-
dering capability of other clients of the environment to partially
render the scene on behalf of the assistee. Second, it reuses ren-
dered elements from the assistants. The rendering elements from
the assistants are rendered according to their own viewpoint – and
it is something that they already do anyway. Third, it can adapt to
the rendering capability of the assistee. By tuning the classification
of objects into rendering elements, we can trade off visual artifacts
with the rendering workload at the assistee. Finally, by rendering
the moving avatars locally at the assistee, peer-assisted rendering
maintains the interactivity between the user and the virtual envi-
ronment.

1.2 Contributions
There are many hurdles and research challenges in realizing peer-

assisted rendering practically. In fact, too many to be addressed in
a single paper. This paper, as the first paper introducing this con-
cept, aims to establish a solid case for the efficacy of peer-assisted
rendering. We choose to address two fundamental questions in this
paper: (i) are there enough assistants with similar viewpoints and
common objects to help an assistee? (ii) what is the quality of the
scene rendered at the assistee as user navigates around the scene?

To answer the first question, we analyze mobility and object
traces from a popular NVE named Second Life. We show that there
are surprisingly many avatars with significant overlaps in viewing
frustum, and most assistees can find enough assistants to cover a
large number of objects in their viewing frustum.

To answer the second question, we build a renderer that simu-
lates the peer-assisted rendering process, and show that the result-
ing rendered quality is close to that if rendered fully by the assistee.

1.3 Organization
The rest of this paper is organized as follows. Section 2 presents

relevant past research efforts. Section 3 describes how the render-
ing is done. Section 4 defines two similarity metrics and describes
how assistants are chosen. Section 5 shows the setup and the results
of our experiments. Section 6 presents the results of the Second
Life trace analysis. Finally, Section 7 discusses the challenges for
future work. we conclude in Section 8.

2. RELATED WORK
Navigating through, and interacting with, a large NVE on a mo-

bile phone with limited computational capacity is challenging. The
computational demand to render the 3D scene in NVE leads to low
rendering frame rate. A common technique to improve the frame
rate is to reduce the details of 3D content within the NVE. Pre-
vious work has proposed to simplify the geometry of 3D models
[10] or filter out objects (by making them invisible) on the mobile
client [17]. Despite improving the frame rate, these techniques re-
duce the quality of the rendered scene.

To maintain high level-of-details in the scene and high frame rate
at the same time, server-based rendering schemes, was proposed
[7, 21]. With this approach, the client continuously sends its view-
point to the server. The server renders the 3D scene according to
the client’s viewpoints as a sequence of images, and transmits the
resulting sequence to the client for display as a video stream.

To reduce the bandwidth consumed by transmissions of the ren-
dered scene to the clients, warping-based techniques have been pro-

posed. The idea is that the server transmits only selected rendered
scenes, along with the depth maps of each scene. These rendered
scenes are accurately rendered by the server. The clients interpo-
lates between the rendered scene, by warping the given images to
target viewpoint [5, 2]. Chang and Ger [5] proposed that the server
creates a layered depth image of the scene corresponding to the
mobile client’s viewpoint. The layered image is then transmitted to
the client for warping; layered image gives good result even with
exposure gaps. Bao and Gourlay [2] propose that the clients gen-
erate subsequent frames locally using 3D warping upon receiving
the rendered scene. Differences between the rendered images and
the warped images for the next viewpoint are requested from the
server.

Shi et al. [23] use warping for mobile clients in a slightly differ-
ent context: in their setting, the input data is a 3D video stream.
A dedicated proxy transforms the 3D video into well-chosen 2D
frames and depth maps to be sent to the mobile client. These prox-
ies may distribute the computational problem among various inde-
pendent machines, and move the rendering process closer to the
client, which improves interactivity. The availability of such pow-
erful proxies, however, is not realistic for Internet-based NVE ap-
plications. The latency of the latter setup has been then improved
by warping from multiple images. To get reference images well
suited for warping, a viewpoint prediction algorithm is used [24].
Prediction/prefetching algorithms for server-side image-based pre-
rendering are also studied by Lazem et al. [12].

Another approach is based on pre-rendered panoramic images.
In Boukerche and Pazzi’s system [3], the server receives the mo-
bile user’s viewpoint and warps from a panoramic view in cylin-
drical coordinates for the client. Lei et al. [13] suggested that the
client warps the scene himself from a portion of the panorama. In
both works, a buffering method is proposed for anticipating the pre-
rendering.

Chen et al. [6] propose an on demand image-based networked vi-
sualization method. The client can pull pre-rendered multi-resolution
images from a web-server.

The proposed approaches above are not scalable. The server (or
proxy) either has to render 3D scenes along with real-time video en-
coding for each client according to its successive viewpoints, or has
to pre-render a large database of possible scenes (like panoramic
or movie) to cover the 3D environment. These server operations
are computationally expensive. Hence, an increasing number of
clients may quickly exhaust the server’s capabilities. To allow more
mobile users to connect simultaneously, Lamberti et al. [11] use a
cluster-based rendering farm based on Chromium2 OpenGL imple-
mentation.

To reduce the computing load of the server, some of the work
mentioned [6, 3, 13] propose to buffer some pre-rendered scenes.
Caching may lead to synchronization issues in large scale NVEs,
such as Second Life, where the rendered scenes are dynamic. Even
for the static part of the scenes, it would require the pre-rendering,
and the storage, of huge amounts of images, consuming computing
resources.

Boukerche et al. [4] improve their previous system [3] from a
scalability point of view. The authors use peer-to-peer distribution
to share the images rendered by the server. A peer can find other
peers that visit the same “region of interest” and ask them for im-
ages. The spirit of their work is similar to ours, but using only a sin-
gle image, the technique works best for static scenes. Most other
pieces of work related to P2P techniques in NVEs have stressed
on performing load-balancing for the network and/or server re-

2http://chromium.sourceforge.net/

Figure 1: The frustum-related vocabulary.

sources. One example of P2P optimization for NVEs is Ke and
Zimmermann’s [15] spatialised audio streaming system. They aim
at improving the delivery of audio streams while minimizing the
latency using a P2P bandwidth balancing model. Regarding the
actual 3D objects, Cheng et al. [8] investigate the streaming of pro-
gressive meshes within a P2P NVE. They partition the meshes into
chunks and show how a node can lookup for the provider of a given
chunk. Within the ASCEND project3, Hu et al. [9] considers im-
provements on P2P techniques for sharing 3D content. Their focus,
however, is to share geometric data of the scene and does not con-
cern rendering.

3. ASSISTEE RENDERING
We now elaborate on how the assistee utilizes different rendering

elements from the assistants to produce the rendered scene. We
first briefly review the classical rendering pipeline and introduce
some notations. Then, we detail the concept of warping from a
single image introduced by McMillan and Bishop [19]. The next
subsection explains the partitioning of the scene and defines the
notion of an impostor, as we use it here. Finally, we show the
composition of the different rendering elements and evaluate the
quality and efficiency of the assisted rendering.

3.1 3D Rendering
To establish a common vocabulary for the rest of the paper, we

now briefly explain how 3D rendering is typically done. Rendering
is the process of automatically generating a 2D image from a set
of virtual 3D objects. The set of objects potentially visible from a
given viewpoint is delimited by a volume called the frustum; Figure
1 provides details about the vocabulary related to the viewpoint. As
most users in an NVE have horizontal view directions, our study in
Section 4 uses simplified parameters for the viewpoint definitions:
we consider the position of the user (“eye-point”), his view direc-
tion, and his viewing angle (“horizontal field of view”). In most
NVE applications, the process is implemented in three steps. The
first step, perspective transformation, uses a geometric function to
transform all 3D objects contained in the frustum. Its complexity

3http://ascend.sourceforge.net/

is linear in the numbers of 3D geometric primitives within the frus-
tum. The next step, projection to the 2D screen plane, removes
the depth coordinate. Finally, the rasterisation step converts the
continuous image on the screen plane into a pixel array in the ren-
dered image. The depth value is kept for each pixel, and used to
manage per-pixel occlusions (with the Z-Buffer algorithm). This
per-pixel depth information can be stored as the depth map of the
image and may be used for 3D image warping (c.f. 3.2). Note that
all objects within the frustum are processed through the rendering
pipeline, since occlusions are treated by the last step –Z-Buffer– of
the pipeline. Any object within the frustum of an assistant, even if
occluded, is rendered and may be re-used by the assistee for warp-
ing. Moreover, note that the overall complexity of the rendering is a
linear function of the number of triangles, or polygons, in the scene
for the first two parts (perspective transformation and projection),
and linear in the number of pixels for the rasterization. Of course,
GPUs do implement these operations in parallel on geometric ele-
ments for the first two parts, and on pixels for the rasterization.

3.2 Single Image Warping
We now briefly explain 3D image warping. In the context of

peer-assisted rendering, image warping is used to generate a view
from the camera of the assistee when viewpoint changes, taking
advantage of the depth information kept by standard rendering en-
gines (e.g. OpenGL-based). Exact warping can be done for certain
camera moves: homographies are exact for rotations around the
“eye-point”, or also, for arbitrary motion of a planar object.

The image rendered from a given viewpoint A, associated with
its depth map, contains enough information to re-render (or warp)
adequately all the pixels visible by A from a different viewpoint
B. The correctness of the rendering is up to the quantization of
the image information due to the rasterization step and of the depth
due to its storage in the depth map. Pixels visible from B but not
from A, however, will not be present in the warped image; this cre-
ates well known artifacts called exposure gaps. Exposure gaps may
be thwarted by merging multiple reference images [23]. Mark et
al. [18] present a concise review on these methods and provide a
more elaborated transformation, which depends on more informa-
tion from the rendering process.

Pixels visible from B that are occluded in A may be hidden by a
different object, or by self occlusion. Self occlusion occurs when
the angle between the two view points is more than the change of
normal in the silhouette edge of the object. Although it is hard to
quantify, the number of occlusion due to a different object seem
to be higher than the number of self occlusion in NVE that have a
complex scene with many objects. Therefore, we propose to warp
objects of the scene independently, to reduce the number of expo-
sure gaps caused by object occlusions.

In terms of complexity, 3D image warping is fast since it is linear
in the number of pixels of the image being warped.

3.3 Decomposition of the scene
With the background on 3D rendering and 3D image warping,

we can now elaborate on how the assistee renders its scene. The
assistee partitions the scene into three classes of rendering ele-
ments: background objects, near static objects, and dynamic ob-
jects. These rendering elements can be rendered by different assis-
tants, warped independently, before being combined by the assistee
(Figure 2).

Such partitioning has two main advantages. First, warping static
nearby objects independently from the background significantly re-
duces the number and size of exposure gaps. To understand this,
consider the alternative where the assistant renders the near objects

AssisteeAssistant 1

Assistant 2

Warped and Merged
Background

Warped Object
Imposters

Self-Rendered Objects

AssisteeAssistant 1

Assistant 2

Figure 2: In the upper figure, an assistee may recover the three
(green) objects in his frustum –not drawn entirely for clarity–
from two neighboring peers. Both assistant provide the back-
ground. In the lower figure, the assistee has warped the three
impostors, warped and combined the two backgrounds, and
rendered locally only the dynamic objects –here the two red
little guys– and merged these rendering objects together.

together with the background objects as one impostor. The pixels
corresponding to the background region occluded by the near ob-
jects would not be available when the image is warped, creating an
exposure gap. Rendering the background objects and near objects
as separate images eliminates such exposure gaps. In a way, we are
rendering images with multiple layers, similar to the idea behind
layered depth images [22]. Second, by partitioning the scene into
different rendering elements, the rendering workload can be dis-
tributed to more than one assistants, leading to a more flexible and
scalable solution. Different assistants may be chosen. The choice
of the assistant is discussed in Section 4.

Here is how the partitioning is done. First, objects that are of
distance d and above from the eye-point of the assistee are grouped
together to form the background objects (we use half of the far
plane distance as d in our work). We also force the ground to be
in the background so that it does not suffer from exposure gaps.
Second, static objects that are within distance d from the eye-point
of the assistee are grouped into impostors. Grouping is done using
scene graph – a tree that organizes objects in the scene into a hi-
erarchy based on spatial position of the objects. An impostor is a
rendered image of a group of objects that corresponds to a subtree
in the scene graph. We can adjust how fine we want to partition the
scene by moving up and down the scene graph. In our examples,
we have between 20 and 120 impostors.

Finally, dynamic objects such as avatars that are within distance
d from the eye-point of the assistee form the third partition. These
objects are rendered as 3D objects locally.

3.4 Hybrid Rendering
To generate the rendered scene, the assistee combines the three

classes of rendering elements, two of which are warped, and one is
rendered regularly. The assistee, upon encountering a new object in
its frustum or upon experiencing large visual artifacts in rendering
of an object, sends a request to an assistant based on the assistant
selection algorithm (see Section 4) for the corresponding impos-
tor. The assistant renders the requested objects as an impostor and
sends them, together with the corresponding depth map, to the as-
sistee. The same is done for the background impostor. This hybrid
rendering is illustrated by Figure 2.

Instead of making the assistants generate the impostors accord-
ing to the assistee’s viewpoint, we choose to use warping at the
assistee. The assistee knows the viewpoint of the assistant from
which the impostors come from, and uses this information to warp
them to its own viewpoint. This approach improves the overall
latency for two reasons. First, the assistant does not need to get
updates of the assistee’s viewpoint, which would increase the net-
work round-trips. Second, by reusing the assistants’ depth-enabled
images, the assistee can move in the scene and continue warping
without requiring any additional information.

The scene at the assistee now consists of a warped background,
warped impostors and moving objects within distance d from the
eye-point (including the avatars). The assistee now renders the
scene using regular graphics pipeline. The composition of the three
types of rendering objects is also performed by the last step (Z-
buffer) of the graphics pipeline, using the depth information of the
3D objects of the background and of the impostors.

Figure 3 shows an example that illustrates the whole process and
a ground truth rendered image for comparison.

3.5 Computational Complexity
The complexity of the classical rendering process depends on

both the number of polygons in the scene and the number of pixels
in the screen (Section 3.1). the complexity of a warping pass, how-
ever, depends only on the number of pixels of the warped image.
Thus, the traditional 3D graphics pipeline does not benefit much
from the smaller display size of a mobile device, whereas warp-
ing does [19]. The complexity of warping is comparable to the
complexity of the rasterization step of 3D rendering. Hence, when
warping an object, the time spent in the perspective transformation
step and the projection step is saved, compared to 3D rendering.
Moreover, grouping the objects simplifies warping further: in 3D
rendering, objects are rasterized independently, whereas objects be-
ing warped together lead to a single pass on the pixel array. In par-
ticular, warping the background objects into a single image avoids
considering the objects that are far away one-by-one. Note the res-
olution of the grouping (how many objects per impostors) may be
chosen: more object per impostors leads to less impostors, which
lowers the complexity of the rendering at the expense of more vi-
sual artifacts (exposure gaps).

4. ASSISTANCE
The goal of this study is to prove the concept for peer-assisted

rendering. We consider the scheme where a mobile device prof-
its from rendering work already done, and cached, by other peers.
The assistee will have to build its view of the scene by using im-
age warping from the rendering results (object images) from other
viewpoints (c.f. Section 3). Therefore, the assistee needs to find
other peers that can provide him with, at least, partial rendering re-
sults corresponding to his viewpoint, i.e., other peers that see a part
of what he sees. In order to show that this peer-assisted scheme
is viable in the current usage of Second Life, we need to define

View of The Assistant 1 View of The Assistant 2

Warped backgrounds

Target view
(ground truth)

Merged View
(with error concealment)

Merged background

Warped objects

Rendered view
(assistee's result)

Self-rendered
3D Object

Figure 3: An example of hybrid rendering at the assistee: As-
sistant 1 provides the impostors and a part of the background,
Assistant 2 provides a complementary part of the background,
and the dynamic object (the avatar) is rendered locally.

notions of similarity for avatar views. In the remaining of this sec-
tion, we build two similarity criteria which reflect how much the
assistant may help with object images or for background warping.

4.1 Quantifying View Similarity
We define similarity metrics as a measure between the assistee

and a set of candidate assistants. These metrics measure the capac-
ity of a set of potential assistants in providing the objects impostors
and background to the assistee. We define two similarity measures,
object similarity and viewpoint similarity, below.

We first define the notion of object similarity between an assis-
tant and an assistee. This similarity measure counts the ratio of the
number of objects that falls into the viewing frustum of both the
assistant and the assistee, to the number of objects in the viewing
frustum of the assistee. The idea here is that, if an object falls into
the frustum of the assistee, it is needed by the assistee, and if it
also falls into the viewing frustum of the assistant, then it can be
rendered as an impostors by the assistant.

There is an additional factor to consider, however. The impostor
would not be helpful to the assistee if the difference in the viewing

Figure 4: Pairs of 2D viewpoints and their overlapping area
ratios. Viewpoint similariry is computed by filtering with the
angle between viewing directions.

angle of the assistant and assistee to the object is large. Warping of
the impostor in this case would generate large visual artifacts. In
the worst case, the assistant and assistee could be facing each other
with the object in between. In this case, the impostor from the
assistant would be useless. As such, we filter out assistants whose
differences in viewing angle with respect to the assistee’s viewing
angle is larger than a threshold, and set the similarity to zero.

This metric naturally generalizes to more than one candidate as-
sistant, by considering the number of object shared between the as-
sistee and any of the candidate assistants, thus taking into account
the complementarity of the assistants.

The object similarity is indicative of the amount of data that can
be shared between the assistant and the assistee, but it involves
point in polygon query, which could be expensive, especially on the
assistee that is already resource-constraint. We introduce another
similarity measure that is easier to calculate and approximate the
object similarity, called viewpoint similarity. Viewpoint similarity
computes the area of the intersection between the view frustum of
the assistant and the assistee.

To compute viewpoint similarity, we only consider 2D view frus-
tum in the xy-plane. We ignore the z-angle, the angle between
the vector z_camera and the horizontal plane (c.f. Figure 1),
since most users have a horizontal viewing direction. We also ig-
nore the near-plane. Hence, the 2D viewpoint of a peer is modeled
by a triangle: the position is the vertex, facing the edge projec-
tion of the far-plane, and the two remaining edges are defined
by the sides of the 3D frustum (see Figure 4).

Two viewpoints are then compared using the overlapping area
between two 2D viewpoints, that is, the projection of the “intersec-
tion volume” on the horizontal plane (c.f. Figure 1). We compute
the similarity as the ratio between the overlapping area and the area
of the assistee. The similarity for a pair of avatars thus ranges be-
tween 0 and 1, with 1 representing the same viewpoint (c.f. Fig-
ure 4).

As in object similarity, we set the similarity between two avatars
to zero when the angle between their view directions is larger than
a threshold (we use the default horizontal FOV setting in Second
Life, which is 91 degree). To extend this metric to multiple assis-
tants, we compute the intersection between the assistee’s 2D view-
point and the union of all assistants’ 2D viewpoints whose viewing
angle lies within the threshold.

In Section 6, we show that the viewpoint similarity is very close
to object similarity, thus, we use only viewpoint similarity to select
the assistants, as explained in the next section.

4.2 Selecting Assistants
We now formally define how an assistee can determine which

assistant(s) to use, using viewpoint similarity as the metric.
Let a be the assistee, and A be the set of candidate assistants in

the system, whose difference in viewing angle with respect to the

Figure 5: Position and Viewing Direction of Assistants.

viewing angle of the assistee is below the given threshold. Define
V S(a,S), where S ⊆ A is a subset of A , as the viewpoint simi-
larity between the assistee a and the assistants in S . The assistant
selection problem can be defined as follows: Given a and A , find

Smax = argmax
S⊆A

V S(a,S)

A naive approach would involve enumerating all the possible
subsets of A , which takes exponential time. Instead, we choose
to use a O(kn) greedy algorithm to approximate S , where k is the
number of assistants chosen, and n is the size of A . The algo-
rithm works as follows. First, the assistee sets S to empty. It then
picks the assistant such that the addition of this assistant to the set
S would increase the value of V S(a,S) the most. It repeats either
until we have k assistants in S , until the value of V S(a,S) is larger
than V Sth, or until S does not increase after increasing k by one.

The next section shows the efficiency of the proposed selection
for finding good assistants.

5. RESULTS

5.1 Experimental Setup
We now present the rendering results from a scene in Second

Life using peer-assisted rendering, with assistants selected using
our greedy algorithm. Our goal here is to establish the efficacy of
peer-assisted rendering through a simple, illustrative experiment.

We modified the Second Life client to include a user interface to
position assistants in a Second Life region. This modification al-
lows our experiment to be reproducible. We changed the rendering
pipeline of Second Life so that it is capable of partially render a
scene as background and object impostors.

In our experiments, we placed 10 assistants into a region named
Mauve in Second Life. The impostors rendered by these assistants
are stored and used in our assistee simulator. The location and
viewing direction of the assistants are shown in the map in Figure 5.

The assistee simulator is a rendering client that we developed.
This simulator simulates peer-assisted rendering by receiving, as
input, the positions, the viewing parameters, and the impostors ren-
dered by the assistants. The simulator then renders the scene in
real-time. User can navigate in the virtual environment by interact-
ing through the keyboard. For each frame, the simulator runs the
assistant selection algorithm, and picks the best assistants out of the
10 candidates. Once the best assistants are chosen, the simulator
renders the scene by warping the impostors, composting the warped
impostors, concealing the errors in the resulting frame, mixing in
the 3D objects, and finally displaying the result.

Figure 6: Rendering results with different number of assistants and the ground truth. From Left to Right: one assistant, three
assistants, five assistants, ground truth.

Figure 7: Rendering results with different viewpoint similarities and the ground truth. From Left to Right: 0.6, 0.8, 1.0, ground
truth.

5.2 Rendering Results
We present here the rendering results at the assistee. To un-

derstand the effect of the number of assistants and to validate the
viewpoint similarity criteria between the assistants and assistee, we
show the rendering results when different number of assistants are
chosen and when a different similarity threshold is used.

Figure 6 shows the rendering results of the first frame if the assis-
tant selection algorithm chooses 1, 3, and 5 assistants respectively.
The ground truth is also shown for comparison. As expected, as
the number of assistants chosen increases, the amount of visual ar-
tifacts reduces. Interestingly, with one assistant only, the majority
of the impostors and a large part of the background are rendered
properly already. This observation supports the usefulness of view-
point similarity and our assistant selection algorithm.

Figure 7 shows the rendering results if the assistant selection al-
gorithm stops running when the viewpoint similarity threshold ex-
ceeds a given value (V Sth = 0.6, 0.8 and 1.0). A threshold of 1.0
means that the assistant selection algorithm stops only after it fails
to find any assistant that can improve the similarity. Here, we can
visually quantify the impact of viewpoint similarity, even for im-
postors. As viewpoint similarity increases, the amount of visual
artifacts reduces. Even with a viewpoint similarity of 1.0, however,
we still have visual artifacts due to warping. Three kind of visual
artifacts are visible: sampling issues (e.g., on the ground), expo-
sure gaps (corresponding to white pixels on the image), and syn-
chronisation issues (e.g., on the TV wall). Whereas exposure gaps
issues are inherent to warping (as discussed in Section 3.1), we see
here that using multiple assistants reduce significantly these issues.
For sampling, many papers have addressed this resolution problem
in the context using splatting, meshing [18] or more sophisticated
modeling like LDI trees (e.g., [22]). The error concealment using
splatting is illustrated on Figure 3. In the future, we want to take
advantage of our object-based implementation for solving the sam-
pling issue. The last issue causing the mixed images on the TV
screens could be solved by changing the similarity metric to favor
updated assistants.

We now show the result of our peer-assisted rendering on this set
of 10 assistants, with k = 10 and V Sth = 1. Our assistee navigates

through the scene as a user controls its trajectory. In this sequence,
we are able to get an average similarity of 0.9. The number of
assistants used varies between 3 and 6 (average is 4.1) depending
on the position of the assistee.

Figure 8 shows the rendered results for every 20 frames. The
exposure gaps appearing in the sequence are due to the quantization
of the rasterization, and could be solved by a more careful (and a
little more complex) warping. Note however that no exposure gap
due to occlusion between objects occurs, as in the classical warp
from a single image.

5.3 Communication Overhead
We now discuss the communication overhead incurred by peer-

assisted rendering. Using our proposed approach, the data traffic
from the assistants to the assistee consists of rendering elements,
which are sent only when the set of chosen assistants changes. Fur-
ther, the rendering elements of background objects and static near
objects can be cached and reused. Thus, when the assistee moves
slowly in the NVE (e.g., walking), new rendering elements are sent
infrequently and the communication overhead is kept small.

Using video-based server-assisted rendering approaches [7, 21],
the server continuously sends the rendered scene as a video to the
assistee. Thus, the communication cost increases with time.

In our experiment above, we navigate the assistee in the vicin-
ity of the assistants for about 1.5 minutes, generating a total of
2328 frames. Compressing these frames as a high quality MPEG-4
video4 yields a 14 MB video. On the other hand, the navigation
of the assistee causes all 10 assistants to eventually send their im-
postors and associated depth maps to the assistee. We compressed
the impostors using JPEG and the depth maps using lossless fpzip
[16], resulting in total data size of only 2 MB. Figure 9 shows the
cumulative communication overhead over time in our experiment
for the first 1000 frames. For peer-assisted rendering, the overhead
is bursty – a large burst of data is sent when a new assistant is cho-
sen. The rendering elements, however, can be cached and reused to

4We use mencoder with variable bit rate option, average bit rate of
500 kbps, 10 frames per GOP, and no B-frames.

Figure 8: Every 40 frames of an image sequence generated by hybrid rendering: background, and nearby objects are warped, both
avatars are rendered locally. The second row shows the corresponding ground truth images.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700 800 900 1000

C
u
m

u
la

ti
v
e
 D

a
ta

 T
ra

n
s
m

it
te

d
(K

B
)

Frames

Peer Assisted Rendering
Video-Based Approach

Figure 9: Cumulative communication overhead.

render a new frame if no new assistant is chosen. Thus, the com-
munication overhead remains flat most of the time.

6. ANALYSIS OF SECOND LIFE TRACES
Having established the efficacy of distributed rendering, we now

focus on answering another fundamental question. Will there be
enough supply of assistants with common viewpoints or objects?
To answer this question, we analyze a large collection avatar traces
from Second Life to study the viewpoint similarity and object sim-
ilarity between the avatars from a real, popular virtual world.

The traces are collected following similar procedure as those de-
scribed by Liang [14]. There are two separate groups of experi-
ments, one to collect avatar mobility traces, and the other to collect
object traces. The collection of avatar mobility traces is conducted
with a customized, command-line based, Second Life client that
acts as a bot. We placed this bot in the region in which we want
to collect the avatar mobility traces. The bot receives state updates
from the server. These updates contain the position and viewing
direction of each avatar. These information are logged by the bot
every 10 seconds. The collection of object traces are done by mov-
ing the bot systematically in a region. As the bot receives new
objects information from the server, it logs the position the objects.

We use traces from three regions in Second Life: Sunland, Japan
Resort, and Freebies. We choose a one-hour period to analyze in
this paper. Previous analysis of traces in Second Life have shown
little hour-to-hour variability in the characteristics of the avatar mo-
bility. Basic trace information is summarized in Table 1, showing

the number of records (each record contains information about one
avatar at one time instance) and the number of unique avatars (how
many unique avatars visited the region within the trace period) for
the time period.

We calculate the distribution of similarity between the avatars as
follows. We explain the steps for viewpoint similarity, but the steps
for object similarity is the same.

For each region, for each time t in the trace, and for each avatar
a that appears in time t in the trace, we do the following. We com-
pute the viewpoint similarity between this avatar a and all the other
avatars in the region at time t, and find the avatar with the highest
viewpoint similarity with a. In other words, we find the highest
viewpoint similarity over all possible pairs (a, i) where i 6= a. Let’s
denote this maximum value of viewpoint similarity as V Smax(a, t).
We then average V Smax(a, t) over all time t where a exists in the re-
gion during the period of analysis to obtain the average maximum
viewpoint similarity V̄ Smax(a) for each avatar a. We plot the CDF
for V̄ Smax(a) for the three regions in Figure 10.

In the same figure, we also plotted the CDF for average maxi-
mum viewpoint similarity for each avatar a and two other avatars,
and similarly, for three other avatars. The sets of two or three
avatars are considered exhaustively since we want here to prove the
existence of good potential assistants –unlike in Section 5 where a
greedy strategy is preferred to limit the computation time.

The results can be interpreted as follows. Take Japan Resort for
example. Consider an assistee that uses k assistants. If k is 1, then
on average, more than 20% of the avatars have an assistant that has
viewpoint similarity of about 0.7. If two assistants are used (k = 2),
then every avatar can find two assistants with combined viewpoint
similarity of 0.85 or above. Following this interpretation, for all
three regions that we analyzed, we can see that there is a significant
amount of avatars with high viewpoint similarity, especially if we
use two assistants. In all cases, more than half of the avatars can
find two assistants with viewpoint similarity above 0.6.

Figure 10 also indicates that, as the number of assistants cho-
sen increases to three, the improvement in the viewpoint similarity
is limited, and in some cases, even reduces. The decrease is be-
cause for some assistees only two candidate assistants are passing
the filtering on viewing angle difference: the number of samples
for best-2 and best-3 is thus different.

The second row of Figure 10 plots the object similarity (defined
in Section 4.1), calculated for a set of two or three assistants the
same way as for the viewpoint similarity. We can see that half of

Region Name Date/Time Collected Number of Records Number of Unique Avatars
Freebies 12:00, 23 January 2011 5786 71

Japan Resort 12:00, 23 January 2011 5912 61
SUNLAND 12:00, 23 January 2011 2516 53

Table 1: Information on Second Life Traces Used

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
a

b
ili

ty
 (

C
D

F
)

Similarity

Japan Resort 12:00:00 Average Best-N-Peers Viewpoints Similarity

Best-1-Peers Sml
Best-2-Peers Sml
Best-3-Peers Sml

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
a

b
ili

ty
 (

C
D

F
)

Similarity

SUNLAND 12:00:00 Average Best-N-Peers Viewpoints Similarity

Best-1-Peers Sml
Best-2-Peers Sml
Best-3-Peers Sml

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
a

b
ili

ty
 (

C
D

F
)

Similarity

Freebies 12:00:00 Average Best-N-Peers Viewpoints Similarity

Best-1-Peers Sml
Best-2-Peers Sml
Best-3-Peers Sml

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
a

b
ili

ty
 (

C
D

F
)

Similarity

Japan Resort 12:00:00 Average Best-N-Peers Objects Similarity

Best-1-Peers Sml
Best-2-Peers Sml
Best-3-Peers Sml

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

b
a

b
ili

ty
 (

C
D

F
)

Similarity

SUNLAND 12:00:00 Average Best-N-Peers Objects Similarity

Best-1-Peers Sml
Best-2-Peers Sml
Best-3-Peers Sml

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
a

b
ili

ty
 (

C
D

F
)

Similarity

Freebies 12:00:00 Average Best-N-Peers Objects Similarity

Best-1-Peers Sml
Best-2-Peers Sml
Best-3-Peers Sml

Figure 10: CDF for Viewpoint (top) and Object Similarity (bottom) for three regions: Japan Resort (left), SUNLAND (center),
Freebies (right).

the assistee have an average of at least 0.5 object similarity with the
best assistant, and this value improves to at least 0.7 if the assistee
uses two assistants. In other words, two assistants can provide im-
postors for 70% of the objects half of the time. Just like viewpoint
similarity, as we increase the number of assistants, the object simi-
larity does not improve dramatically.

These trace analysis shows that in a practical NVE, even when
there are only tens of avatars in a region, it is feasible to find enough
peers that share similar viewpoint and a common set of objects in
the viewing frustum, which is one of the fundamental conditions for
peer-assisted rendering to be practical. This result further supports
the efficacy of the peer-assisted rendering.

7. RESEARCH CHALLENGES
We have presented a first case for using peer assistance in ren-

dering complex dynamic 3D scenes on mobile devices, showing
clearly that there are supply of peers with similar viewpoint in a
popular NVE, and a simplified rendering can yield good quality. In
this section, we want to point out the coming challenges for push-
ing the idea of peer-assisted rendering further.

Our work did not consider yet the transmission issues. Band-
width, loss rate, and latency between the assistee to a chosen as-
sistant can effect the interactivity and rendering quality at the as-
sistee, and need to be considered. Thus, the overall system needs
to trade off among: (C1) computational cost on the assistee, (C2)
quality of the rendered scene on assistee, (C3) the quality of the
assistant, (C4) the resources at the assistant, and (C5) bandwidth
requirements. In this paper, we have started addressing the con-
straints (C1) and (C2) on the assistee. For (C1), the proposed
rendering scheme based on rendering elements is already flexible
since the grouping strategy can be adapted. Different rendering el-
ements could easily be added (e.g., billboards) for objects that are

flat enough. For (C2), we have shown that the quality of the ren-
dered images is satisfying. The frame rate, and its dependence to
the rendering solution needs to be studied. In particular, we could
imagine adapting the rendering to meet a minimum frame rate re-
quirement, considering other characteristics of the assistant(s) and
the network. For choosing the assistant (C3), we have proposed
a metric based on geometric properties (position, frustum) of the
assistant(s) relative to the assistee. These metrics extend to a set
of assistants, which is important since covering the background is
necessary for a complete representation of the scene. We have also
shown that this geometric similarity approximates well enough the
object metric proposed, and thus is usable for choosing assistant
for impostors. Other characteristics of the assistant, such as avail-
ability in terms of resources (C4), could be taken into account. If
the assistant has spare CPU or GPU cycles, we could then let the
assistant warp for the assistee (or perform 3D rendering for the as-
sistee). In that case, the assistee will have to send in its geometric
parameters (position, frustum) and the assistant may have to down-
load some part of the scene he is not seeing himself. Finally, the
network conditions have to come into play. Synchronization issues,
due to network latency, will occur and have to be measured. The
network proximity (RTT) could also contribute to the metric mea-
suring the quality of an assistant. More generally, network con-
ditions could drive the strategy of the assistee: keep warping the
background from an image received at a previous cycle if the net-
work bandwidth is low.

These criteria (C1 – C5) are often incompatible with each other.
Trading off these different criteria is non-trivial and is the next step
that our research will undertake.

Other open issues in peer-assisted rendering include incentives
and security. We have assumed that assistants are honest and al-
truistic. In practice, users need incentives to contribute bandwidth

and rendering capacity to help other users. One approach could be
to reward the assistants with virtual money (e.g., Linden Dollars in
Second Life), either from the server or from the assistee. Another
interesting issue is security. Such peer-assisted scheme needs to
be robust against malicious users. A malicious rendering assistant
may provide the wrong scene to the assistee, making the NVE un-
usable to the assistee. A malicious assistee might seek assistance
from other users even though it might not need it, wasting the re-
sources of the other users (a denial of service attack). Preventing
malicious assistant and assistee are interesting open issues that we
plan to look into in the future.

8. CONCLUSION
We have proposed a method for easing the access to NVE with a

device with limited rendering capacities. Our approach is scalable:
rendering assistance comes from other peers. It is also tunable:
we can adjust the classification of the rendering elements to allow
a trade-off between rendering quality and computational cost. We
first show through an experimental setup that our approach provides
satisfying rendering quality and a lower complexity for the assistee
while keeping low overhead for the assistants. Then, by analyz-
ing traces from Second life, we show that the density of avatars
is sufficient to insure a high probability of finding an appropriate
rendering assistant.

9. REFERENCES
[1] P. Bao and D. Gourlay. A framework for remote rendering of

3-D scenes on limited mobile devices. IEEE Trans. on
Multimedia, 8(2):382 – 388, April 2006.

[2] P. Bao and D. Gourlay. Collaborative walkthrough using 3D
warping. In Proceedings of ICCCE ’08, pages 1110–1115,
Kuala Lumpur, Malaysia, 2008.

[3] A. Boukerche and R. W. N. Pazzi. Remote rendering and
streaming of progressive panoramas for mobile devices. In
Proceedings of ACM MULTIMEDIA ’06, pages 691–694,
Santa Barbara, CA, USA, 2006.

[4] A. Boukerche, R. Werner, and N. Pazzi. A peer-to-peer
approach for remote rendering and image streaming in
walkthrough applications. In Proceedings of IEEE ICC ’07,
pages 1692 –1697, june 2007.

[5] C.-F. Chang and S.-H. Ger. Enhancing 3D graphics on
mobile devices by image-based rendering. In Proceedings of
IEEE PCM ’02, pages 1105–1111, London, UK, 2002.

[6] J. Chen, I. Yoon, and W. Bethel. Interactive, internet delivery
of visualization via structured prerendered multiresolution
imagery. IEEE Trans. on Visualization and Computer
Graphics, 14(2):302–312, 2008.

[7] L. Cheng, A. Bhushan, R. Pajarola, and M. E. Zarki.
Real-time 3D graphics streaming using MPEG-4. In Proc. of
the IEEE/ACM Workshop on Broadband Wireless Services
and Applications, 2004.

[8] W. Cheng, D. Liu, and W. T. Ooi. Peer-assisted
view-dependent progressive mesh streaming. In Proceedings
of ACM MULTIMEDIA ’09, pages 441–450, Beijing, China,
2009.

[9] S.-Y. Hu. A case for 3D streaming on peer-to-peer networks.
In Proceedings of Web3D ’06, pages 57–63, Columbia,
Maryland, 2006.

[10] H. Z. Jie Feng. Efficient view-dependent LOD control for
large 3D unclosed mesh models of environments. In
Proceedings of IEEE ICRA ’04, pages 2723–2728, 2004.

[11] F. Lamberti, C. Zunino, A. Sanna, A. Fiume, and
M. Maniezzo. An accelerated remote graphics architecture
for PDAs. In Proceedings of Web3D ’03, pages 55–ff, Saint
Malo, France, 2003.

[12] S. Lazem, M. Elteir, A. Abdel-Hamid, and D. Gracanm.
Prediction-based prefetching for remote rendering streaming
in mobile virtual environments. In IEEE Intl. Symp. on
Signal Processing and Information Technology, pages 760
–765, December 2007.

[13] Y. Lei, Z. Jiang, D. Chen, and H. Bao. Image-based
walkthrough over Internet on mobile devices. In Proc. of
Grid and Cooperative Computing, pages 728–735, 2004.

[14] H. Liang, R. N. Silva, W. T. Ooi, and M. Motani. Avatar
mobility in user-created networked virtual worlds:
measurements, analysis, and implications. Multimedia Tools
and Applications, 45(1-3):163–190, 2009.

[15] K. Liang and R. Zimmermann. Cross-tree adjustment for
spatialized audio streaming over networked virtual
environments. In Proceedings of NOSSDAV ’09, pages
73–78, Williamsburg, VA, USA, 2009.

[16] P. Lindstrom and M. Isenburg. Fast and efficient compression
of floating-point data. IEEE Trans. on Visualization and
Computer Graphics, 12:1245–1250, September 2006.

[17] J. Lluch, R. Gaitan, E. Camahort, and R. Vivo. Interactive
three-dimensional rendering on mobile computer devices. In
Proceedings of ACM SIGCHI ’05, pages 254–257, 2005.

[18] W. R. Mark, L. McMillan, and G. Bishop. Post-rendering 3D
warping. In Proceedings of I3D ’97, pages 7–ff., Providence,
RI, 1997.

[19] L. McMillan and G. Bishop. Plenoptic modeling: an
image-based rendering system. In Proceedings of
SIGGRAPH ’95, pages 39–46, 1995.

[20] B. Mochocki, K. Lahiri, and S. Cadambi. Power analysis of
mobile 3D graphics. In Proc. of the Conf. on Design,
Automation and Test in Europe, pages 502–507, Munich,
Germany, 2006.

[21] Y. Noimark and D. Cohen-Or. Streaming scenes to MPEG-4
video-enabled devices. IEEE Computer Graphics and
Applications, 23(1):58–64, 2003.

[22] J. Shade, S. Gortler, L.-w. He, and R. Szeliski. Layered depth
images. In Proceedings of SIGGRAPH ’98, pages 231–242,
1998.

[23] S. Shi, W. J. Jeon, K. Nahrstedt, and R. H. Campbell.
Real-time remote rendering of 3D video for mobile devices.
In Proceedings of ACM MULTIMEDIA’09, pages 391–400,
Beijing, China, 2009.

[24] S. Shi, M. Kamali, K. Nahrstedt, J. C. Hart, and R. H.
Campbell. A high-quality low-delay remote rendering
system for 3D video. In Proceedings of ACM MULTIMEDIA
’10, pages 601–610, Firenze, Italy, 2010.

[25] W. Shi, Y. Lu, Z. Li, and J. Engelsma. Scalable support for
3D graphics applications in cloud. In Proceedings of IEEE
CLOUD ’10, pages 346–353, 2010.

[26] A. Sterkin. Interactive 3D streaming. Research@Intel Blog,
June 2008. Retrieved 1 April 2010.

