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Abstract. Object tracking is commonly used in video surveillance, but
typically video with full frame rate is sent. We previously have shown
that full frame rate is not needed, but it is unclear what the appropri-
ate frame rate to send or whether we can further reduce the frame rate.
This paper answers these questions for two commonly used object track-
ing algorithms (frame-differencing-based blob tracking and CAMSHIFT
tracking). The paper provides (i) an analytical framework to determine
the critical frame rate to send a video for these algorithms without them
losing the tracked object, given additional knowledge about the object
and key design elements of the algorithms, and (ii) answers the questions
of how we can modify the object tracking to further reduce the critical
frame rate. Our results show that we can reduce the 30 fps rate by up
to 7 times for blob tracking in the scenario of a single car moving across
the camera view, and by up to 13 times for CAMSHIFT tracking in the
scenario of a face moving in different directions.

1 Introduction

Object tracking is a common operation in video surveillance systems. However,
given an object tracking algorithm, it is unclear what frame rate is necessary
to send. Typically, video is sent at the rate of full video camera capacity, which
may not be the best option if network bandwidth is limited.

Previously, we have shown in [1] that frame rate can be significantly reduced
without object tracking losing the object. We found that the critical frame rate
for a given algorithm depends on the speed of tracked object. The simple way
to determine the critical frame rate is to run algorithm on a particular video se-
quence, dropping frames and noticing which rate causes the algorithm to lose the
object. Such approach however is not practical, because objects in real surveil-
lance videos move with different speeds, and the critical frame rate therefore
should depend on this parameter. We suggest finding critical frame rate using
analysis based on the algorithm’s key design elements (specific object detection
and tracking mechanism) and measured speed and size of the tracked object.

In this paper, we focus on two tracking algorithms, blob tracking algorithm
that relies on frame differencing and foreground object detection by Li et al. [2]
as well as Kalman filter for tracking; and CAMSHIFT algorithm [3], in which ob-
jects are represented as color histograms, and tracking is performed using mean
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Fig. 1. Dropping i out of i + j frames. i is the drop gap.

shift algorithm. We present an analytical framework formalizing the dependency
between video frame rate and algorithms’ accuracy. We estimate critical frame
rate using analysis with assumption of known speed and size of the tracked
object. Guided by the estimation, we slightly modify these tracking algorithms
making them adaptive and more tolerant to the videos with even lower frame
rate.

In Section 2, we present analysis of the critical frame rate for object track-
ing. In Section 3, we demonstrate how the dependency between frame rate and
accuracy can be estimated specifically for the blob tracking. We also specify the
critical frame rate for this algorithm. In Section 4, we present similar analy-
sis for CAMSHIFT tracking. In Section 5, we show how, using our estimations
and measurement of speed and size of the tracked object, we can modify these
tracking algorithms adapting them to the reduced frame rate. Section 6 ends the
paper with conclusion and future works.

2 General Analysis

We degrade temporal video quality by applying the dropping pattern “drop i
frames out of i+j frames”, where i is drop gap, and j is the number of consecutive
remaining frames (see Figure 1). Note that the same frame rate can correspond to
two different dropping patterns, for instance, dropping 2 out of 3 frames results
in the same frame rate as dropping 4 out of 6 frames. The reason for choosing
such dropping pattern is because we found that drop gap is more important
factor for the performance of the tracking than simply a frame rate. Therefore,
instead of critical frame rate, we focus on finding critical drop gap, which would
determine the corresponding frame rate.

First, we present an estimation of the critical drop gap for an object track-
ing algorithm without taking into account the specific method of detection and
tracking. For simplicity, consider a video containing a single moving object, which
can be accurately tracked by the algorithm. We can notice that dropping frames
affects the speed of object. Since video is a sequence of discrete frames, the speed
of object can be understood as a distance between the centers of object posi-
tions in two consecutive frames, which we call inter-frame speed denoted as Δd.
Without loss of generality, we can say that for every object tracking algorithm
there exists a Δd̃ such that, if object moves for a larger distance than Δd̃, the
algorithm loses it.



Δx0

original video drop gap i = 1

Fig. 2. The schema of the difference between object foreground detection for original
video and for video with dropped frames.

Let Δd0 be the maximal inter-frame speed of the object in the original video,
when no frame dropping is applied yet. If we drop frames with drop gap i = 1,
the new maximum inter-frame speed can be approximated as Δd1 = 2Δd0.
Then, for general frame dropping pattern, Δdi = (i + 1)Δd0. Assume we know
the original speed of the object and the algorithm’s threshold Δd̃. Then, we can
compute the maximum number of consecutive frames that can be dropped, i.e.,
critical drop gap ĩ, as

ĩ =
Δd̃

Δd0
− 1. (1)

3 Blob Tracking Algorithm

For blob tracking algorithm, due to frame differencing detection, the value ĩ
depends on the size and the speed of tracked object. If too many consecutive
frames are dropped, the object in the current frame appear so far away from
its location in the previous frame that the frame differencing operation results
in detecting two separate blobs (see Figure 3(b)). Such tracking failure occurs
when the distance between blob detected in the previous frame and blob in the
current frame is larger than the size of the object itself. Therefore, this distance
is the threshold distance Δd̃. To determine its value, we need to estimate the
coordinates of the blob center in the current frame, which depend on its location
and size in the previous frame.

In this analysis, we assume a single object monotonously moving in one di-
rection. Although this assumption considers only a simplified scenario, many
practical surveillance videos include objects moving in a single direction towards
or away from the camera view. Also, such movements of the object in cam-
era’s view as rotating or only changing in size (when object goes away/towards
camera view but does not move sideways) do not have a significant effect on
frame differencing object detection. We also assume, without loss of generality,
that the object moves from left to right with its size increasing linearly. The
assumption allows us to consider only changes in coordinate x, and width w.



(a) Detected foreground object with
drop gap 14 frames. PETS2001 video.

(b) Binary mask of the frame in 3(a). Ef-
fect of drop gap on frame differencing.

Fig. 3. The foreground object detection based on frame differencing.

Increase/decrease in size is important because when tracked objects approach or
move away from the camera, their size changes. In practice, when object moves
in both x and y coordinates, the overall critical drop gap would be the minimum
of the two values estimated for corresponding coordinates.

Consider the original video when no frames are dropped. We assume the
average distance between fronts of the blob when it shifts from the previous
frame to the current frame is Δx0. We consider the front of the object because
it is more accurately detected by frame differencing. When frame differencing
is used, the resulted detected blob is the union of the object presented in the
previous and current frames (see Figure 3(b)). Therefore, when we drop frames,
the width of the blob in the frame following after the drop gap will be larger
than that in the original video sequence (see Figure 2 for illustration). However,
the front of the blob would be detected in the same way as in the original video.

Since frame dropping affects size of the detected object, we consider average
change in size as Δw0. The superscript indicates the size of the drop gap, which
is 0 when frames are not dropped. Assume that x0

k is x-coordinate of blob’s
center in k-th frame, then, we can estimate its coordinate in the frame k + i + 1
as following,

x0
k+i+1 = x0

k + (i + 1)Δx0 − (i + 1)
Δw0

2
. (2)

If i frames are dropped after frame k, the detected blob in the k+ i+1 frame
is the union of actual object appearing in frames k and k + i + 1 (as Figure 2
illustrates). Then, the width difference (wi

k+i+1/2−w0
k/2) can be approximated

as (i + 1)Δx0/2. Therefore, the blob’s center in the k + i + 1 frame can be
estimated as,

xi
k+i+1 = xi

k + (i + 1)Δx0 − (i + 1)
Δx0

2
= x0

k + (i + 1)
Δx0

2
, (3)

since xi
k = x0

k.



As was mentioned, Δd̃ = |xĩ
k+ĩ+1

− xĩ
k|, where ĩ indicates the critical drop

gap. The failure of the blob tracking implies that Δd̃ = w0
k, where value w0

k

is the width of the blob detected in frame k. Therefore, from equation (3), we
obtain w0

k = Δd̃ = (̃i + 1)Δx0

2 , from which we can find the critical drop gap to
be

ĩ =
2w0

k

Δx0
− 1. (4)

In practice, values w0
k and Δx0 can be determined by either keeping the history

of speed and size of tracked object or by estimating their average values for a
particular surveillance site.

In addition to the estimation of the critical drop gap for blob tracking, we
can estimate the dependency function between accuracy of the algorithm and
video frame rate. Such estimation is possible because of the way drop gap affects
the accuracy of the frame differencing object detection algorithm used in blob
tracking. We can define blob detection error for a particular frame as the distance
between blob centers detected in this frame for the degraded video (with dropped
frames) and the original video. Then, the average error, denoted as εij , is the
average blob tracking error for all frames in the video. This εij function can
be used as accuracy metric for the blob tracking depicting the tradeoff between
tracking accuracy and video frame rate.

Using equations (2) and (3) we can estimate the blob tracking error for k+i+1
frame as following,

∣
∣xi

k+i+1 − x0
k+i+1

∣
∣ = (i + 1)

∣
∣
∣
∣
∣

(
Δx0 − Δw0

)

2

∣
∣
∣
∣
∣
= (i + 1)C, (5)

where constant C ≥ 0 depends on the size and the speed of object in the original
video.

Since we apply the dropping pattern “drop i frames out of i + j frames”, we
need to estimate the blob tracking error for each of the remaining j frames in the
video. There is no error in detecting blob for j − 1 frames that do not have drop
gap in front of them, i.e., for these frames, the result of the frame differencing
would be the same as in original video with no dropping. Therefore, the average
error for all j frames is the error estimated for the frame, which follows the drop
gap (equation (5)) divided by j:

εij =
i + 1

j

∣
∣
∣
∣
∣

(
Δx0 − Δw0

)

2

∣
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∣
=

i + 1
j

C. (6)

Note the important property of this function that the average error is propor-
tional to i and inversely proportional to j.

We performed experiments to validate the estimation of the average blob
tracking error εij . We use several videos from ViSOR video database, PETS2001
datasets, as well as videos we shot on campus with a hand-held camera (example
screenshots in Figure 3(a), Figure 4(c), and Figure 4(d)). Videos include moving



(a) Fast moving face shot with a web-
cam (CAMSHIFT face tracking).

(b) From database by SEQAM labora-
tory (CAMSHIFT face tracking).

(c) Shot on campus with hand-held cam-
era (blob tracking).

(d) From VISOR video database (blob
tracking).

Fig. 4. Snapshot examples of videos used in our experiments.

cars, person on a bicycle and people walking in a distance. We ran blob tracking
algorithm on these videos and applied different dropping patterns. We plot the
resulted average error against drop gap i when value j is 1, 3, 6, and 12. The
results are shown in Figure 5(a) (original video is 158 frames of 384 × 288, 30
fps) and Figure 6(a) (original video is 148 frames of 320 × 256, 30 fps).

Figure 5(a) shows the resulted average tracking error plotted against the
drop gap i when value j is 1, 3, 6, and 12. It can be noted from the Figure 5(a)
that for each fixed value j the average error is proportional to i. Also, average
error is inversely proportional to j, as indicated by the angles of each line in the
graph (for instance, angle of the line marked as “j=1” is three times larger than
the angle of the line “j=3”). Figure 6(a) demonstrates similar results. These
experimental results strongly support our analytical estimation of the average
error given in the equation (6). The figures do not reflect the critical drop gap
value because even for large drop gaps the blob tracking did not lose the track
of the car in this test video sequence.
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Fig. 5. Accuracy of original and adaptive blob tracking algorithm for PETS2001 video
(snapshot in Figure 3(a)).

4 CAMSHIFT Algorithm

CAMSHIFT object tracking [4] relies on color histogram detection and mean
shift algorithm for tracking. The algorithm searches for a given object’s his-
togram inside a subwindow of the current frame of the video, which is computed
as 150% of the object size detected in the previous frame. Therefore, if the object,
moves between two frames from its original location for a distance larger than
half of its size, the algorithm will lose the track of the object. Hence, assuming
we drop i frames before frame k + i + 1, the threshold distance Δd̃ = w0

k

2 , where
w0

k is the width of the blob detected in frame k. Since CAMSHIFT does not
use frame differencing, drop gap does not have an additional effect on object’s
size. Therefore, we can estimate the center of the blob after drop gap i using the
equation (2) instead of equation (3). Hence, the critical drop gap can be derrived
as

ĩ =
w0

k

2Δx0 − Δw0
− 1. (7)

Estimating the average tracking error loses its meaning for CAMSHIFT tracking
because it uses a simple threshold for detection of the object in the current frame.
If the drop gap of the given frame dropping pattern is less than critical drop gap
in equation (7), the algorithm continue tracking the object, otherwise it loses
it. And the critical drop gap depends on the changes in speed and size of the
object.
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Fig. 6. Accuracy of original and adaptive blob tracking algorithm for VISOR video
(snapshot in Figure 4(d)).

We performed experiments with CAMSHIFT tracking algorithm to verify
our analytical estimation of the critical drop gap (equation (7)). We used several
videos of a moving face shot with a simple web-cam, videos of talking heads by
SEQAM laboratory and some movie clips (example screenshots in Figure 4(a)
and Figure 4(b)). Figure 8(a) (original video is 600 frames of 352 × 288, 30 fps)
and Figure 7 (original video is 303 frames of 320 × 230, 30 fps) show average
tracking error vs. drop gap for CAMSHIFT tracking and various frame dropping
patterns. Figure 7, corresponding to the video of a talking head (see snapshot in
Figure 4(b)), demonstrates that tracking algorithm does not lose the face even
when drop gap is 14 frames. The reason is because the face in the video does
not move around and is always present in the search subwindow of CAMSHIFT
tracker. However, for the experiments shown in Figure 8(a), the video with fast
moving head was used (see snapshot in Figure 4(a)). It can be noted that the
algorithm does not lose the face until value of drop gap is 8, because for the
smaller drop gaps, the face is still within a search subwindow and can be detected
by the histogram matching. The fluctuations in the average error for the larger
drop gaps appear because the face is either lost by the tracker or, for some large
enough gaps, it would move out of the subwindow and move back in, hence
the tracker does not lose it. We conducted experiments with more videos and
observed that the critical drop gap value is smaller for videos with faster moving
faces and larger for videos with slower moving faces. These observations agree
with equation (7).
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Fig. 7. Accuracy of original and adaptive CAMSHIFT tracking algorithm for video
with slow moving face (snapshot in Figure 4(a)).

5 Adaptive Tracking

We propose to modify blob tracking and CAMSHIFT algorithms and make them
more tolerant to video with low frame rate. We have shown that average error
and the critical frame rate of tracking algorithms depend on speed and size of
the object in the original video. Therefore, if we record these characteristics for
previous frames, the location and the size of object in the frame that follows
a drop gap can be approximated. Adjusting to frame dropping in such way
allows us to reduce the average error for blob tracking algorithm and increase
the critical drop gap for the CAMSHIFT algorithm.

Blob tracking algorithm tracks the detected foreground object using the sim-
plified version of Kalman filter: xk = (1 − α)xk−1 + αzk, where xk and xk−1

represent estimated coordinates of the object in the current and previous frames,
zk is the output of the object detector, and α ≤ 1 is some constant. When α = 1,
then the tracker trusts the measurement zk fully and its average error can be
estimated by equation (6). In cases when α < 1, the accuracy of the tracking
against the frame dropping worsens, due to the larger shifts in blobs’ centers
for videos with high drop gap. We propose using adaptive Kalman filter [5] to
make blob tracking more tolerant to the frame dropping. We apply the filter
only to the width of the object, because the front is detected correctly by frame
differencing (see Figure 2). The filter can be defined as following,

w̃k = wk−1 + Kk (wk−1 + uk) P̃k = Pk + Qk

Pk = (1 − Kk)P̃k Kk =
P̃k

(P̃k + Rk)
,

where Qk and Rk are the process and measurement noise covariances; w̃k is the
new estimate of the blob’s width in the current frame; wk−1 is blob’s width
in the last not dropped frame; uk is the width measurement provided by the
frame-differencing based detector.

Kalman filter depends on correct estimation of the error parameters, Qk and
Rk. By looking at Figure 2, we can set Qk = (iΔw0)2, which estimates how big
the tracked object should be at frame k + i + 1 compare to its width before the
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Fig. 8. Accuracy of original and adaptive CAMSHIFT tracking algorithm for video
with fast moving face (snapshot in Figure 4(a)).

drop gap at frame k. Rk is essentially the error of the measurement, i.e., the
output of the foreground object detector, therefore, Rk = (wi

k+i+1 − w0
k+i+1)

2.
Since wi

k+i+1 can be estimated as w0
k + (i + 1)Δx0 and w0

k+i+1 as w0
k + (i +

1)Δw0, we can approximate Rk = (i + 1)2(Δx0 − Δw0)2. We obtain the values
of Δw0 and Δx0 by recording the speed of the object and how fast it grows in
size using last two available frames.

To compare how adaptive Kalman filter improves the accuracy of blob track-
ing, we performed the same experiments varying frame dropping pattern. The
average error for blob tracking with adaptive Kalman filter is plotted in Fig-
ure 5(b) and Figure 6(b), which can be compared to results with original algo-
rithm in Figure 5(a) and Figure 6(a) respectively. We can note that the accuracy
of the adaptive blob tracking algorithm is improved for larger drop gaps (larger
frame rate reduction). In both figures, Figure 5(b) and Figure 6(b), the angles
of the lines in the graph are not inversely proportional to j anymore, giving fun-
damentally different bound on the average error. All lines with j > 1 are almost
parallel to x-axis. It means that Kalman filter adapts very well to the drastic
changes in speed and size of the object that occur due to the frame dropping.
The constant increase in the average error for j = 1, is because, for such drop-
ping pattern, all remaining frames are separated by drop gaps. In this scenario,
adaptive Kalman filter accumulates the approximation error of object’s size and
speed. Therefore, the critical frame rate can be achieved with j that is at least
equal to 2. If we take i = 12, the original frame rate is reduced by 7 times.



We also modified the CAMSHIFT tracking algorithm, adjusting the size of
its search subwindow to the frame dropping. We simply increased the subwindow
size in the current frame by iΔx0, where i is the drop gap. The average error of
this adaptive CAMSHIFT algorithm for the video with fast moving face is shown
in Figure 8(b). Comparing with the results of original algorithm in Figure 8(a),
we can notice that the adaptive tracker performs significantly better for the larger
drop gaps. The experiments show that we can drop 13 frames out of 14 with a
tradeoff in small average error. It means that CAMSHIFT algorithm, for this
particular video sequence, can accurately track the face with frame rate reduced
by 13 times from the original. For the news videos of talking heads, where face
does not move significantly around, adaptive algorithm performs with exactly
the same accuracy results as the original algorithm. Therefore, Figure 7 illus-
trates essentially both versions of the algorithm, original and adaptive. These
experiments demonstrate that by using analysis to modify CAMSHIFT algo-
rithm, we can improve its performance on videos with fast moving faces, while
retaining the original accuracy on videos with slow moving faces.

6 Conclusion

In this paper, we use analysis to estimate the tradeoff between accuracy of two
common tracking algorithms and video frame rate. Such estimation depends
on the speed and size of the tracked object, and therefore, in practice, such
measurements of the object need to be taken (for instance, running average of
these values during the last few frames). We also show that slight modifications
to existing algorithms can significantly improve their accuracy for the video with
larger reductions in frame rate. These findings motivate us to use reasoning for
determining critical frame rate (not just running many different experiments) for
other video analysis algorithms. The findings also encourage the development of
the new object tracking algorithms robust to highly degraded video.
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