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ABSTRACT

Progressive mesh streaming is increasingly used in 3D mkédo
applications, such as online games, virtual worlds, andadimu-

seums. To scale such applications to a large number of usérs w

out high infrastructure cost, we apply peer-to-peer temies to

mesh streaming. We consider two issues: how to partitioroa pr
gressive mesh into chunks and how to lookup the provider of a

chunk. For the latter issue, we investigated into two sohsj
which trade off server overhead and response time. The fiest a
simple centralized lookup service, while the second omgspeers
into groups according to the hierarchical structure of tregpes-
sive meshes to take advantage of access pattern. Simulesiolts

show that our proposed systems are robust under high chiern ra

reduce the server overhead by more théfw, keep control over-
head belowi0%, and achieve low average response time.

Categories and Subject Descriptord.3.2a[Graphics Systems]
Distributed/Network Graphics; C.2.4bistributed Systems} Dis-
tributed Applications

General TermsPerformance, Design

Keywords 3D data, streaming, progressive meshes, peer-to-peer

1. INTRODUCTION

Advances in 3D scanning technology and 3D modeling tech-

nigues have enabled creations of huge, high-resolutiom&ghes.
These meshes are increasingly available for viewing owehriter-
net, in applications such as virtual worlds and virtual numss.

Huge models may take long time to download completely for dis
play at the client. For example, the Stanford model of thei®av

statue, with 28 million vertices and 56 million triangles still 70
MB in size with state-of-the-art compression [3] and needsiiad
10 minutes to download at 1 Mbps.

To reduce waiting time, huge meshes are usually progrégsive

coded [14] and transmitted viaogressive streaming, where a low
resolution version of the mesh (callédse mesh) is transmitted
and rendered first. Refinements (calledtex splits) are then con-
tinuously transmitted to incrementally improve the levetetails
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of the mesh (See Figure 1). Each vertex split splits a verigx i
two vertices. This technique allows the client to view a searer-
sion of the mesh quickly, trading off details and waitingeéinThe
client may stop receiving the refinement once sufficientitietae
received. Further, only the visible region needs to be sentélled
view-dependent [15] streaming).

1000 vertices 10000 vertices 100000 vertices 543652 vertices
base mesh original mesh

Figure 1: Progressive 3D mesh streaming. Original mesh cour
tesy of Stanford Computer Graphics Laboratory.

In applications such as virtual art gallery, virtual eantirtual
museums, and virtual auction house, statues, artifactisaaction
items are streamed to potentially a large number of visibotsd-
ders, sometimes within a short period of time (e.g., whertean is
released for bidding). The clients for these applicatiordikely to
inspect the items carefully, zooming in to view the fine dstaind
rotating the item back-and-forth to examine all facets oftam.
Such flash crowd can potentially impose substantial bartthwit
quirements on the server.

Peer-to-peer (P2P) data dissemination is commonly usdtéto a
viate server's bandwidth cost. Downloading peers forwhaedre-
ceived data to other peers, contributing their upload béditivand
reducing the burden of the server, hence allowing more usdrs
supported. P2P techniques have been successfully useltkifildu
transfer (e.g., BitTorrent) and video streaming (e.g., R&)L

Using P2P techniques for view-dependent progressive niesins-
ing, or P2P mesh streaming for short, poses several new challenges.
First, each client may view, and therefore request mesh data
different order. Thus, a client needs to frequently seaoctpéers
to download visible mesh data from when its view point change
Second, we found that a user stays in the system for a shat tim
in the order of minutes (Figure 8(a)) when viewing a mestdileg
to high churn rate. Third, determining the visible regioracghesh
given a view point is computationally intensive and is ttiadially



done at the server. In the P2P context, how to determine Hilelei
region of a mesh is non-trivial.

Fortunately, the nature of mesh streaming alleviates atber
straints in the system design: (i) we found that users cardtd
higher response time when interacting with the mesh, duede p
gressive mesh rendering, and (ii) unlike video, there is tniats
deadline to render the mesh. Together, these differenegsus
to new challenges and different design decisions in desigR2P
mesh streaming systems, in contrast to P2P video streamihg a
P2P file downloading. This paper reports on our design of a P2P
mesh streaming system and its evaluations.

In P2P data dissemination, the data (a file, video, or megh) ar
typically divided intochunks. A peer that has downloaded a chunk
can potentially serve this chunk to other peers. We call sysber
aprovider of the chunk. This paper addresses two important design
questions of P2P mesh streaming.

The first question is how to define a chunk. While one can eas-
ily segment a file or a video into chunks, due to progressigfty
progressive meshes, chunks have to be carefully congtrircte
hierarchical way that can incrementally improve the gyaiitthe
mesh, with minimal coding dependency among the chunks. More
over, chunk size should be small enough to reduce the fracfio
invisible vertex splits received.

based, and mesh-based. In this section, we focus on mest-bas
representation as it is most related to our work.

The main concern in streaming of 3D meshes is how to improve
the quality of the received mesh as fast as possible, mitigiator-
tion to rendered mesh in the presence of packet losses, aleitsc
a large number of users.

At the transport layer, Al-Regib and Altunbasak [1], Li et al
[19], and Chen et al. [7] have investigated how to intellityese-
lect either TCP or UDP for transmissions to trade off religband
end-to-end delay. Li et al. have also considered SCTP wittigha
reliability. Harris Il and Kravets [13] propose a new traost pro-
tocol that exploits loss tolerance and partially-ordereapprty of
3D objects organized into trees of bounding volumes.

At the application layer, the major error control technisjuer-
ror resilient coding, error protection, retransmissiarg arror con-
cealment, have all been applied to mesh streaming. Park[@G&l
and Yan et al. [25] focus on how to best segment a progressive
mesh into smaller partitions such that it is more resilieribsses.
Al-Regib et al. [2] consider a joint-source channel codingtimod
to determine appropriate level of error protection to uskerCet
al. [7] also use FEC for transmission of 3D data. Error cohcea
ment is considered by Park et al. [22]. Cheng et al. [9] argue f
retransmissions as the main error control method, while T24]

Second, how can a peer know the best provider of a given chunk?uses selective retransmission in their system.
Consider the a large number of queries and high churn rate, we The issue of scaling 3D streaming to a large number of usars ha

first consider simply using a centralized lookup servicectonnk
provider, allowing fast peer failure detection and one-tamkup.
Centralized lookup, however, is not scalable to large nunabe
peers, due to the overhead in maintaining peer states amitirigan
queries. We therefore propose a hierarchical P2P systeichwh
retains the advantages of centralized lookup but with Biamtly
fewer requests to the server. The basic idea is to group peers
cording to the hierarchical structure of chunks in a progjues
mesh. Each group has a leader that takes over most of thenrespo
sibilities of the server to reduce server overhead.

Our contributions in this paper are as follows. First, we pare
and contrast P2P mesh streaming to P2P video streaming &d P2
file downloading and point out the main difficulties of P2P mes
streaming. Second, considering the differences and clyge we
investigate on two content discovery schemes for P2P messdmst
ing. The structure of the progressive mesh is considerdueisec-
ond design to further reduce server overhead. Third, wegqs®p

not been sufficiently addressed. In our previous work, wa$am
reducing the computational overhead at the server [8], Hyirgh

the burden of visibility computation from the sender to teesiver.

Hu et al. [16] and Cavagna et al. [6] have considered usingtoee
peer architecture to stream a 3D scene to improve scajakilitr
work is similar in spirit, but we focus on streaming singlerge,
progressive mesh in a view-dependent manner, rather thdh a 3
scene, where visibility decision is mainly done at the objeeel.
Streaming progressive meshes needs a much finer grandtarity
view dependency. In this paper, we study view-dependeeaists

ing at chunk level, which can be of much smaller size (can be as
small as a packet) than an object.

Yang et al. [26] proposed a view-dependent 3D video stream-
ing system, in which a set of gateways is used to dissemihate t
streams depending on the views of the receivers. Similauto o
goals, the technique aims to reduce the server overheachurhe
ber of gateways, however, is limited and the gateways arevees$

a chunking scheme for progressive meshes to support P2P mesho be stable. Further, 3D videos are not progressive in @atur

streaming. Finally, we run simulations based on real tracés
lected from users to evaluate the P2P mesh streaming syséeem w
proposed. Analysis and simulation results show that sesver-

head can be reduced by 90%. Meanwhile, average response timqiV

and control overhead are low.
We structure the rest of the paper as follows. We introduee pr

vious work on progressive mesh streaming and P2P techniques

in Section 2. We compare P2P mesh streaming with P2P video
streaming and P2P file downloading in Section 3. Sectiongi%ban
introduces the receiver-driven protocol and the hieraadhihunk
structure, two essential components of our system, ragpbctVe
propose two content discovery schemes in Section 6. We mirese
experimental results in Section 7 and conclude in Section 8.

2. RELATED WORK

2.1 Streaming of 3D Data

Previous studies in 3D data streaming have considereddtiffe
approaches for data representation, including pointéhaseage-

2.2 P2P Video Streaming

P2P techniques have been widely studied in file downloading,
e streaming, and video-on-demand (VoD) streaming apgibns.

In this section, we introduce the related work on P2P videzast-

ing systems.

Generally, P2P streaming systems can be categorized &go tr
based and mesh-based approaches. In tree-based apprpaenes
are organized into a single tree [17, 10] or multiple tree[3. In
typical multi-tree-based approaches, like CoopNet [2iffent
parts of a video segment are separately pushed down aldeg- dif
ent sub-trees. SplitStream [5] utilizes Multiple DesddoptCoding
(MDC) scheme to further improve streaming quality by introihg
data redundancy. Besides, each peer serves as an inted®imo
only one sub-tree to minimize the negative effect of nodeeifas.

To further improve robustness and scalability, mesh-baged
proaches have been more widely explored in P2P live str&amin
systems, including PPLive and PPStream. Typically, gelisip
protocols are used for peers to pull video content from fedli
peers. Compared to tree-based approaches, such systams inc



higher end-to-end latency and control overhead. To redueset
negative effects, push-pull-based approaches are propo$28].
Moreover, PRIME [20] incorporates swarming scheme and MDC
to improve robustness and streaming quality, but its twasphde-
sign increases end-to-end latency.

Similar tree-based and mesh-based approaches can alsb be ut'

lized in P2P VoD streaming. Different from live streamingeps
may seek to different playback points in the video, causigbér
peer dynamics. Further, since peers have different viewthef
video, it is more challenging to locate providers. The o&8trg¢11]
system utilizes sliding window to maintain certain videotEnt so
that peers can obtain content from other peers with smaiftenial
between their windows. Yiu et al. [27] propose that each paer
domly stores some segments and uses DHT to locate peersgstori
previous, current, and next segments, respectively. Tpsoach
can achieve better scalability and shorter initial delantkliding
window scheme, but maintaining the segment lists in a higlity
namic environment is difficult.

3. P2P MESH STREAMING

Although P2P techniques have already been studied in filedow
loading, live video streaming, and video-on-demand stiegn®P2P
view-dependent progressive mesh streaming (or P2P mesinstr
ing for short) has a different set of requirements and cheristics,
leading to different design decisions and new challengasthis
section, we elaborate on these differences.

In P2P file sharing, a peer is interested in obtaining a cot@ple
file. In most cases, the file is not useful until it is complgtbwn-
loaded. During downloadingany new chunk of the file down-
loaded is useful. Chunks can be downloaded in any order.efher
fore, peem can receive chunks from pegmas long ag; possesses
fresh chunks thagt have not received.

In P2P video streaming, however, the video is played backlynos
in the increasing time order The point the peer is watching the
video is theplayback time, and each chunk in the video has an as-
sociated timestamp. Unlike file sharing, not every chunksisfui.

A peer is only interested in a chunk whose timestamp is latan t
the playback time. Chunks nearer to the playback time hayfeehi
priority. Since chunks are needed and playback in the sades,or
if a peerp receives a chunk with timestanidrom a peerg, it is
likely thatp can receive the chunk with timestarg- 1 fromgq. In
other words, a peer can expltémporal locality in chunk access to
discover other peers to retrieve the chunks from.

Temporal locality does not apply to mesh. In P2P mesh stream-
ing, however, users might be interested in different paftthe
mesh at different level of details. Each may choose to loakifat
ferent facets, or zoom into different levels. Thereforeshepeer
may be interested in different chunks of the mesh at diffetiere.
Consequently, even if pegrcan receive a chunk from pegmnow,

p may not receive subsequent chunks freihater, sincep may re-
quest a chunk that has never seen and is not visiblegto Thus,

a peer would have to continuously query for peers to retribee
mesh data from, as the peer’s view point and level of dethdsige
over time. More queries are needed in mesh streaming thale in fi
downloading or video streaming. Reducing such overheadiés o
of the main challenges of P2P mesh streaming.

Another characteristic of mesh streaming is that the se$simth,
i.e. how long a user stays in the system, is significantlytendinan
that in file downloading and video streaming. Users usualhyé
the system after viewing all the interesting parts of a mestev-
eral minutes. Such short session time increases the chierame

unless the user seek to another playback point

Figure 2: Vertex hierarchy. A rectangle represents a vertexand
the number inside is its identification number, including tree 1D
and node ID.

makes typical approaches to reduce query overhead inajguep
To reduce the number of queries, a peer typically cachesnizo
tion about the chunks available in a provider for future exis.

High churn rate invalidates these cache information guickl

4. RECEIVER-DRIVEN MESH STREAMING

To exposit our P2P view-dependent mesh streaming system, we
first address the question of the visibility determinati®radition-
ally, view-dependent mesh streaming systems use senigendr
protocols, in which the receiver sends the view point to treler.
The sender computes which vertex splits are visible andsstred
vertex splits in the decreasing order of the visual contiiins to
the receiver. The sender also maintains the states of wieidhx
splits have been sent for each receiver, to avoid sendinticdts
data. This design is originally meant for client/servemhitecture.
In P2P mesh streaming, a peer plays the role of the sendes. Thi
design is not desirable for P2P streaming for three readeinst,
computing the visibility and sorting the vertex splits axpensive
and may deter peers from participating. Second, a peer might
have the complete mesh so determining visibility may notd® p
sible. Finally, maintaining the receiver states requisgghroniza-
tion across multiple peers, since a peer might retrieve filata
multiple other peers.

We have previously [8] proposed a receiver-driven protoirol
which a receiver determines the visible vertices basedoovn
view point and explicitly requests these vertex splits. Sarder,
under this protocol, is stateless and simply serves theestgu\We
adapt the protocol in this work, as its stateless servergdefsis
naturally into P2P mesh streaming.

The key question in designing the receiver-driven protasol
how a receiver can determine the visible vertices when itrtzais
yet received the complete mesh. In our proposal, we exgieit t
progressive nature of meshes and assume that if a vertesiligeyi
the vertex from which it is split is also visible. Therefovee split
visible vertices to refine the mesh. Our experiments fouati e
can approximate the visible vertices with negligible esrasing
this rule of thumb [8].

Once a receiver finds a visible vertex, it requests the vespk
from the sender to split this vertex. To allow the receiveexplic-
itly request a vertex split, a unique identification (ID) ss&@ned
to each vertex split. In a progressive mesh, vertex splaharar-
chically organized as a forest of binary trees, with a pavertexv
being a coarser representation of its two children. Thues|ehves
of the trees are vertices belonging to the original mesh rfiesh
before simplification). The roots of the trees are the vestin the
base mesh (See Figure 2).

We use the method proposed by Kim and Lee [18] and assign
each vertex a bit string consisting of two parts — a tree ID and
node ID. The tree ID is the sequence number of the root of teés t



in the base mesh, and the node ID represents the path froradhe r
to this vertex in the binary tree. For example, if the treedD0il’,
which is also the ID of the root of this tree, the bit string@&and
‘011" are the IDs of the left and right child of the root respesly.
Figure 2 shows an example of vertex hierarchy.

Since the IDs embed the vertex hierarchy, all IDs can be datiuc
The ID of the vertices in the base mesh is their sequence mimbe
and the IDs of new vertices generated from a split can be @etuc
from the parent’s ID. Thus, the sender need not send addition
information to identify a vertex.

5. HIERARCHICAL CHUNK STRUCTURE

We now elaborate on how to group vertex splits into chunks
while maintaining progressiveness among the chunks. lotige
inal design of receiver-driven protocol [8], the receivepleitly
requests individual vertex splits. Such design is not amate for
P2P streaming for three reasons. First, the receiver neestnd
one ID (2 bytes in our implementation) to request for oneesert
split (less than 5 bytes in our implementation). Hence, dugiests
occupy a large proportion of the up-link bandwidth, whiclpis-
cious in P2P streaming, in which the up-link bandwidth aredeel
to share data with other peers. Second, data packets neegétmb
erated dynamically at the sender whenever requests aregdce
increasing computation overhead and delay. Finally, a peeds
to find proper peers to retrieve each vertex, which is expersshce
the number of vertices is huge in a large progressive mesh.

To address these drawbacks, we adapted the receiver-griven
tocol to the concept of chunk, commonly used in P2P systems. O
chunk, however, is of much finer granularity, to allow a péer t
flexibility of retrieving only the mesh data within currenisible
region. Each chunk consists of multiple vertex splits, aachever-
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Figure 3: An example of hierarchical chunk structure. Here w
=1,d=2andi=1.

split to 2* vertices. Therefore, the base mesh has2¥ = 2¢T%
vertices. We divide these vertices intehunks and let the vertices
split from a common ancestor to be in the same chunk. For gach o
these vertices, we also add its descendants upl¢gels. Thus, a
chunk comprises " subtrees of vertices, each of heightThe
vertices in a chunk satisfy the following conditions: (igthvertex

IDs (binary form) have a commanbit prefix; (ii) the bit length of
their vertex IDs is ini + 1,7 + dJ.

Therefore,s chunks are available to be requested when only the
base mesh is received, and each chunk2fas (2¢ — 1) vertex
splits. When a chunk is decodezt’* ¢ vertices will be generated.

We generat@? chunks from thes@“*¢ vertices by putting the
vertices which only differ in the lasw bits into a chunk. These
vertices are the roots of the subtrees in the chunk. Therinaga
for each vertex, we put its descendants up fevels in the same
chunk. Therefore, we now have a chunk hierarchy ithroot

tex split only belongs to one chunk. When a peer needs a vertexchunks and each chunk ha$children chunks. We call this chunk

split, it finds the chunk that includes this vertex split aedds its
chunk ID to request it. Each chunk is requested only onceadadav
duplicate requests. Once a chunk is received, all the vepis in
this chunk are decoded and processed.

This method sacrifices some flexibility in choosing vertjdas
has several advantages. First, it significantly reducesiphink
bandwidth requirement since now only one chunk ID is needed t
request a set of vertices. Second, the cost of searchingefsp
to retrieve data is also reduced. Third, grouping verteiksspito

the parent chunk of thes&? children.

All vertices in a chunk have a common ancestor, so we ass@gn th
vertex ID of this common ancestor as the chunk ID of this chunk
(e.g. in Figure 3, the vertices in a chunk '000’ are all cleldiof
vertex '000’). In other words, the chunk ID is the longest coom
prefix of the binary form of the vertex IDs of its members.

Figure 3 is a simple example with= 1, w = 1, andd = 2.
The base mesh has 4 verticés), 01, 10 and11. After the base
mesh is received, two chunksand1 become available. The vertex

chunks can be done offline at the server, so no computatidn cos splits for vertice$0 and01, as well as vertices fro00 to 011 are

and time are needed by peers for online packetization.

The question now is that how a peer knows which chunk to re-
quest when it decides to refine a certain part of a mesh. Ore nai
solution is to store the chunk ID together with vertex splits this
method adds relatively expensive overhead to each vertiexBpr
example, the chunk ID usually accounts for 2 bytes, whiléeae
coded vertex split accounts for only 3-4 bytes, so the owaths
more than 50%. Another method we considered is to organize th
mesh into many bounding boxes with the same size, and thexvert
splits of the vertices inside a box belongs to a chunk. Thekhu
ID can thus be deduced from the vertex coordinates. Noresthgel
this method still needs extra information to associate tineks
with the bounding box. Moreover, since a vertex in a bounding
box might have ancestors in other bounding boxes, this rdetho
increases dependencies among chunks, which might delaiethe
coding of some received vertices until other chunks areivede

In our solution, we define chunks based on vertex dependencie
as follows. First, we simplified the mesh fovertices. For conve-
nience, we choose to be the power of 2, i.es = 2°. Then we
split these vertices up to levels and use the generated mesh as
the base mesh. During the split, each of the origingértices is

inside the chunk). When chunl0 is decoded, eight new vertices
from 0000 to 0111 are generated. They become the root vertices of
four new chunks from chun®00 to chunk011.

The main advantage of hierarchical chunk structure is tHasi
the dependencies among the vertex splits well. First, sackep
tization does not increase the dependencies among chuc&edee
vertices in a chunk are independent of any vertex splitsptbese
inside the ancestor chunks. Second, both the dependenaygamo
chunk IDs and the relation between chunk ID and vertex IDrare i
plicitly coded with the vertex ID. If the vertex ID of the roeértex
is I,,, then the chunk ID id. = (I, >> d), and the ID of the
parent chunk i, = (I >> d) = (I, >> 2d). Since the vertex
ID itself can be deduced as introduced in Section 4, we imptegm
this hierarchical system without any extra cost.

Moreover, since the vertices in a packet are all childrenaafra-
mon ancestor, they are connected and are typically closado e
other. Therefore, if one of the root vertices is needed bye, pe
other root vertices are likely needed as well. Hence, it ésoa-
able to put them into one chunk.

With this packetization, a peer that needs some vertexssphn
deduce the IDs of the chunks to request from the vertex IDseSo



invisible vertex splits may be received, but because \estinside —— | _L Query() Peer A —— | _1.Query() Peer A
a chunk are nearby each other, they may be visible soon anyway |=——| _2. Provider(8),_ —. ——| 2. Provider(B) —.
when this peer changes viewpoint. =—— | 5 Confim(i) —— | <% Reauest() _
We now describe how to determine the valuesi,ofv andd. — Y/ m— e 2280
Suppose a chunk can carry abauwertex splits after compression. Server + _ Server 3. Request(i)l
Therefore we have 8 Request() 4. Data( ,
Failed
2% x (27 —1) < n ‘. —.
Choosing a largev can improve the quality more quickly since (a) Success (b) Fail
typically the vertex splits in low levels contribute moreth@ mesh =2 =2

quality, but it increases the possibility of including maimyisi-
ble vertices. In our implementation, each chunk is the sfaene Figure 4: Centralized Lookup.
packet, although we can easily generalized to larger chBitkce
about 300 vertices can fit into an IP packet (i:e.= 300), We

choosew = 4 andd = 4, so a total o240 vertex splits are in one  the |ist of peers with chunk The server becomes the provider for
chunk (if the progressive mesh is completely balanced). a chunki when there is no provider available foor whenp fails

After deciding the valuev, value ofi can be decided based on g receive a chunk from the given provider (e.g., if the pdevihas
the size of base mesh. Certain number of vertices are needed i |ft or failed) (see Figure 4 (b)).

the base mesh to ensure the minimal quality, and we knowtikeat t To keep the list of peers updated in an environment with high

base mesh has<2* vertices. So we can choose a propealue to churn rate, the server monitors the list of providers. Inioysle-

satisfy the quality of base mesh. In our implementation, W@&se  mentation, peers periodically (every 5 seconds in our impieta-

i = 1024. Thus, the base mesh hBE332 vertices. tion) send heart beat messages to the server, and the stower *
gets” peers who have not been heard from after a certaingp€lro

6. CONTENT DISCOVERY seconds in our implementation).

We now consider how a peer can discover other peers can pro- The centralized lookup is suitable for a small or middlelsca
vide a given chunk. We first consider distributed hash tabeT) P2P mesh streaming system. First, a query only costs two- pack
and gossip-based techniques, commonly used in file sharidg a ©ets in terms of control overhead and one RTT in terms of delay.
video Streaming’ and discuss Why they are unsuitable foapph_ Second, states are maintained in one reliable node (ther%elr@-

cation. We then describe a simple centralized scheme thaswo moving the needs of synchronizing states among peers. ,Tthed
reasonably well, followed by a more complex scheme thataitepl ~ Server, maintaining all states, can employ better algmstto de-
the hierarchical structure in the data, trading off the nenaf mes- termine the provider to improve the performance. For exampl
sages processed by server with response time and contrbleavk topology-aware provider selection can reduce the resptimee
DHT, a well-known technique for content discovery, hashes a and inter-ISP traffic; load- and Capability-aware prOVide‘ection
chunk to a peer, which maintains a directory of peers stafieg ~ can balance the load among peers and improve fairness.
chunk. DHT, however, is expensive to maintain and causes hug ~ Nonetheless, the centralized lookup is not scalable telatgn-

control overhead under high churn rate. As mentioned, slemt  ber of peers, as provider monitoring and selection incureseaver-
sion time (typically several minutes) causes high churairamesh head. Every request still causes a small packet to be sentthe
streaming system. Moreover, DHT generally taki$og n) hops server. We only decrease the size of outgoing packets, eqLian-
to lookup, too long for the application we have in mind. Weréhe tity. When the cost in handling requests is expensive (e.genw
fore preclude DHT in our solution. topology-aware provider selection and load balancing issitb

Another common solution is gossip_based protocoL in V\/,thh ered), the CPU becomes the bottleneck. For example, fovarser
peers exchange a bit-vector to notify each other which ctitisk ~ With 100Mbps outgoing bandwidth and four 2GHz CPUs, assum-
holding on to. This approach is very flexible, but it does nbt fi ing the outgoing packet size is 64 bytes, then the transomis-
well in P2P mesh streaming, either. The bit-vector is large d  1ay is only4.92us. If handling a request requires more than 40000
to small chunk size in our system, Causing h|gh control oxadh clock CyCleS, CPU becomes the bottleneck rather than thveoniet

Second, due to short session times, much bandwidth is wasted bandwidth. Therefore, to further increase the scalability have

exchanging obsolete bit-vectors. to reduce the number of requests and the cost in handling@stgju
Compared to using DHT and gossip-based methods, maintain- To address this weakness, we propose a hierarchical P2&pook

ing a centralized lookup directory at the server has two widges. approach, retaining most advantages of centralized looktiput

First, the lookup is only a single hop. Further, the serverroan- introducing much overhead. We introduce this approach. next

itor peers’ states and detect peer failures more quickly thale- . .
centralized P2P systems, reducing the influence of chumthEee 6.2 Hierarchical P2P LOOkUp
reasons, we study a P2P mesh streaming system with ceettaliz In our hierarchical P2P lookup approach, a set of peersedall

lookup and evaluate its performance. agroup, is associated with each chunk of the mesh. A grGup
. . contains only peers that have already received chiullach group

6.1 P2P With Centralized Lookup G; has aleader, denoted’;, which acts similarly to the server in

We first consider one of the simplest ways of supporting ginte the P2P mesh streaming system with centralized P2P lookup we
discovery, using a central lookup server that maintaingtfoema- introduced above. The members act as the providers for tingkch
tion of providers for each chunk of the mesh. The server raaist and are monitored by the leader. Since the group and the chunk
a list of peers who have downloaded each chunk. A pe&ho have a one-to-one mapping, the leader of gréyps also called
needs a chunkcontacts the server. The server chooses a peer whothe leader of chunk.
has chunki as provider and infornp (see Figure 4 (a)). Peer Assume for now that a peer knows the group leddegiven i

informs the server after downloading chuiland is then added to  (we will show how this is done later). When a pgeneeds chunk



1, it contactd; to join groupG;. The group leadel; then selects a
provider from the members @¥; and informsp of the identity of
this provider. The peep then contacts the provider for the chunk.
Oncep receives the requested chunk from the provider, it informs
l; and becomes a memberGf.

Group leader acts as a provider when no other member exists.
But, unlike the centralized lookup approach, if peefails to re-
ceive chunki from a provider, it requests the chunk from the server
rather than the group leader. The rationale here is thatehes
is more reliable than a group leader, so the response timbean
guaranteed.

Note that one peer can belong to multiple groups. But a peer
should not lead multiple groups simultaneously, (i) to eashe
peer has enough capacity to serve requests for one chunki)and
to avoid a single peer failure affecting multiple groups.

Because a leader is also a peer, neither reliable nor havired-a
known, fixed, address, two questions need to be answerdtbv(i)
each peer knows the leader of a given group; (ii) how to dedd wi
the leader failure. We explain our solutions in followingens.

6.2.1 Leader Hierarchy

Leaders inherit the hierarchical structure of chunks, duthé
one-to-one mapping between groups and chunks. The leamters f
atree, mirroring the structure of chunks. We use the comeans
leaf, root, parent, and child to describe leaders and tle¢ation-
ship in a self-explanatory way. Further, we consider theeseas
the parent of all root leaders.

Due to the dependency among the chunks, children of a chunk
is only useful aftei is received. Hence, it is natural for a leader to
supply the information of its children to its members. Wherear
joins the group;, in addition to the information of provides;, the
leaderl; also returns the information of its children. By exploiting
the hierarchical property of the chunks, the leader infdiomais
obtained progressively without any query.

6.2.2 Leader Assignment and Replacement

In this section, we explain how leaders are assigned and how
a failed leader is replaced. Initially, no peer exists in siystem,
and the server behaves as the default leader of all chunk&nWh
a non-leader peer joins a groupG; led by the server, the server
assignsp as the leader ofy;. The server will not assign a peer
as a leader if this peer is leading another group. When there a
many candidates, how the server selects leaders is andtiteye
topic for further research. In our current implementatibie, server
only chooses peers with enough uploading bandwidth (larger
512Kbps) as leaders.

Since leader assignments and replacements are done bywbe se
the server knows the current leader hierarchy. When asgjomi
peerp as the leader of grou@’;, the server also include informa-
tion aboutp’s parent and children in the tree. The new leader then
notifies its parent and all its children of its new role.

To maintain the tree of leaders, a parent monitors all itklofm
via heart beat messages. Failure of a child is reported bpahe
ent to the server, which then chooses one non-leader pesitfi®
peers who newly joined the system (see Figure 5(b)). Theeserv
maintains a list of recent, non-leader peers who query these
for root leaders initially. If no such peer is available, terver
becomes the leader itself.

The leader replacement information is disseminated todher
and children of the leader when the new leader notifies its. rol
The parent leader in turn notifies its own members of thisdead
changes. So a member in the parent grou@'pWwill always know
the updated leader @F;.

1. Fail(i)

Peer A
3. Report

Peer A
1. Join(i) 3. Report

2. Lead(i, A, C, D)

2. Lead(i, A, C, D;

—
Server Server
A A A A
Seiver = /é\ old Iiadercv /é\
¢cb ¢cD Peer C Peer D C D C D peerC PeerD

(a) assignment (b) replacement
Figure 5: (a) Peer B is assigned a leader. (b) An old leader is
replaced by peer B.

It is possible that a peer may contact a failed leader andriexpe
ence timeout. If a peer receives new leader updates fronethiers
it contacts the new leader; otherwise it requests the chuamk the
server and reports the failure.

6.2.3 Reducing Monitoring Overhead

A peer becomes a member of grouphen it receives chunk
For a popular chunk (such as the root), many members may ex-
ist. Monitoring and maintaining a large number of membelexis
pensive for the leader. Furthermore, after receiving mdmunks,

a peer belongs to many groups, leading to high control oaethe
This problem can be easily solved by restricting the groap and
the number of groups a peer belongs to.

We reduce the number of group a peer belongs to by the fol-
lowing rule: if a peerp obtained two chunks and 7, andi is an
ancestor ofj, thenp only belongs ta=;.

By following the above rule, as a peer progressively obtaiose
and more chunks, it joins groups that are lower down the rghya
and leaves the higher groups. Note that a peer leaves a gsoup a
long as it obtainsany of the children chunks, not necessarily all.
At a later time, a peer may want to download a child chiok a
group it has left (perhaps due to a change of view point). Sinte
a peer is no longer in the parent group of the chinik may not
have up-to-date information about the leadet.of

To avoid this, a group leader propagates updates aboutilts ch
dren down to its sub-tree. As a result, a peer always knows its
leader, the leader’s ancestors, and the immediate chilolréhe
leader’s ancestors. Knowing the children of the leadertesators
allows a peer to download any children chunk through thedead

This solution raises another problem. If a peer belongs tb mu
tiple descendants of a grou®;, it may receive duplicate leader
updates, leading to unnecessary messages. Such dupteates
removed by simply having this peer to explicitly registetatthe
leader closest (in terms of hops count in the leader hieyarteh;
for leader updates af;. This peer will not receive leader updates
of G; from other leaders since leaders only send its members the
messages they have registered.

For example, as shown in Figure 6, a peer is a member in both
group 00000 and0000300. It has already received churik 000,
and00003 before, but has left those groups. Since it may join group
001, 002, and003 in the future, it needs the leader updates from
group0. Group00000 and0000300 are both descendant groups
of group 0, but 00000 is closer to grouf, so this peer registers
to the leader of group0000 for updates from group. Similarly,
it registers to the leader of grou®000 for updates from group
000 and registers to the leader of grod@00300 for updates from
group00003. This method ensures that the leader updates will be
received with the minimum delay and without duplication.
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Figure 6: This peer will register in Group 00000 for leader
updates from group 0 and 000, and it will register in Group
0000300 for leader updates from group 00003.

Note that only non-leader members may leave a group. To keep

the leader hierarchy stable, the leader always stays in rihapg
until it fails or the server assigns a new leader for this grou

6.2.4 Discussion

In the P2P system with hierarchical P2P lookup approach) eac
group behaves like a small P2P system with centralized loalu
proach. First, most provider selection algorithms thattmosed in
centralized lookup approach, such as topology-aware attibal-
ancing, can also be used in the hierarchical P2P lookup appro
Second, providers are also monitored, so the failure ratecpfests
is low even with high churn rate. Third, query for a providande
finished within 1 RTT in most cases. In short, most of the advan
tages of the centralized lookup approach are retained.

Compared with the centralized lookup approach, the manage-
ment overhead of the server in hierarchical P2P lookup ambro
is significantly reduced. In the stable stage, most grougielesaare
peers, so the server only monitors the leaders of the topkshun
instead of all the peers in centralized P2P system. In axfglith
hierarchical P2P lookup approach, the server is also regperfor
replacing the failed leaders, and thus maintains the |ehidear-
chy at a small overhead. First, the number of leaders ontesl
to the number of chunks and thus is independent of the nunfber o
peers. Second, the rate of replacing leaders only relatee teav-
ing rate of the peers, which is typically small compared vtita
total number of peers. Thus, the management overhead i§i-sign
cantly smaller and the server is more scalable to a large aunfb
peers compared with the centralized lookup approach.

The hierarchical P2P lookup approach, however, incredses t
control overhead and response time. It may also cause mon&sh
to be provided by the server. First, more control messages ar
needed to maintain the leader hierarchy, to propagate Hagse
dates down to sub-trees, and to exchange heart beat messages
tween parent and children. Second, average response tineages
since leaders may fail or leave. A peer who fails to contact a
leader needs an additional RTT (to server) before receavitigink.
Third, leader failure causes the server to provide morekhufin-
other reason is that some valid providers may not be usecthég
leave a group, which will not happen in the centralized |qonkp-
proach.

In the next section, we further evaluate the centralizedraad
archical P2P lookup approaches by simulations.

7. EXPERIMENTAL RESULTS

In this section, we present the experimental results taat@lthe
performance of the two lookup approaches we studied: derda
lookup and hierarchical P2P lookup.

Figure 7: The Thai Statue. The top left is the whole mesh,
and the rest is the closeup of some parts of it. Original mesh
courtesy of Stanford Computer Graphics Laboratory.

7.1 Experiment Setup

We developed two systems to support the experiments: (i) a
receiver-driven client and server implementing view-dejent stream-
ing of progressive meshes used to collect and generatesirace
(i) a simulator that replays the traces generated and sitesilarge-
scale P2P mesh streaming.

The client-server system is programmed in C++ based on OpenG
and OpenMesh In our experiments, we use the Thai Statue from
Stanford Computer Graphics Laboratiryvhich has 5 millions
vertices and takes up 22.5 MB after being compressed with our
encoding method. The mesh is packetized into 147897 chuhks f
lowing the approach introduced in Section 5. We choose tleisim
since details exist all over the statue, so users may haseesttin
different positions and levels of details (see Figure 7).

We collected 60 traces from 37 students from our univerSite
session length of these traces ranges from 9 seconds to&&tise
When collecting the traces, the streaming bandwidth iscs820
Kbps, with a client-server RTT of 400 millisecond.

To simulate many users, we generated 4000 random traces afte
analyzing the collected user behavior traces, following shme
distribution of the session length (log-normal wjth= 18.23, o =
0.754 in us), inter-action time interval (generalized extreme value
distribution with 1 = 266,370, ¢ = 199,870, and¢ = 0.51,
in us), and the probability of selecting an action (zoom, pan, or
rotate). We replay these generated traces to obtain thesegwf
chunk requests and use the latter in the simulation.

The P2P simulator is a discrete-event simulator based on OM-
NeT++. In our simulator, peers follow a Poisson arrival node
Each peer randomly selects a trace from 4000 random traces we
generated and leaves the system at the end of the trace. Our ex
periment lasts for 320 seconds, and the period 8Os to 320s
is seemed as the stable stage (approximately). We choose-the
rival rate (\) as 20, 40, 60, and 80. During the stable stage, the
number of online peers are around 1720, 3550, 5200, and 6920,
respectively.

The end-to-end delay between two peers (including server to
peers) are taken from the data collected from the Meridipprigject.
The original data is @500 x 2500 matrix recording the pair-wise
delay between 2500 DNS servers. We assign each peer and the
server a random DNS server and assume that the end-to-end de-

2http://www.openmesh.org
3http://www-graphics.stanford.edu/data/3Dscanrep/
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Figure 8: CDF of the session length (mean = 91.4s), peer-teer delay (mean = 75.8ms), and peer bandwidth (download mean

4292.8Kbps, upload mean = 1023.0Kbps) used in our simulatio

lay of two peers equals the delay between their DNS servess (s
Figure 8(b) for the CDF of end-to-end delay).

The downloading and uploading bandwidth of peers are ran-
domly selected from the data reported by DSLReports tamhich
records and updates daily the access speed of users oveoitide w
We use 21,206 samples, collected on 14 April 2009. Figurg 8(c
shows the CDF of the downlink and uplink bandwidth.

In the following sections, we evaluate our P2P design in $erm
of server overhead, incoming message rate of the servetroton
overhead, and average response time.

7.2 Server Overhead

In this section, we measure the server overhead in threesform
First, we measure the outgoing data rate of the server. 8econ
we measure the ratio of the server’'s outgoing data rate téothe
tal chunk size received by the peers. It isekative server over-
head compared with the client-server model based system. Third,
to evaluate how busy a server is in handling incoming message
we measure the incoming message rate of the server to iadreat
server overhead in handling incoming requests.

The outgoing data rate is shown in Figures 9(a) and (b). Egyur
9(a) shows that the server outgoing data rate in the cliemves
model exceeds 1Gbps whenexceedsi0. It indicates that the
client-server model cannot scale well without increashmgum-
ber of servers and outgoing bandwidth, so we will not consiide
client-server model in further comparisons.

Figures 9(c) and (d) show the relative server overhead. &lae r
tive server overhead of the hierarchical P2P lookup is glidarger
than that of the centralized lookup in our implementatiohe Tain
reason is that more chunks are provided by the server inrblgra
cal P2P lookup than that in centralized lookup, as we wiltdss
in the section about response time.

The server incoming message rate of the two designs are shown

in Figures 9(e) and (f), where we can see that the hierarichza
lookup reduces the number of incoming messages by around 80%
Moreover, the incoming message rate increases more sloitly w
A in hierarchical P2P lookup, indicating that the CPU oveche&
the server (to handle the messages) also increases moitg. slow
Note that in these two designs, the server responses to ingom
requests are different. The responses are leader infanmétr
failed joins) and chunks (for failedequests) in hierarchical P2P
lookup approach, but are mainly provider information intcan
ized approach. Retrieving a chunk or leader informatioypgally
cheaper than deciding the best provider, especially wheoldgy
awareness and load balancing are considered. Hence hiegdrc
P2P lookup not only reduces the incoming message rate, it al
reduces the handling overhead per request to the server.

4http://www.dslreports.com/archive

7.3 Control Overhead

In this section we examine how much network bandwidth is used
by control messages. We define control overhead as the fatie o
size of control messages to the size of chunks received Ipgaik
during one second. Figures 9 (g) and (h) show that hieraathic
P2P lookup has higher control overhead than centralizekuifmo
The higher overhead is caused by maintaining the leadearhier
chy and propagating leader updates. Moreover, in hiereait Ri2P
lookup, peers may belong to multiple groups, leading to muogs-
sages used in monitoring. Nonetheless, the control ovdrbéa
both systems are within an acceptable range.

7.4 Response Time

Another important metric to evaluate the P2P mesh streaming
system is the response time. The response time for each chunk
quest is obtained by subtracting the receiving time of thenkhy
the sending time of the corresponding request. Since nt siri
der in receiving chunks is required in mesh streaming, thparese
time of a single request is not as important as that in audib an
video streaming. Instead, we emphasize on the averagensspo
time of requests sent in a second, which is the average vakié o
the response times of chunk requests in a second.

Figures 9(i) and (j) show that the hierarchical P2P system ha
higher average response time. The higher response timessda
mainly by two reasons. First, unlike providers, only onalkzaex-
ists for one chunk. Leader failures cause many peers to spend
more round trip to obtain chunks. Itis possible to use midtipad-
ers in a group in the future to reduce this effect. Seconcadelein
hierarchical P2P lookup approach does not have the infasmat
all the providers as the server in centralized lookup, amgjestion
may happen due to limited supply ability, causing requekirtss
and higher response time.

The response time of hierarchical P2P approach, howe\stillis
under 1 second, which according to our experience, doesigiot s
nificantly affect users’ experience. When a user interadts the
mesh (e.g., rotate), the renderer responds almost imnegdidahe
response time of chunk requests only affects how fast théh mes
quality improves after users change their view points.

7.5 Summary

The results above indicate that both designs work well under
an environment with heterogeneous peers, asymmetric hdtrgw
and high churn rate. Compared with a client-server desiga, t
server outgoing bandwidth is reduced by more than 90%. Hiera
chical P2P lookup also reduces 60% of incoming message®to th
server, but generates only around 10% of control overheaghwh
the number of peers is large. The average response time lof bot
systems is below a second and does not affect the user experie
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due to the progressive rendering nature of the mesh. Fuehéne
number of peers increases, the control overhead and resfpores
remain relatively stable.

8. CONCLUSION AND FUTURE WORK

This paper investigates into the problem of P2P view-depend
progressive mesh streaming, and studied two important cemp

nents of the problem - chunking and content discovery. We find
that in P2P mesh streaming, peers need to keep finding nevik chun

providers, increasing the control overhead. Furthermtbeeshort
session length of peers increases the churn rate. We cosdide
these unique characteristics of mesh streaming and exbtore
content discovery schemes. We found that centralized lpolarks
well with these challenges. To further reduce the CPU o\atiod
the server, a hierarchical P2P lookup approach can be useoMv®
the lookup service to selected peers.

Further research can be done on other aspects of P2P mesh-stre [16]

ing. First, authentication is needed to detect maliciouspiring
of the mesh by peers. Second, the user pattern in viewing ésém
could be exploited for pre-fetching. We plan to pursue these
search issues next.
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