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ABSTRACT
Progressive mesh streaming is increasingly used in 3D networked
applications, such as online games, virtual worlds, and digital mu-
seums. To scale such applications to a large number of users with-
out high infrastructure cost, we apply peer-to-peer techniques to
mesh streaming. We consider two issues: how to partition a pro-
gressive mesh into chunks and how to lookup the provider of a
chunk. For the latter issue, we investigated into two solutions,
which trade off server overhead and response time. The first uses a
simple centralized lookup service, while the second organizes peers
into groups according to the hierarchical structure of the progres-
sive meshes to take advantage of access pattern. Simulationresults
show that our proposed systems are robust under high churn rate,
reduce the server overhead by more than90%, keep control over-
head below10%, and achieve low average response time.

Categories and Subject DescriptorsI.3.2a[Graphics Systems]:
Distributed/Network Graphics; C.2.4b[Distributed Systems]: Dis-
tributed Applications

General TermsPerformance, Design

Keywords 3D data, streaming, progressive meshes, peer-to-peer

1. INTRODUCTION
Advances in 3D scanning technology and 3D modeling tech-

niques have enabled creations of huge, high-resolution, 3Dmeshes.
These meshes are increasingly available for viewing over the Inter-
net, in applications such as virtual worlds and virtual museums.
Huge models may take long time to download completely for dis-
play at the client. For example, the Stanford model of the David
statue, with 28 million vertices and 56 million triangles, is still 70
MB in size with state-of-the-art compression [3] and needs around
10 minutes to download at 1 Mbps.

To reduce waiting time, huge meshes are usually progressively
coded [14] and transmitted viaprogressive streaming, where a low
resolution version of the mesh (calledbase mesh) is transmitted
and rendered first. Refinements (calledvertex splits) are then con-
tinuously transmitted to incrementally improve the level of details
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of the mesh (See Figure 1). Each vertex split splits a vertex into
two vertices. This technique allows the client to view a coarse ver-
sion of the mesh quickly, trading off details and waiting time. The
client may stop receiving the refinement once sufficient details are
received. Further, only the visible region needs to be sent (so called
view-dependent [15] streaming).

Figure 1: Progressive 3D mesh streaming. Original mesh cour-
tesy of Stanford Computer Graphics Laboratory.

In applications such as virtual art gallery, virtual earth,virtual
museums, and virtual auction house, statues, artifacts, and auction
items are streamed to potentially a large number of visitorsor bid-
ders, sometimes within a short period of time (e.g., when an item is
released for bidding). The clients for these applications are likely to
inspect the items carefully, zooming in to view the fine details, and
rotating the item back-and-forth to examine all facets of anitem.
Such flash crowd can potentially impose substantial bandwidth re-
quirements on the server.

Peer-to-peer (P2P) data dissemination is commonly used to alle-
viate server’s bandwidth cost. Downloading peers forward the re-
ceived data to other peers, contributing their upload bandwidth and
reducing the burden of the server, hence allowing more usersto be
supported. P2P techniques have been successfully used in bulk file
transfer (e.g., BitTorrent) and video streaming (e.g., PPLive).

Using P2P techniques for view-dependent progressive mesh stream-
ing, orP2P mesh streaming for short, poses several new challenges.
First, each client may view, and therefore request mesh data, in a
different order. Thus, a client needs to frequently search for peers
to download visible mesh data from when its view point changes.
Second, we found that a user stays in the system for a short time,
in the order of minutes (Figure 8(a)) when viewing a mesh, leading
to high churn rate. Third, determining the visible region ofa mesh
given a view point is computationally intensive and is traditionally



done at the server. In the P2P context, how to determine the visible
region of a mesh is non-trivial.

Fortunately, the nature of mesh streaming alleviates othercon-
straints in the system design: (i) we found that users can tolerate
higher response time when interacting with the mesh, due to pro-
gressive mesh rendering, and (ii) unlike video, there is no strict
deadline to render the mesh. Together, these differences lead us
to new challenges and different design decisions in designing P2P
mesh streaming systems, in contrast to P2P video streaming and
P2P file downloading. This paper reports on our design of a P2P
mesh streaming system and its evaluations.

In P2P data dissemination, the data (a file, video, or mesh) are
typically divided intochunks. A peer that has downloaded a chunk
can potentially serve this chunk to other peers. We call sucha peer
aprovider of the chunk. This paper addresses two important design
questions of P2P mesh streaming.

The first question is how to define a chunk. While one can eas-
ily segment a file or a video into chunks, due to progressivityof
progressive meshes, chunks have to be carefully constructed in a
hierarchical way that can incrementally improve the quality of the
mesh, with minimal coding dependency among the chunks. More-
over, chunk size should be small enough to reduce the fraction of
invisible vertex splits received.

Second, how can a peer know the best provider of a given chunk?
Consider the a large number of queries and high churn rate, we
first consider simply using a centralized lookup service forchunk
provider, allowing fast peer failure detection and one-hoplookup.
Centralized lookup, however, is not scalable to large number of
peers, due to the overhead in maintaining peer states and handling
queries. We therefore propose a hierarchical P2P system, which
retains the advantages of centralized lookup but with significantly
fewer requests to the server. The basic idea is to group peersac-
cording to the hierarchical structure of chunks in a progressive
mesh. Each group has a leader that takes over most of the respon-
sibilities of the server to reduce server overhead.

Our contributions in this paper are as follows. First, we compare
and contrast P2P mesh streaming to P2P video streaming and P2P
file downloading and point out the main difficulties of P2P mesh
streaming. Second, considering the differences and challenges, we
investigate on two content discovery schemes for P2P mesh stream-
ing. The structure of the progressive mesh is considered in the sec-
ond design to further reduce server overhead. Third, we propose
a chunking scheme for progressive meshes to support P2P mesh
streaming. Finally, we run simulations based on real tracescol-
lected from users to evaluate the P2P mesh streaming system we
proposed. Analysis and simulation results show that serverover-
head can be reduced by 90%. Meanwhile, average response time
and control overhead are low.

We structure the rest of the paper as follows. We introduce pre-
vious work on progressive mesh streaming and P2P techniques
in Section 2. We compare P2P mesh streaming with P2P video
streaming and P2P file downloading in Section 3. Sections 4 and 5
introduces the receiver-driven protocol and the hierarchical chunk
structure, two essential components of our system, respectively. We
propose two content discovery schemes in Section 6. We present
experimental results in Section 7 and conclude in Section 8.

2. RELATED WORK

2.1 Streaming of 3D Data
Previous studies in 3D data streaming have considered different

approaches for data representation, including point-based, image-

based, and mesh-based. In this section, we focus on mesh-based
representation as it is most related to our work.

The main concern in streaming of 3D meshes is how to improve
the quality of the received mesh as fast as possible, mitigate distor-
tion to rendered mesh in the presence of packet losses, and scale to
a large number of users.

At the transport layer, Al-Regib and Altunbasak [1], Li et al.
[19], and Chen et al. [7] have investigated how to intelligently se-
lect either TCP or UDP for transmissions to trade off reliability and
end-to-end delay. Li et al. have also considered SCTP with partial
reliability. Harris III and Kravets [13] propose a new transport pro-
tocol that exploits loss tolerance and partially-ordered property of
3D objects organized into trees of bounding volumes.

At the application layer, the major error control techniques: er-
ror resilient coding, error protection, retransmission, and error con-
cealment, have all been applied to mesh streaming. Park et al. [23]
and Yan et al. [25] focus on how to best segment a progressive
mesh into smaller partitions such that it is more resilient to losses.
Al-Regib et al. [2] consider a joint-source channel coding method
to determine appropriate level of error protection to use. Chen et
al. [7] also use FEC for transmission of 3D data. Error conceal-
ment is considered by Park et al. [22]. Cheng et al. [9] argue for
retransmissions as the main error control method, while Tian [24]
uses selective retransmission in their system.

The issue of scaling 3D streaming to a large number of users has
not been sufficiently addressed. In our previous work, we focus on
reducing the computational overhead at the server [8], by shifting
the burden of visibility computation from the sender to the receiver.
Hu et al. [16] and Cavagna et al. [6] have considered using peer-to-
peer architecture to stream a 3D scene to improve scalability. Our
work is similar in spirit, but we focus on streaming single, large,
progressive mesh in a view-dependent manner, rather than a 3D
scene, where visibility decision is mainly done at the object level.
Streaming progressive meshes needs a much finer granularityfor
view dependency. In this paper, we study view-dependent stream-
ing at chunk level, which can be of much smaller size (can be as
small as a packet) than an object.

Yang et al. [26] proposed a view-dependent 3D video stream-
ing system, in which a set of gateways is used to disseminate the
streams depending on the views of the receivers. Similar to our
goals, the technique aims to reduce the server overhead. Thenum-
ber of gateways, however, is limited and the gateways are assumed
to be stable. Further, 3D videos are not progressive in nature.

2.2 P2P Video Streaming
P2P techniques have been widely studied in file downloading,

live streaming, and video-on-demand (VoD) streaming applications.
In this section, we introduce the related work on P2P video stream-
ing systems.

Generally, P2P streaming systems can be categorized into tree-
based and mesh-based approaches. In tree-based approaches, peers
are organized into a single tree [17, 10] or multiple trees [5, 21]. In
typical multi-tree-based approaches, like CoopNet [21], different
parts of a video segment are separately pushed down along differ-
ent sub-trees. SplitStream [5] utilizes Multiple Description Coding
(MDC) scheme to further improve streaming quality by introducing
data redundancy. Besides, each peer serves as an interior node in
only one sub-tree to minimize the negative effect of node failures.

To further improve robustness and scalability, mesh-basedap-
proaches have been more widely explored in P2P live streaming
systems, including PPLive and PPStream. Typically, gossip-like
protocols are used for peers to pull video content from qualified
peers. Compared to tree-based approaches, such systems incur



higher end-to-end latency and control overhead. To reduce these
negative effects, push-pull-based approaches are proposed in [28].
Moreover, PRIME [20] incorporates swarming scheme and MDC
to improve robustness and streaming quality, but its two-phase de-
sign increases end-to-end latency.

Similar tree-based and mesh-based approaches can also be uti-
lized in P2P VoD streaming. Different from live streaming, peers
may seek to different playback points in the video, causing higher
peer dynamics. Further, since peers have different views ofthe
video, it is more challenging to locate providers. The oStream [11]
system utilizes sliding window to maintain certain video content so
that peers can obtain content from other peers with smaller interval
between their windows. Yiu et al. [27] propose that each peerran-
domly stores some segments and uses DHT to locate peers storing
previous, current, and next segments, respectively. This approach
can achieve better scalability and shorter initial delay than sliding
window scheme, but maintaining the segment lists in a highlydy-
namic environment is difficult.

3. P2P MESH STREAMING
Although P2P techniques have already been studied in file down-

loading, live video streaming, and video-on-demand streaming, P2P
view-dependent progressive mesh streaming (or P2P mesh stream-
ing for short) has a different set of requirements and characteristics,
leading to different design decisions and new challenges. In this
section, we elaborate on these differences.

In P2P file sharing, a peer is interested in obtaining a complete
file. In most cases, the file is not useful until it is completely down-
loaded. During downloading,any new chunk of the file down-
loaded is useful. Chunks can be downloaded in any order. There-
fore, peerp can receive chunks from peerq as long asq possesses
fresh chunks thatp have not received.

In P2P video streaming, however, the video is played back mostly
in the increasing time order1. The point the peer is watching the
video is theplayback time, and each chunk in the video has an as-
sociated timestamp. Unlike file sharing, not every chunk is useful.
A peer is only interested in a chunk whose timestamp is later than
the playback time. Chunks nearer to the playback time have higher
priority. Since chunks are needed and playback in the same order,
if a peerp receives a chunk with timestampt from a peerq, it is
likely thatp can receive the chunk with timestampt + 1 from q. In
other words, a peer can exploittemporal locality in chunk access to
discover other peers to retrieve the chunks from.

Temporal locality does not apply to mesh. In P2P mesh stream-
ing, however, users might be interested in different parts of the
mesh at different level of details. Each may choose to look atdif-
ferent facets, or zoom into different levels. Therefore, each peer
may be interested in different chunks of the mesh at different time.
Consequently, even if peerp can receive a chunk from peerq now,
p may not receive subsequent chunks fromq later, sincep may re-
quest a chunk thatq has never seen and is not visible toq. Thus,
a peer would have to continuously query for peers to retrievethe
mesh data from, as the peer’s view point and level of details change
over time. More queries are needed in mesh streaming than in file
downloading or video streaming. Reducing such overhead is one
of the main challenges of P2P mesh streaming.

Another characteristic of mesh streaming is that the session length,
i.e. how long a user stays in the system, is significantly shorter than
that in file downloading and video streaming. Users usually leave
the system after viewing all the interesting parts of a mesh in sev-
eral minutes. Such short session time increases the churn rate and

1unless the user seek to another playback point
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Figure 2: Vertex hierarchy. A rectangle represents a vertexand
the number inside is its identification number, including tree ID
and node ID.

makes typical approaches to reduce query overhead inappropriate.
To reduce the number of queries, a peer typically caches informa-
tion about the chunks available in a provider for future requests.
High churn rate invalidates these cache information quickly.

4. RECEIVER-DRIVEN MESH STREAMING
To exposit our P2P view-dependent mesh streaming system, we

first address the question of the visibility determination.Tradition-
ally, view-dependent mesh streaming systems use sender-driven
protocols, in which the receiver sends the view point to the sender.
The sender computes which vertex splits are visible and sends the
vertex splits in the decreasing order of the visual contributions to
the receiver. The sender also maintains the states of which vertex
splits have been sent for each receiver, to avoid sending duplicate
data. This design is originally meant for client/server architecture.
In P2P mesh streaming, a peer plays the role of the sender. This
design is not desirable for P2P streaming for three reasons.First,
computing the visibility and sorting the vertex splits are expensive
and may deter peers from participating. Second, a peer mightnot
have the complete mesh so determining visibility may not be pos-
sible. Finally, maintaining the receiver states requires synchroniza-
tion across multiple peers, since a peer might retrieve datafrom
multiple other peers.

We have previously [8] proposed a receiver-driven protocol, in
which a receiver determines the visible vertices based on its own
view point and explicitly requests these vertex splits. Thesender,
under this protocol, is stateless and simply serves the requests. We
adapt the protocol in this work, as its stateless server design fits
naturally into P2P mesh streaming.

The key question in designing the receiver-driven protocolis
how a receiver can determine the visible vertices when it hasnot
yet received the complete mesh. In our proposal, we exploit the
progressive nature of meshes and assume that if a vertex is visible,
the vertex from which it is split is also visible. Therefore,we split
visible vertices to refine the mesh. Our experiments found that we
can approximate the visible vertices with negligible errors using
this rule of thumb [8].

Once a receiver finds a visible vertex, it requests the vertexsplit
from the sender to split this vertex. To allow the receiver toexplic-
itly request a vertex split, a unique identification (ID) is assigned
to each vertex split. In a progressive mesh, vertex splits are hierar-
chically organized as a forest of binary trees, with a parentvertexv

being a coarser representation of its two children. Thus, the leaves
of the trees are vertices belonging to the original mesh (themesh
before simplification). The roots of the trees are the vertices in the
base mesh (See Figure 2).

We use the method proposed by Kim and Lee [18] and assign
each vertex a bit string consisting of two parts – a tree ID anda
node ID. The tree ID is the sequence number of the root of this tree



in the base mesh, and the node ID represents the path from the root
to this vertex in the binary tree. For example, if the tree ID is ‘01’,
which is also the ID of the root of this tree, the bit string ‘010’ and
‘011’ are the IDs of the left and right child of the root respectively.
Figure 2 shows an example of vertex hierarchy.

Since the IDs embed the vertex hierarchy, all IDs can be deduced.
The ID of the vertices in the base mesh is their sequence number,
and the IDs of new vertices generated from a split can be deduced
from the parent’s ID. Thus, the sender need not send additional
information to identify a vertex.

5. HIERARCHICAL CHUNK STRUCTURE
We now elaborate on how to group vertex splits into chunks

while maintaining progressiveness among the chunks. In theorig-
inal design of receiver-driven protocol [8], the receiver explicitly
requests individual vertex splits. Such design is not appropriate for
P2P streaming for three reasons. First, the receiver needs to send
one ID (2 bytes in our implementation) to request for one vertex
split (less than 5 bytes in our implementation). Hence, the requests
occupy a large proportion of the up-link bandwidth, which ispre-
cious in P2P streaming, in which the up-link bandwidth are needed
to share data with other peers. Second, data packets need to be gen-
erated dynamically at the sender whenever requests are received,
increasing computation overhead and delay. Finally, a peerneeds
to find proper peers to retrieve each vertex, which is expensive since
the number of vertices is huge in a large progressive mesh.

To address these drawbacks, we adapted the receiver-drivenpro-
tocol to the concept of chunk, commonly used in P2P systems. Our
chunk, however, is of much finer granularity, to allow a peer the
flexibility of retrieving only the mesh data within current visible
region. Each chunk consists of multiple vertex splits, and each ver-
tex split only belongs to one chunk. When a peer needs a vertex
split, it finds the chunk that includes this vertex split and sends its
chunk ID to request it. Each chunk is requested only once to avoid
duplicate requests. Once a chunk is received, all the vertexsplits in
this chunk are decoded and processed.

This method sacrifices some flexibility in choosing vertices, but
has several advantages. First, it significantly reduces theup-link
bandwidth requirement since now only one chunk ID is needed to
request a set of vertices. Second, the cost of searching for peers
to retrieve data is also reduced. Third, grouping vertex splits into
chunks can be done offline at the server, so no computation cost
and time are needed by peers for online packetization.

The question now is that how a peer knows which chunk to re-
quest when it decides to refine a certain part of a mesh. One naive
solution is to store the chunk ID together with vertex splits, but this
method adds relatively expensive overhead to each vertex split. For
example, the chunk ID usually accounts for 2 bytes, while each en-
coded vertex split accounts for only 3-4 bytes, so the overhead is
more than 50%. Another method we considered is to organize the
mesh into many bounding boxes with the same size, and the vertex
splits of the vertices inside a box belongs to a chunk. The chunk
ID can thus be deduced from the vertex coordinates. Nonetheless,
this method still needs extra information to associate the chunks
with the bounding box. Moreover, since a vertex in a bounding
box might have ancestors in other bounding boxes, this method
increases dependencies among chunks, which might delay thede-
coding of some received vertices until other chunks are received.

In our solution, we define chunks based on vertex dependencies
as follows. First, we simplified the mesh tos vertices. For conve-
nience, we chooses to be the power of 2, i.e.,s = 2i. Then we
split these vertices up tow levels and use the generated mesh as
the base mesh. During the split, each of the originals vertices is
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Figure 3: An example of hierarchical chunk structure. Herew

= 1 , d = 2 and i = 1.

split to2w vertices. Therefore, the base mesh hass × 2w = 2i+w

vertices. We divide these vertices intos chunks and let the vertices
split from a common ancestor to be in the same chunk. For each of
these vertices, we also add its descendants up tod levels. Thus, a
chunk comprises of2w subtrees of vertices, each of heightd. The
vertices in a chunk satisfy the following conditions: (i) their vertex
IDs (binary form) have a commoni-bit prefix; (ii) the bit length of
their vertex IDs is in[i + 1, i + d].

Therefore,s chunks are available to be requested when only the
base mesh is received, and each chunk has2w

× (2d
− 1) vertex

splits. When a chunk is decoded,2w+d vertices will be generated.
We generate2d chunks from these2w+d vertices by putting the

vertices which only differ in the lastw bits into a chunk. These
vertices are the roots of the subtrees in the chunk. Then, again
for each vertex, we put its descendants up tod levels in the same
chunk. Therefore, we now have a chunk hierarchy with2w root
chunks and each chunk has2d children chunks. We call this chunk
theparent chunk of these2d children.

All vertices in a chunk have a common ancestor, so we assign the
vertex ID of this common ancestor as the chunk ID of this chunk
(e.g. in Figure 3, the vertices in a chunk ’000’ are all children of
vertex ’000’). In other words, the chunk ID is the longest common
prefix of the binary form of the vertex IDs of its members.

Figure 3 is a simple example withi = 1, w = 1, andd = 2.
The base mesh has 4 vertices:00, 01, 10 and11. After the base
mesh is received, two chunks0 and1 become available. The vertex
splits for vertices00 and01, as well as vertices from000 to011 are
inside the chunk0. When chunk0 is decoded, eight new vertices
from 0000 to 0111 are generated. They become the root vertices of
four new chunks from chunk000 to chunk011.

The main advantage of hierarchical chunk structure is that it fits
the dependencies among the vertex splits well. First, such packe-
tization does not increase the dependencies among chunks because
vertices in a chunk are independent of any vertex splits except those
inside the ancestor chunks. Second, both the dependency among
chunk IDs and the relation between chunk ID and vertex ID are im-
plicitly coded with the vertex ID. If the vertex ID of the rootvertex
is Iv, then the chunk ID isIc = (Iv >> d), and the ID of the
parent chunk isIp = (Ic >> d) = (Iv >> 2d). Since the vertex
ID itself can be deduced as introduced in Section 4, we implement
this hierarchical system without any extra cost.

Moreover, since the vertices in a packet are all children of acom-
mon ancestor, they are connected and are typically close to each
other. Therefore, if one of the root vertices is needed by a peer,
other root vertices are likely needed as well. Hence, it is reason-
able to put them into one chunk.

With this packetization, a peer that needs some vertex splits, can
deduce the IDs of the chunks to request from the vertex IDs. Some



invisible vertex splits may be received, but because vertices inside
a chunk are nearby each other, they may be visible soon anyway
when this peer changes viewpoint.

We now describe how to determine the values ofi, w and d.
Suppose a chunk can carry aboutn vertex splits after compression.
Therefore we have

2w
× (2d

− 1) < n

Choosing a largew can improve the quality more quickly since
typically the vertex splits in low levels contribute more tothe mesh
quality, but it increases the possibility of including manyinvisi-
ble vertices. In our implementation, each chunk is the size of one
packet, although we can easily generalized to larger chunk.Since
about 300 vertices can fit into an IP packet (i.e.n = 300), We
choosew = 4 andd = 4, so a total of240 vertex splits are in one
chunk (if the progressive mesh is completely balanced).

After deciding the valuew, value ofi can be decided based on
the size of base mesh. Certain number of vertices are needed in
the base mesh to ensure the minimal quality, and we know that the
base mesh hasi×2w vertices. So we can choose a properi value to
satisfy the quality of base mesh. In our implementation, we choose
i = 1024. Thus, the base mesh has16382 vertices.

6. CONTENT DISCOVERY
We now consider how a peer can discover other peers can pro-

vide a given chunk. We first consider distributed hash table (DHT)
and gossip-based techniques, commonly used in file sharing and
video streaming, and discuss why they are unsuitable for ourappli-
cation. We then describe a simple centralized scheme that works
reasonably well, followed by a more complex scheme that exploits
the hierarchical structure in the data, trading off the number of mes-
sages processed by server with response time and control overhead.

DHT, a well-known technique for content discovery, hashes a
chunk to a peer, which maintains a directory of peers storingthe
chunk. DHT, however, is expensive to maintain and causes huge
control overhead under high churn rate. As mentioned, shortses-
sion time (typically several minutes) causes high churn rate in mesh
streaming system. Moreover, DHT generally takesO(log n) hops
to lookup, too long for the application we have in mind. We there-
fore preclude DHT in our solution.

Another common solution is gossip-based protocol, in which,
peers exchange a bit-vector to notify each other which chunkit is
holding on to. This approach is very flexible, but it does not fit
well in P2P mesh streaming, either. The bit-vector is large due
to small chunk size in our system, causing high control overhead.
Second, due to short session times, much bandwidth is wastedin
exchanging obsolete bit-vectors.

Compared to using DHT and gossip-based methods, maintain-
ing a centralized lookup directory at the server has two advantages.
First, the lookup is only a single hop. Further, the server can mon-
itor peers’ states and detect peer failures more quickly than in de-
centralized P2P systems, reducing the influence of churn. For these
reasons, we study a P2P mesh streaming system with centralized
lookup and evaluate its performance.

6.1 P2P With Centralized Lookup
We first consider one of the simplest ways of supporting content

discovery, using a central lookup server that maintains theinforma-
tion of providers for each chunk of the mesh. The server maintains
a list of peers who have downloaded each chunk. A peerp who
needs a chunki contacts the server. The server chooses a peer who
has chunki as provider and informp (see Figure 4 (a)). Peerp
informs the server after downloading chunki, and is then added to
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Figure 4: Centralized Lookup.

the list of peers with chunki. The server becomes the provider for
a chunki when there is no provider available fori or whenp fails
to receive a chunk from the given provider (e.g., if the provider has
left or failed) (see Figure 4 (b)).

To keep the list of peers updated in an environment with high
churn rate, the server monitors the list of providers. In ourimple-
mentation, peers periodically (every 5 seconds in our implementa-
tion) send heart beat messages to the server, and the server “for-
gets” peers who have not been heard from after a certain period (15
seconds in our implementation).

The centralized lookup is suitable for a small or middle-scale
P2P mesh streaming system. First, a query only costs two pack-
ets in terms of control overhead and one RTT in terms of delay.
Second, states are maintained in one reliable node (the server), re-
moving the needs of synchronizing states among peers. Third, the
server, maintaining all states, can employ better algorithms to de-
termine the provider to improve the performance. For example,
topology-aware provider selection can reduce the responsetime
and inter-ISP traffic; load- and capability-aware providerselection
can balance the load among peers and improve fairness.

Nonetheless, the centralized lookup is not scalable to large num-
ber of peers, as provider monitoring and selection incur server over-
head. Every request still causes a small packet to be sent from the
server. We only decrease the size of outgoing packets, not the quan-
tity. When the cost in handling requests is expensive (e.g. when
topology-aware provider selection and load balancing is consid-
ered), the CPU becomes the bottleneck. For example, for a server
with 100Mbps outgoing bandwidth and four 2GHz CPUs, assum-
ing the outgoing packet size is 64 bytes, then the transmission de-
lay is only4.92µs. If handling a request requires more than 40000
clock cycles, CPU becomes the bottleneck rather than the network
bandwidth. Therefore, to further increase the scalability, we have
to reduce the number of requests and the cost in handling requests.

To address this weakness, we propose a hierarchical P2P lookup
approach, retaining most advantages of centralized lookupwithout
introducing much overhead. We introduce this approach next.

6.2 Hierarchical P2P Lookup
In our hierarchical P2P lookup approach, a set of peers, called

a group, is associated with each chunk of the mesh. A groupGi

contains only peers that have already received chunki. Each group
Gi has aleader, denotedli, which acts similarly to the server in
the P2P mesh streaming system with centralized P2P lookup we
introduced above. The members act as the providers for the chunk
and are monitored by the leader. Since the group and the chunk
have a one-to-one mapping, the leader of groupGi is also called
the leader of chunki.

Assume for now that a peer knows the group leaderli given i

(we will show how this is done later). When a peerp needs chunk



i, it contactsli to join groupGi. The group leaderli then selects a
provider from the members ofGi and informsp of the identity of
this provider. The peerp then contacts the provider for the chunk.
Oncep receives the requested chunk from the provider, it informs
li and becomes a member ofGi.

Group leader acts as a provider when no other member exists.
But, unlike the centralized lookup approach, if peerp fails to re-
ceive chunki from a provider, it requests the chunk from the server
rather than the group leader. The rationale here is that the server
is more reliable than a group leader, so the response time canbe
guaranteed.

Note that one peer can belong to multiple groups. But a peer
should not lead multiple groups simultaneously, (i) to ensure the
peer has enough capacity to serve requests for one chunk, and(ii)
to avoid a single peer failure affecting multiple groups.

Because a leader is also a peer, neither reliable nor having awell-
known, fixed, address, two questions need to be answered: (i)how
each peer knows the leader of a given group; (ii) how to deal with
the leader failure. We explain our solutions in following sections.

6.2.1 Leader Hierarchy
Leaders inherit the hierarchical structure of chunks, due to the

one-to-one mapping between groups and chunks. The leaders form
a tree, mirroring the structure of chunks. We use the common terms
leaf, root, parent, and child to describe leaders and their relation-
ship in a self-explanatory way. Further, we consider the server as
the parent of all root leaders.

Due to the dependency among the chunks, children of a chunki

is only useful afteri is received. Hence, it is natural for a leader to
supply the information of its children to its members. When apeer
joins the groupGi, in addition to the information of providersi, the
leaderli also returns the information of its children. By exploiting
the hierarchical property of the chunks, the leader information is
obtained progressively without any query.

6.2.2 Leader Assignment and Replacement
In this section, we explain how leaders are assigned and how

a failed leader is replaced. Initially, no peer exists in thesystem,
and the server behaves as the default leader of all chunks. When
a non-leader peerp joins a groupGi led by the server, the server
assignsp as the leader ofGi. The server will not assign a peer
as a leader if this peer is leading another group. When there are
many candidates, how the server selects leaders is an interesting
topic for further research. In our current implementation,the server
only chooses peers with enough uploading bandwidth (largerthan
512Kbps) as leaders.

Since leader assignments and replacements are done by the server,
the server knows the current leader hierarchy. When assigning a
peerp as the leader of groupGi, the server also include informa-
tion aboutp’s parent and children in the tree. The new leader then
notifies its parent and all its children of its new role.

To maintain the tree of leaders, a parent monitors all its children
via heart beat messages. Failure of a child is reported by thepar-
ent to the server, which then chooses one non-leader peer from the
peers who newly joined the system (see Figure 5(b)). The server
maintains a list of recent, non-leader peers who query the server
for root leaders initially. If no such peer is available, theserver
becomes the leader itself.

The leader replacement information is disseminated to the parent
and children of the leader when the new leader notifies its role.
The parent leader in turn notifies its own members of this leader
changes. So a member in the parent group ofGi will always know
the updated leader ofGi.
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Figure 5: (a) Peer B is assigned a leader. (b) An old leader is
replaced by peer B.

It is possible that a peer may contact a failed leader and experi-
ence timeout. If a peer receives new leader updates from the server,
it contacts the new leader; otherwise it requests the chunk from the
server and reports the failure.

6.2.3 Reducing Monitoring Overhead
A peer becomes a member of groupi when it receives chunki.

For a popular chunki (such as the root), many members may ex-
ist. Monitoring and maintaining a large number of members isex-
pensive for the leader. Furthermore, after receiving many chunks,
a peer belongs to many groups, leading to high control overhead.
This problem can be easily solved by restricting the group size and
the number of groups a peer belongs to.

We reduce the number of group a peer belongs to by the fol-
lowing rule: if a peerp obtained two chunksi andj, andi is an
ancestor ofj, thenp only belongs toGj .

By following the above rule, as a peer progressively obtainsmore
and more chunks, it joins groups that are lower down the hierarchy
and leaves the higher groups. Note that a peer leaves a group as
long as it obtainsany of the children chunks, not necessarily all.
At a later time, a peer may want to download a child chunki of a
group it has left (perhaps due to a change of view point). But,since
a peer is no longer in the parent group of the chunki, it may not
have up-to-date information about the leader ofi.

To avoid this, a group leader propagates updates about its chil-
dren down to its sub-tree. As a result, a peer always knows its
leader, the leader’s ancestors, and the immediate childrenof the
leader’s ancestors. Knowing the children of the leader’s ancestors
allows a peer to download any children chunk through the leaders.

This solution raises another problem. If a peer belongs to mul-
tiple descendants of a groupGi, it may receive duplicate leader
updates, leading to unnecessary messages. Such duplicatescan be
removed by simply having this peer to explicitly register itto the
leader closest (in terms of hops count in the leader hierarchy) to li
for leader updates ofGi. This peer will not receive leader updates
of Gi from other leaders since leaders only send its members the
messages they have registered.

For example, as shown in Figure 6, a peer is a member in both
group00000 and0000300. It has already received chunk0, 000,
and00003 before, but has left those groups. Since it may join group
001, 002, and003 in the future, it needs the leader updates from
group0. Group00000 and0000300 are both descendant groups
of group0, but 00000 is closer to group0, so this peer registers
to the leader of group00000 for updates from group0. Similarly,
it registers to the leader of group00000 for updates from group
000 and registers to the leader of group0000300 for updates from
group00003. This method ensures that the leader updates will be
received with the minimum delay and without duplication.
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Figure 6: This peer will register in Group 00000 for leader
updates from group 0 and 000, and it will register in Group
0000300 for leader updates from group00003.

Note that only non-leader members may leave a group. To keep
the leader hierarchy stable, the leader always stays in the group
until it fails or the server assigns a new leader for this group.

6.2.4 Discussion
In the P2P system with hierarchical P2P lookup approach, each

group behaves like a small P2P system with centralized lookup ap-
proach. First, most provider selection algorithms that canbe used in
centralized lookup approach, such as topology-aware and load bal-
ancing, can also be used in the hierarchical P2P lookup approach.
Second, providers are also monitored, so the failure rate ofrequests
is low even with high churn rate. Third, query for a provider can be
finished within 1 RTT in most cases. In short, most of the advan-
tages of the centralized lookup approach are retained.

Compared with the centralized lookup approach, the manage-
ment overhead of the server in hierarchical P2P lookup approach
is significantly reduced. In the stable stage, most group leaders are
peers, so the server only monitors the leaders of the top chunks
instead of all the peers in centralized P2P system. In addition, in
hierarchical P2P lookup approach, the server is also responsible for
replacing the failed leaders, and thus maintains the leaderhierar-
chy at a small overhead. First, the number of leaders only relates
to the number of chunks and thus is independent of the number of
peers. Second, the rate of replacing leaders only relates tothe leav-
ing rate of the peers, which is typically small compared withthe
total number of peers. Thus, the management overhead is signifi-
cantly smaller and the server is more scalable to a large number of
peers compared with the centralized lookup approach.

The hierarchical P2P lookup approach, however, increases the
control overhead and response time. It may also cause more chunks
to be provided by the server. First, more control messages are
needed to maintain the leader hierarchy, to propagate leader up-
dates down to sub-trees, and to exchange heart beat messagesbe-
tween parent and children. Second, average response time increases
since leaders may fail or leave. A peer who fails to contact a
leader needs an additional RTT (to server) before receivinga chunk.
Third, leader failure causes the server to provide more chunks. An-
other reason is that some valid providers may not be used after they
leave a group, which will not happen in the centralized lookup ap-
proach.

In the next section, we further evaluate the centralized andhier-
archical P2P lookup approaches by simulations.

7. EXPERIMENTAL RESULTS
In this section, we present the experimental results to evaluate the

performance of the two lookup approaches we studied: centralized
lookup and hierarchical P2P lookup.

Figure 7: The Thai Statue. The top left is the whole mesh,
and the rest is the closeup of some parts of it. Original mesh
courtesy of Stanford Computer Graphics Laboratory.

7.1 Experiment Setup
We developed two systems to support the experiments: (i) a

receiver-driven client and server implementing view-dependent stream-
ing of progressive meshes used to collect and generate traces; and
(ii) a simulator that replays the traces generated and simulates large-
scale P2P mesh streaming.

The client-server system is programmed in C++ based on OpenGL
and OpenMesh2. In our experiments, we use the Thai Statue from
Stanford Computer Graphics Laboratory3, which has 5 millions
vertices and takes up 22.5 MB after being compressed with our
encoding method. The mesh is packetized into 147897 chunks fol-
lowing the approach introduced in Section 5. We choose this mesh
since details exist all over the statue, so users may have interest in
different positions and levels of details (see Figure 7).

We collected 60 traces from 37 students from our university.The
session length of these traces ranges from 9 seconds to 380 seconds.
When collecting the traces, the streaming bandwidth is set to 320
Kbps, with a client-server RTT of 400 millisecond.

To simulate many users, we generated 4000 random traces after
analyzing the collected user behavior traces, following the same
distribution of the session length (log-normal withµ = 18.23, σ =
0.754 in µs), inter-action time interval (generalized extreme value
distribution withµ = 266, 370, σ = 199, 870, andξ = 0.51,
in µs), and the probability of selecting an action (zoom, pan, or
rotate). We replay these generated traces to obtain the sequence of
chunk requests and use the latter in the simulation.

The P2P simulator is a discrete-event simulator based on OM-
NeT++. In our simulator, peers follow a Poisson arrival model.
Each peer randomly selects a trace from 4000 random traces we
generated and leaves the system at the end of the trace. Our ex-
periment lasts for 320 seconds, and the period from300s to 320s

is seemed as the stable stage (approximately). We choose thear-
rival rate (λ) as 20, 40, 60, and 80. During the stable stage, the
number of online peers are around 1720, 3550, 5200, and 6920,
respectively.

The end-to-end delay between two peers (including server to
peers) are taken from the data collected from the Meridian [4] project.
The original data is a2500 × 2500 matrix recording the pair-wise
delay between 2500 DNS servers. We assign each peer and the
server a random DNS server and assume that the end-to-end de-

2http://www.openmesh.org
3http://www-graphics.stanford.edu/data/3Dscanrep/



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400

C
D

F

Session Length(s)

(a) CDF of Session Length

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  200  400  600  800  1000

C
D

F

Delay(ms)

(b) CDF of Peer-to-Peer Delay

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9  10

C
D

F

Bandwidth(Mbps)

(c) CDF of Peer Bandwidth

download
upload

Figure 8: CDF of the session length (mean = 91.4s), peer-to-peer delay (mean = 75.8ms), and peer bandwidth (download mean=
4292.8Kbps, upload mean = 1023.0Kbps) used in our simulation.

lay of two peers equals the delay between their DNS servers (see
Figure 8(b) for the CDF of end-to-end delay).

The downloading and uploading bandwidth of peers are ran-
domly selected from the data reported by DSLReports.com4, which
records and updates daily the access speed of users over the world.
We use 21,206 samples, collected on 14 April 2009. Figure 8(c)
shows the CDF of the downlink and uplink bandwidth.

In the following sections, we evaluate our P2P design in terms
of server overhead, incoming message rate of the server, control
overhead, and average response time.

7.2 Server Overhead
In this section, we measure the server overhead in three forms.

First, we measure the outgoing data rate of the server. Second,
we measure the ratio of the server’s outgoing data rate to theto-
tal chunk size received by the peers. It is arelative server over-
head compared with the client-server model based system. Third,
to evaluate how busy a server is in handling incoming messages,
we measure the incoming message rate of the server to indicate the
server overhead in handling incoming requests.

The outgoing data rate is shown in Figures 9(a) and (b). Figures
9(a) shows that the server outgoing data rate in the client-server
model exceeds 1Gbps whenλ exceeds40. It indicates that the
client-server model cannot scale well without increasing the num-
ber of servers and outgoing bandwidth, so we will not consider the
client-server model in further comparisons.

Figures 9(c) and (d) show the relative server overhead. The rela-
tive server overhead of the hierarchical P2P lookup is slightly larger
than that of the centralized lookup in our implementation. The main
reason is that more chunks are provided by the server in hierarchi-
cal P2P lookup than that in centralized lookup, as we will discuss
in the section about response time.

The server incoming message rate of the two designs are shown
in Figures 9(e) and (f), where we can see that the hierarchical P2P
lookup reduces the number of incoming messages by around 80%.
Moreover, the incoming message rate increases more slowly with
λ in hierarchical P2P lookup, indicating that the CPU overhead of
the server (to handle the messages) also increases more slowly.

Note that in these two designs, the server responses to incoming
requests are different. The responses are leader information (for
failed joins) and chunks (for failedrequests) in hierarchical P2P
lookup approach, but are mainly provider information in central-
ized approach. Retrieving a chunk or leader information is typically
cheaper than deciding the best provider, especially when topology
awareness and load balancing are considered. Hence hierarchical
P2P lookup not only reduces the incoming message rate, but also
reduces the handling overhead per request to the server.

4http://www.dslreports.com/archive

7.3 Control Overhead
In this section we examine how much network bandwidth is used

by control messages. We define control overhead as the ratio of the
size of control messages to the size of chunks received by allpeers
during one second. Figures 9 (g) and (h) show that hierarchical
P2P lookup has higher control overhead than centralized lookup.
The higher overhead is caused by maintaining the leader hierar-
chy and propagating leader updates. Moreover, in hierarchical P2P
lookup, peers may belong to multiple groups, leading to moremes-
sages used in monitoring. Nonetheless, the control overhead of
both systems are within an acceptable range.

7.4 Response Time
Another important metric to evaluate the P2P mesh streaming

system is the response time. The response time for each chunkre-
quest is obtained by subtracting the receiving time of the chunk by
the sending time of the corresponding request. Since no strict or-
der in receiving chunks is required in mesh streaming, the response
time of a single request is not as important as that in audio and
video streaming. Instead, we emphasize on the average response
time of requests sent in a second, which is the average value of all
the response times of chunk requests in a second.

Figures 9(i) and (j) show that the hierarchical P2P system has
higher average response time. The higher response time is caused
mainly by two reasons. First, unlike providers, only one leader ex-
ists for one chunk. Leader failures cause many peers to spendone
more round trip to obtain chunks. It is possible to use multiple lead-
ers in a group in the future to reduce this effect. Second, a leader in
hierarchical P2P lookup approach does not have the information of
all the providers as the server in centralized lookup, and congestion
may happen due to limited supply ability, causing request failures
and higher response time.

The response time of hierarchical P2P approach, however, isstill
under 1 second, which according to our experience, does not sig-
nificantly affect users’ experience. When a user interacts with the
mesh (e.g., rotate), the renderer responds almost immediately. The
response time of chunk requests only affects how fast the mesh
quality improves after users change their view points.

7.5 Summary
The results above indicate that both designs work well under

an environment with heterogeneous peers, asymmetric bandwidth,
and high churn rate. Compared with a client-server design, the
server outgoing bandwidth is reduced by more than 90%. Hierar-
chical P2P lookup also reduces 60% of incoming messages to the
server, but generates only around 10% of control overhead when
the number of peers is large. The average response time of both
systems is below a second and does not affect the user experience
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due to the progressive rendering nature of the mesh. Further, as the
number of peers increases, the control overhead and response time
remain relatively stable.

8. CONCLUSION AND FUTURE WORK
This paper investigates into the problem of P2P view-dependent,

progressive mesh streaming, and studied two important compo-
nents of the problem - chunking and content discovery. We find
that in P2P mesh streaming, peers need to keep finding new chunk
providers, increasing the control overhead. Furthermore,the short
session length of peers increases the churn rate. We considered
these unique characteristics of mesh streaming and explored two
content discovery schemes. We found that centralized lookup works
well with these challenges. To further reduce the CPU overhead of
the server, a hierarchical P2P lookup approach can be used tomove
the lookup service to selected peers.

Further research can be done on other aspects of P2P mesh stream-
ing. First, authentication is needed to detect malicious tampering
of the mesh by peers. Second, the user pattern in viewing the mesh
could be exploited for pre-fetching. We plan to pursue thesere-
search issues next.
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