
Plasma: A Scripting Language for Processing Media Streams

Tao Zhu, Pavel Korshunov, Bing Liu and Wei Tsang Ooi
Department of Computer Science,
National University of Singapore,

Singapore.

ABSTRACT
Media streaming has found applications in many domains such as education, entertainment, communication
and video surveillance. Many of these applications require non-trivial manipulations of media streams, beyond
the usual capture/playback operations supported by typical multimedia software and tools. To support rapid
development of such applications, we have designed and implemented a scripting language called Plasma. Plasma
treats media streams as first-class objects, and caters to the characteristic differences between stored media files
and live media streams. In this paper, we illustrate the design and features of Plasma through several small
examples, and describe two example applications that we developed on top of Plasma. These two applications
demonstrate that using Plasma, complex applications that compose, mix, and filter multimedia streams can be
written with relatively little effort.

1. INTRODUCTION
Many years of research in the area of media compression, middleware technology, and inter-networking has
enabled daily use of streaming video and audio over the Internet. Many academic and research institutions
are routinely capturing and web-casting lectures. Academic conferences and workshops, such as SIGCOMM
and IPTPS have begun to broadcast their technical sessions live over the Internet. At the same time, video
conferencing is becoming common in homes (e.g. iChat, MSN Messenger) and institutions (e.g. Access Grid1).
These developments over the last few years indicate that streaming media is slowly becoming an important part
of every day’s computing experience.

The increasing usage of streaming video and audio causes proliferation of servers and players to capture,
transmit, and playback streaming media. These software tools, however, seldom go beyond the simple function-
alities of capturing, transmitting, receiving and playing back. Non-trivial manipulations of media streams such
as composition, mixing, or filtering are seldom supported. These operations on media streams are important in
many scenarios. We describe some of these scenarios next.

• In a typical live web-cast production environment with multiple cameras, a director is responsible for pro-
ducing the stream sent to public audience.2 The director controls what the audience sees by switching
between interesting camera views, adding titles, inserting logos, inserting rolling credits and opening se-
quence, or composing the output stream using video streams from different cameras. All these operations
require manipulations of live video streams.

• In Access Grid, different conference venues might have different conference setup and hence cannot com-
municate with each other. Access Grid allows creation of network services,3 which transcode video and
audio among sites to enable interoperability. Complex network services could allow filtering of inactive
(“blue screen”) video streams, or composition of multiple streams from a single site to enhance viewing
experience.

• Some existing IP-based, distributed, video monitoring systems capture video using network cameras or
video sensors, and transmit the video over the network for analysis and monitoring.4 One approach to
scale up such systems to large number of video sources is to filter out uninteresting video streams. We5

proposed an approach where low quality video streams are sent to proxy for analysis and only when
interesting events are detected, high quality streams are sent to users for viewing. Processing of live video
streams is needed in such system. Composition of video streams using live video feeds from cameras and
recorded video clips from an archive is useful in video monitoring system as well. For example, a user
might want to compare two interesting videos side-by-side.

• In video jockeying, a VJ can select different videos either from disk or from cameras, and apply mixing
and filtering to create special effects, reacting to the beats of a song.

Despite the increasing needs to process video streams, there is a lack of tools to support such needs. Most
available tools and libraries support only limited processing operations on video streams and are hard to extend
(e.g. OpenMash6). On the other hand, many tools for processing stored video exist. These include many
scripting languages, designed for rapid prototyping of stored media processing application (e.g. VideoScript,7
Rivl8). These languages, however, do not support live media streams.

Extending existing scripting languages designed for processing stored media files to process live media streams
is not straightforward. Live media has different properties from stored media. Firstly, an abstraction for a live
media stream should expose the network conditions associated with the media stream, such as packet loss rate.
One useful application for such exposure is that it allows scriptable adaptation strategies based on network
conditions. Secondly, processing a stored media file involves only storage devices and display devices. On the
other hand, a live media stream has a network source and destination, possibly consisting of a group of receivers.
The source of the media stream is no longer limited to storage devices, but could be camera, television or other
video sources. Finally, temporal manipulations, such as concatenating two video files and deleting certain scene
from a video, are not meaningful for live media streams. On the other hand, spatial manipulations, such as
creating a picture-in-picture effect or adding logos or sub-titles to live media streams are common operations.

To address the need for an easy-to-use tool for manipulating live media streams, we have designed and
implemented a new scripting language called Plasma (Programming LAnguage for Streaming MediA). With the
differences between stored media and live media in mind, our language is designed with the following features:

• Exposure of underlying network conditions to programmers;

• Integration with audio/video devices as sources and sinks; and

• Focus on spatial composition operations.

These features differentiate Plasma from existing languages in the literature.
Although designed with specific features to support live media streams, Plasma supports manipulation of

stored media like many existing languages. Supporting both live and stored media in Plasma enables mixture of
both media types easily. Such mixing operations are useful in many contexts. For instance, a web-cast operator
might want to insert a pre-recorded opening sequence prior to broadcasting live streams. Others might want to
insert pre-recorded advertisement segments in between sessions while web-casting seminars. Another trivial and
commonly used operation is to receive live media streams and record it to disk as stored media.

In this paper, we highlight the design and features of Plasma, and show how useful, complex manipulations
of media streams can be done easily in our language. We first describe the basic abstractions and operations
supported by Plasma in Section 2. Section 3 further elaborates on the features and usefulness of Plasma through
several examples. We describe the implementation of Plasma briefly in Section 4, and two applications written
using Plasma in Section 5. Section 6 compares Plasma with existing tools and languages in the literature, and
Section 7 concludes.

2. DESIGN OF PLASMA
2.1. Plasma as a Scripting Language
We faced a design decision at the beginning of the project, in deciding whether to implement Plasma as a
software library, a system-level programming language or a scripting language. We chose to implement Plasma
as a scripting language, partly because of the many advantages of scripting. A scripting language allows rapid
prototyping and normally has succinct syntax (and thus shorter code). Furthermore, scripts written can be
executed on different platforms without re-compilation, as long as the language interpreter is ported.

Another main reason that drives us towards using a scripting language is that we would like to exploit the
strengths of the Tcl/Tk language, in particular the strength of Tk as a GUI building tool. As a scripting language

for building GUI programs, Tk excels at two things: (i) specifying layouts of widgets and (ii) binding of GUI
events to callbacks. By borrowing the syntax of Tk, Plasma allows spatial arrangement and composition of
different media streams easily. By supporting events and callbacks, Plasma allows callbacks that manipulate
media streams to be written when certain events (e.g., network congestion) are triggered. Due to the ubiquity of
Tk as the GUI toolkit for many scripting languages (including Perl, Ruby, Python and of course, Tcl), we believe
that the programming model and syntax used in Tk are familiar to many programmers. For these reasons, we
designed the syntax of Plasma to closely resemble those of Tk, and implemented Plasma as an extension to the
Tcl scripting language, the same language Tk is built upon.

2.2. Abstractions in Plasma
Plasma supports two main types of abstract objects, media objects and events. A media object is a unified
abstraction for live media streams, stored media files and analog media sources. A media object can be either a
video or an audio object, and it can recursively contain other media objects. As an example, consider a composite
media object representing a web-cast seminar. This object consists of a video object and an audio object. The
video object can, in turn, contain two other video objects, composed as a picture-in-picture arrangement, one
showing the speaker, the other showing the slides.

An event object, which can be created and bound to a callback by the programmer, represents an interesting
phenomenon that occurs at some time instance. Common GUI events such as mouse and keyboard inputs are
supported, as well as timer events. Most interestingly, programmers can define events that are based on network
conditions (e.g., when network is congested) or content of the video streams (e.g., when motion is detected).
Network-based events allow customized adaptations based on network conditions, while content-based events
allow continuous queries on media streams to be written. Such content-based events could be useful for building
video surveillance applications.

2.3. Plasma and Indiva
The media object abstraction in Plasma can represent not only pre-recorded and live streams, but analog media
devices such as cameras, cable boxes and VCR as well. To interact with such devices, Plasma uses a middleware
called Indiva.9 We briefly present Indiva below.

Indiva (INfrastructure for DIstributed Video and Audio) is a middleware over a distributed audio/video en-
vironment. Such an environment typically consists of audio/video equipments and computers used to capture
media signals, control equipments and process media streams. The media signals and media streams are trans-
mitted over audio/video routing networks and IP networks. Indiva provides a layer of abstractions and a simple
set of APIs over such an environment, hiding the implementation details of the environment from applications.

Indiva uses a UNIX file system metaphor for managing software processes, hardware devices and media data
in a distributed audio/video environment. These resources are named and organized into a hierarchical name
space, much like a UNIX file system. File name extensions indicate the type of the resource (e.g., .cam indicates
that a resource is a camera). Indiva relies on a centralized server, called Indiva manager, to store the name space
and meta-data for the managed resources. Applications connect to the Indiva manager, and issue command to
the manager to manipulate the underlying environment (e.g. display a particular video onto a projector screen).

Indiva provides what Plasma needs to interact with analog media devices. From Plasma point of views, an
analog media device is just another media object that can be manipulated in a unified way as, say, an MPEG
video file. Internally, Plasma relies on Indiva to capture media signals from these devices, and transmit them as
media streams. In the next section, we will see examples on how Plasma uses Indiva to access remote cameras.

3. EXAMPLES
In this section, we present several examples to illustrate the features and power of the Plasma scripting language.

1 media .m indiva://imgr.nus.edu/cs/room420/speaker.cam
2 .m output capture.mpg

Figure 1. A Plasma script for capturing a video from a remote camera and saving it to local disk.

3.1. Example 1: Capture from Camera to Disk
Our first example, shown in Figure 1, captures a video from a remote camera and saves it to disk as an MPEG
file.

Line 1 of Figure 1 creates a media object representing a camera, specified by a given URL. The line consists
of three tokens. The first token, media is a Plasma command for creating a media object. The second token,
.m, is the name given to the media object created. The way Plasma creates a media object is similar to how
Tk creates a widget. We retain the naming convention of widgets in Tk, by preceding all object names with a
period ‘.’. The rest of the line specifies parameters for creation of the media object. In this example, we create
a media object from a camera. We specify the camera using its corresponding name as managed by the Indiva
middleware. The URL, with scheme indiva://, also specifies the name of the Indiva manager (imgr.nus.edu)
and the path of the camera in the Indiva name space (cs/room420/speaker.cam).

After Line 1 creates the media object, Line 2 saves the object to local disk as a file named capture.mpg.
Note that the syntax here again follows the convention of Tk. In object-oriented style, we first write the name
of the object we want to operate on (.m), followed by the operation (output), followed by the parameters to the
operation. In this case, the parameter is the name of the output file capture.mpg.

Even though this simple Plasma script has only two lines of code, the execution of the script is rather complex.
Firstly, Plasma recognizes that the URL is an Indiva URL, and contacts the Indiva manager to request for a
media stream from the camera. Indiva launches the necessary software processes to capture, encode and transmit
the stream to the host where the script is executed. The Plasma interpreter opens a socket to receive the media
stream for processing. In Line 2, Plasma recognizes that the stream is to be saved as an MPEG video based
on the filename extension. Plasma then reads the video stream from the socket, trans-codes it to MPEG (if
necessary) and writes the resulting video to a file called capture.mpg.

Each of Plasma commands supports a number of configuration options that can be used to overwrite the
default behavior of the commands. For instance, the options -fps and -bps can be used to configure the
frame-rate and bit-rate of the media object.

To stop capturing, we can simply delete the object .m.

3.2. Example 2: Spatial Composition
Temporal manipulations for live media streams are not as important as spatial manipulations. For this reason,
one of the guiding principles in designing Plasma is that it should support easy spatial composition operations.
Figure 2 shows one such example. In this scenario, the user would like to view two video streams side-by-side,
the first is a current live view from a surveillance camera inside a computer lab. The second is a surveillance
video from an archive. The user possibly wants to compare what has been stolen or moved in a lab. While it
is possible to play these two video streams at the same time as two separate video streams, composing it into
a single video has its advantage. For instance, the user can save both views into a single video file using the
output operation introduced in the previous example.

In Figure 2, the first three lines uses the media command to create three different media objects. Unlike the
others, the first media object, called .out, is created without any parameters. This command creates a media
object that acts as empty container. This container is analogous to a frame widget in Tk. Line 2 and 3 of Figure
2 create two media objects, one from a camera, specified by an Indiva URL, and another from an archived stream
from a RTSP server. The syntax of Line 2 and 3 is similar to that of Example 1, except that, in this example,

1 media .out
2 media .out.door indiva://imgr.nus.edu/cs/lab0432/door.cam
3 media .out.suspect rtsp://archive.nus.edu/2005/6/20/door.mpg
4 mpack .out.door .out.suspect -side left
5 .out play

Figure 2. A Plasma script for arranging two media streams side-by-side.

the name of the object is prefixed by .out, the container object. This naming convention means that the objects
.out.door and .out.suspect are created as children of .out. This convention is again borrowed from Tk.

After we created two video streams, contained within a new media object, we need to specify how these two
streams should be spatially arranged. Plasma uses a command called mpack, which behaves similarly to the pack
command in Tk. Line 4 of Figure 2 illustrates how this command is used. The mpack command takes in a list of
media objects as parameters, and arranges the objects according to the options specified. In this example, the
two video streams are arranged side-by-side, from left to right.

Finally, Line 5 of this example calls the operation play of object .out. This operation has the following
effects. The Plasma interpreter first creates the two video streams by contacting the Indiva manager and RTSP
server, and opens two sockets to receive the two streams. The two video streams are then decoded, spatially
composed into a new video stream (called .out). The new video stream is played out onto the screen. Figure 3
shows a sample output video from the script.

Figure 3. Example output from Plasma where two videos are arranged side-by-side.

This example illustrates that Plasma borrows heavily from the syntax of Tk for spatial arrangement and for
specifying parent-child relationship among objects. Plasma, however, extends the semantic of these command to
meet its own requirements. For instance, one common operation in spatial composition is to overlay one video
on top of another, but the pack command from Tk does not allow two widgets to overlap. The mpack command
in Plasma allows this arrangement, by checking if the container object is empty. If the container is non-empty,
the child media object is overlayed on top of the parent as a new layer. Figure 4 illustrates this operation by
showing how picture-in-picture effects can be achieved in Plasma.

1 media .out indiva://imgr.nus.edu/cs/lab0432/door.cam
2 media .out.suspect rtsp://archive.nus.edu/2005/6/20/door.mpg
3 .out.suspect scale 0.3
4 mpack .out .out.suspect -anchor sw

Figure 4. A Plasma script for arranging two media streams as a picture-in-picture.

The code shown in Figure 4 is similar to that shown in Figure 2, except that the container media object .out
contains a live camera view, and the child media object .out.suspect contains a view of an archived video.
When we call mpack in Line 4, Plasma overlays the child video over the container video. The option -anchor
sw tells Plasma to put the child video on the south-west corner of the container. The command scale on Line 3
simply reduces the width and height of the video to 30% of its original size so that the container video is not
obstructed. Figure 5 shows a sample output video from this script.

Figure 5. Example output from Plasma where two videos are arranged as a picture-in-picture.

3.3. Example 3: Events
The next example shows the event-driven aspect of Plasma. We show how events are created and bound to
callbacks in this example.

1 mevent <HasMotion> {obj} {
2 [$obj has_motion]
3 }
4 media .camera indiva://imgr.nus.edu/cs/lab0432/door.cam
5 mbind <HasMotion> .camera {
6 if {![mexists .out]} {
7 media .out [.camera url]
8 .out output rtp://224.4.4.4:44444/
9 }
10 }
11 mevent <NoMotion> {obj} {
12 ![$obj has_motion]
13 }
14 mbind <NoMotion> .camera {
15 if {[mexists .out]} {
16 mremove .out
17 }
18 }

Figure 6. A Plasma script for transmitting data from camera as RTP stream upon detecting motion.

Figure 6 shows a Plasma script that transmits video stream captured from a surveillance camera in a computer
lab, whenever motions are detected in the room. The first three lines in this script create an event with command
mevent. The command mevent has three arguments – the first argument is the name of the event, the second
is a list of parameters needed to define the event, and the third argument is an expression which is evaluated
periodically to check if the event should be triggered. The name of the event is surrounded by a pair of triangular
brackets, following the naming convention of events in Tk. The event created here is triggered by detection of
motion in the input video (parameterized by variable obj). The parameterization of the video object allows the
same event to be applied to different video objects in Plasma.

Line 4 of the script above creates a video object, captured from a surveillance camera. Line 5 to 10 then bind
this video object to the motion detection event and specify the callback function of the event. In the callback,
a new video stream named .out with the same URL as the camera is created (Line 7) and is transmitted to
multicast session 224.4.4.4 at port 44444 (Line 8).

The event expression (Line 2) is evaluated periodically. By default, it is evaluated every frame. Thus, in
the example above, the event is triggered for every frame and the callback is executed for every frame, as long
as there is motion. The conditional statement in Line 6 of Figure 6 ensures that a new video stream is created
when motion is detected for the first time only, not every frame!

Finally, Line 11 to 18 of the example stop transmission of the multicast stream when motion no longer exists
in the source video.

3.4. Example 4: Exposing Underlying Network Conditions
One of the differentiating feature of Plasma is that it exposes the network statistics associated with a media
stream to the programmer. This exposure allows programmer to make application-level decisions based on the

network conditions. While finer grain adaptations such as rate control or adaptive FEC are best left to the media
streaming engine instead of controlled through scripts, such fine grain adaptations are not possible in certain
scenarios. An example is video streams that are transmitted from network cameras. In the next example, shown
in Figure 7, we illustrate how coarse grain adaptation can be achieved using Plasma.

1 mevent <HighLoss> {obj} {
2 [$obj lossrate] > .1
3 }
4 mevent <LowLoss> {obj} {
5 [$obj lossrate] <= .1
6 }
7 media .camera http://192.168.0.4/mpeg4/1/media.amp
8 .camera configure -fps 30
9 mbind <HighLoss> .camera {
10 .camera configure -fps 20
11 }
12 mbind <LowLoss> .camera {
13 .camera configure -fps 30
14 }

Figure 7. A Plasma script that changes frame rate from a network camera depending on loss rate.

Figure 7 illustrates the use of lossrate command of a media stream object. The command returns a number
between 0 and 1 indicating the weighted average packet loss rate of the stream. Using this command, the script
defines two events HighLoss and LowLoss, which correspond to loss rate higher than 10% and no higher than
10% respectively (Line 1 to 6). The callbacks of these two events configure the network camera (at IP address
192.168.0.4) to send its video at lower or higher frame rate, depending on the state the network is in.

4. IMPLEMENTATION
The core functionalities of Plasma are implemented in C and C++, with Tcl bindings to provide the scripting
interface. A library libplasma is provided as a Tcl dynamically loadable library. This library allows users to
launch a Tk shell, load the library, and use Plasma commands in an interactive manner. Of course, a user can
also run a Plasma script as a batch file by passing the name of the script file as argument to the interpreter.

Plasma makes heavy use of existing open source libraries, including FFMPEG for video decoding and en-
coding, LAME for audio decoding and encoding, FreeType and Glyph Keeper for text rendering, Dali for image
processing, SDL for audio and video display and OpenMash for interfacing with Indiva.

5. APPLICATIONS
To demonstrate and verify the ease-of-use of Plasma as a scripting language, we have developed two applications
on top of Plasma. The first application is called VJOnline, which is an application for video jockey to add effects
and composite video displays on the fly. The second application is called SLIME. SLIME is a video editor for
layout and composition of videos from multiple media sources. In the rest of this section, we elaborate on the
functionalities of these two applications and show how Plasma allows these applications to be built quickly.

5.1. VJOnline
VJOnline is a tool for a VJ (video jockey) or web-cast director. Using VJOnline, users can open different video
and audio sources, manipulate them with preset effects, and broadcast them to the audience over the Internet.
VJOnline supports (i) transition effects such as fade in, pop in, slide in, and curtain in, (ii) picture-in-picture
effects, and (iii) text marquee effects. A screenshot of VJOnline is shown in Figure 8.

Since the video effects and processing operations are implemented in Plasma, it takes only about 300 lines of
code to implement VJOnline. Out of these, about 240 lines of code are for media processing, and the rest are
Tk code for constructing the GUI. Figure 8 shows a screenshot of the user interface of VJOnline.

Figure 8. Screenshot of VJOnline

5.2. SLIME
The name SLIME stands for Stored/LIve Media Editor. It is an application that is designed to provide intuitive,
drag-and-drop interface for composing video. SLIME is designed with one of the three grand multimedia chal-
lenges in mind – “making video editing as easy as word processing”.10 SLIME has not fully achieved this goal as
it focuses on spatial editing only. As far as spatial composition is concerned, however, we design SLIME’s user
interface to be similar to common drawing interface found in desktop software such as Microsoft PowerPoint and
Adobe Photoshop.

A typical user of SLIME opens a set of video clips, and drag-and-drops the clips onto a scratch canvas. Each
clip is represented as an image showing a snapshot of a frame in the video. On the scratch canvas, the user
composes the output video by moving, resizing, and cropping the video clips through clicking and dragging their
corresponding images. Similar to common drawing software, the user can click anywhere on the canvas, and
type in text strings, which will be overlayed on top of the resulting video. Similarly, a user can overlay another
image (such as logo) on top of the composed video. The user can select individual object or group of objects
on canvas, and change their properties (how long the overlay text will appear, apply additional special effects,
etc.). After the user is satisfied with the composed video, she can then playback the composed video, or save
the video to a file. A screenshot of SLIME is shown in Figure 9.

Figure 9. Screenshot of SLIME

Despite the complexity of SLIME, the application is written in only about 8000 lines of Tcl/Tk code. SLIME
uses libraries such as vTcl for GUI constructions, TkZinc for drawing and manipulating objects on canvas, and
external program such as Mplayer for playback. Most interestingly, SLIME relies on Plasma for processing the
video. When a user wants to save or playback a video, SLIME analyzes the layout and properties of objects on
its scratch canvas, and generates the equivalent Plasma script, which is then passed to Plasma interpreter to
generate the output video. Thus, no actual video processing code is written as part of SLIME (except to extract
thumbnails and snapshots for scratch canvas).

During the initial development phase of SLIME, a preliminary version of Plasma which supports only stored
media is used. At a later stage of the project, when support for live media streams is stable enough in Plasma,
SLIME switches to using this newer version. Interestingly, SLIME suddenly supports streaming video as one of

the video sources, allowing composition of video consisting of both live and stored media, with minimal changes
to its code. This experience demonstrates the generality of abstractions over media streams provided by Plasma.

6. RELATED WORK
The complex nature of multimedia applications has spurred many toolkits and libraries to simplify the software
development process since mid-90’s. Much research effort has been put into development of toolkits, middleware,
and programming frameworks for distributed multimedia applications. These efforts include Berkeley CMT,11
MASH12∗, InfoPipes,13 and NMM.14 These toolkits typically provide abstractions in the form of sources, sinks,
filters, and connections, allowing programmers to connect the different components to build a distributed multi-
media application. Other efforts such as QCompiler15 and PLASMA16 † focus on building adaptive distributed
multimedia applications. In contrast, applications built with our scripting language are not distributed – they are
meant to run on a single host and communicate with others servers through standard or open protocols such as
HTTP and RTSP. Further, Plasma focuses on processing of stored media and live media streams, with emphasis
on spatial composition. Therefore Plasma compliments the design goals of these distributed multimedia toolkits.

Many scripting languages for processing media exist as well. Some examples include VuSystem,17 Rivl,8
VideoScript7 and AviSynth.18 These languages focus on processing stored video only, and do not allow easy
manipulation of video streams.

SMIL19 provides a comprehensive set of functionalities for spatial-temporal layout and transitional effects
on multimedia data. Unlike Plasma, which is imperative, SMIL is declarative in nature. Further, even though
SMIL supports adaptive content, the adaptivity is limited to system parameters (e.g., CPU speed) while Plasma
allows much more flexible adaptations, for instance, based on dynamic network conditions or user-defined events.

MedSMan20 is a system for querying live media streams and provides description languages and an SQL-like
querying language for managing live media streams. It allows generation of feature stream – sequence of features
(and associated meta-data) resulting from analysis of a media stream. Similar to Plasma, MedSMan allows user-
defined events that are triggered based on results of continuous queries. In the case of MedSMan, the queries
are executed on the feature streams. Plasma, however, does not support feature streams. On the other hand,
MedSMan focuses on querying only and does not support spatial composition and is not network-aware.

7. CONCLUSION
This paper presents a new scripting language (built upon Tcl/Tk) called Plasma. The rational behind designing
and developing this new language is that, existing libraries and toolkits lack sufficient support for non-trivial
manipulations of video and audio streams, a feature that we believe is increasingly critical. With target applica-
tions such as video conferencing, web-casting, and video surveillance in mind, we designed Plasma to treat media
streams as first class citizens in the language – Plasma exposes the underlying network statistics of live streams,
allows control of video and audio devices (which can produce streams) and enables easy spatial composition of
streams.

Plasma is still under development. Besides continuing development work to optimize its performance and
extending Plasma with useful operations, we are interested in implementing generic streams in Plasma. Generic
streams would be useful in applications such as video surveillance or sensor network, where data streams (e.g.
strings, numbers) are received and transmitted. Besides allowing continuous queries over these data, one in-
teresting new ability of Plasma if such generic stream is supported, is composition of data streams with media
streams. This ability is useful, for example, if we want to display scrolling stock tickers on a video.

∗and its later incarnation, OpenMash (http://www.openmash.org)
†not to be confused with our language, Plasma

REFERENCES
1. L. Childers, T. Disz, R. Olson, M. Papka, R. Stevens, and T. Udeshi, “Access Grid: immersive group-to-

group collaborative visualization,” in Proceedings of the 4th International Immersive Projection Technology
Workshop, (Ames, IA), June 2000.

2. T. Yu, D. Wu, K. Mayer-Patel, and L. A. Rowe, “dc: a live webcast control system,” in Proceedings of the
SPIE Multimedia Computing and Networking (MMCN), Vol. 4312, (San Jose, CA), Jan. 2001.

3. H. Gao, R. L. Stevens, and M. E. Papka, “The design of network services for advanced collaborative
enviornments,” in Proceedings of the 3rd Workshop on Advanced Collaborative Enviornments (WACE),
(Seattle, WA), June 2003.

4. M. Valera and S. Velastin, “Intelligent distributed surveillance systems: a review,” IEE Proceedings on
Vision, Image and Signal Processing 152, pp. 192 – 204, Apr. 2005.

5. P. Korshunov and W. T. Ooi, “Critical video quality for distributed automated video surveillance,” in
Proceedings of the 13th ACM International Conference on Multimedia, pp. 151–160, (Hilton, Singapore),
Nov. 2005.

6. OpenMash Consortium. http://www.openmash.org.
7. VideoScript. http://www.videoscript.com.
8. J. Swartz and B. C. Smith, “A resolution independent video language,” in Proceedings of the 3rd ACM

International Conference on Multimedia, pp. 179–188, (San Francisco, CA), Nov. 1995.
9. W. T. Ooi, P. Pletcher, and L. A. Rowe, “Indiva: a middleware for managing distributed media environ-

ment,” in Proceedings of ACM/SPIE Multimedia Computing and Networking (MMCN), Vol. 5305, pp. 211–
224, (San Jose, CA), Jan. 2004.

10. L. A. Rowe and R. Jain, “ACM SIGMM retreat report on future directions in multimedia research,” ACM
Transactions on Multimedia Computing, Communications and Applications 1(1), pp. 3–13, 2005.

11. K. Mayer-Patel and L. A. Rowe, “Design and performance of the Berkeley Continuous Media Toolkit,” in
Proceedings of ACM/SPIE Multimedia Computing and Networking (MMCN), Vol. 3020, pp. 194–206, (San
Jose, CA), Jan. 1997.

12. S. McCanne, E. Brewer, R. Katz, L. A. Rowe, E. Amir, Y. Chawathe, A. Coopersmith, K. Mayer-Patel,
S. Raman, A. Schuett, D. Simpson, A. Swan, T. L. Tung, D. Wu, and B. C. Smith, “Toward a common
infrastructure for multimedia-networking middleware,” in Proceedings of 7th International Workshop on
Network and Operating Systems Support for Digital Audio and Video (NOSSDAV), pp. 39–49, (St. Louis,
MO), May 1997.

13. A. P. Black, J. Huang, R. Koster, J. Walpole, and C. Pu, “Infopipes: an abstraction for multimedia
streaming,” Multimedia System 8(5), pp. 406–419, 2002.

14. M. Lohse, M. Repplinger, and P. Slusallek, “An open middleware architecture for network-integrated multi-
media,” in Proceedings of Joint International Workshops on Interactive Distributed Multimedia Systems and
Protocols for Multimedia Systems (IDMS/PROMS), Lecture Notes in Computer Science 2515, pp. 327–338,
Springer, 2002.

15. D. Wichadakul, X. Gu, and K. Nahrstedt, “A programming framework for quality-aware ubiquitous multi-
media applications,” in Proceedings of the 10th ACM International Conference on Multimedia, pp. 631–640,
(Juan-les-Pins, France), Dec. 2002.

16. O. Layaida and D. Hagimont, “PLASMA: a component-based framework for building self-adaptive appli-
cations,” in Proceedings of Embedded Multimedia Processing and Communications, pp. 185–196, (San Jose,
CA), Jan. 2005.

17. C. Lindblad, D. Wetherall, and D. L. Tennenhouse, “The VuSystem: a programming system for visual pro-
cessing of digital video,” in Proceedings of the 2nd ACM International Conference on Multimedia, pp. 307–
314, (San Francisco, CA), Oct. 1994.

18. AviSynth. http://www.avisynth.org.
19. L. Rutledge, “SMIL 2.0: XML for Web multimedia,” IEEE Internet Computing 5(5), pp. 78–84, 2001.
20. B. Liu, A. Gupta, and R. Jain, “MedSMan: a streaming data management system over live multimedia,”

in Proceedings of the 13th ACM International Conference on Multimedia, pp. 171–180, (Hilton, Singapore),
Nov. 2005.

