
Receiver-Driven View-Dependent Streaming
of Progressive Mesh

Wei Cheng Wei Tsang Ooi
Department of Computer Science, National University of Singapore

{chengwe2, ooiwt}@comp.nus.edu.sg

ABSTRACT
Progressive mesh streaming enables users to view 3D meshes over
the network with increasing level of details, by sending coarse ver-
sion of the meshes initially, followed by a series of refinements. To
optimally increase the rendered mesh quality, refinements should
be sent in descending order of their visual contributions based on
the user’s viewpoint. A common approach is to let the sender
decide this sending order, but the computational cost of making
this decision prohibits such sender-driven approach from scaling
to large number of clients. To improve scalability, we propose a
receiver-driven protocol, in which the receiver decides the sending
order and explicitly requests the refinements, while the sender sim-
ply sends the data requested. The sending order is computed at
the receiver by estimating the visibility and visual contributions of
the refinements, even before receiving them, with the help ofGPU.
Experiments show that our protocol reduces the CPU cost of the
sender by 24% and the outgoing traffic of the sender by 40%.

Categories and Subject Descriptors
I.3.2a [Graphics Systems]: Distributed/Network Graphics; C.2.4b
[Distributed Systems]: Distributed Applications

General Terms
Performance, Design

Keywords
View-dependent streaming, progressive meshes

1. INTRODUCTION
High resolution 3D models, such as artworks, cultural heritage,

and scientific visualization are increasingly available over the In-
ternet. Stanford Digital Michelangelo Project [11], for example,
provides high resolution 3D meshes of statues by Michelangelo.
While current generations of commodity GPU already enablesreal-
time rendering of these meshes, transmission of the meshes over
the network remains a main bottleneck. For example, the Stanford

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV ’08 Braunschweig, Germany
Copyright 2008 ACM 978-1-60588-157-6/05/2008 ...$5.00.

edge collapse

Vs

Vt
Vu

VrVr

Vl Vl
vertex split

Figure 1: Edge collapse and vertex split. This edge collapse
removes one vertex by collapsing the edgeVuVt to a vertex Vs,
and the vertex split reconstructs the edge fromVs. VerticesVl

and Vr are the cut neighbors ofVs.

model of the David statue, with 28 million vertices and 56 mil-
lion triangles, needs more than 10 minutes to download at 1 Mbps
even after compression. A natural choice to reduce the waiting time
is progressive streaming, which allows users to see a coarse mesh
quickly, with quality improved incrementally as more data arrives.

A commonly used representation of 3D models to support pro-
gressive streaming is progressive mesh [6], which is based on two
operations:edge collapse andvertex split. With the edge collapse
operation, we can simplify a complex mesh into a simple base mesh
by continuously collapsing one edge into a vertex. We reconstruct
the original mesh by applying vertex split, the inverse of the edge
collapse, in the reverse order of collapsing (see Figure 1).There-
fore, progressive streaming can be implemented by sending the ver-
tex splits as refinements after sending the base mesh.

In progressive mesh streaming, it is desirable to increase the vi-
sual quality on the client side as quickly as possible. The ideal
way is to send the vertex splits in the descending order of their
contribution to mesh quality, commonly measured by the Haus-
dorff distance between the original and reconstructed mesh[5]. As
Hausdorff distance is view independent, bandwidth may be wasted
in sending invisible vertex splits before the visible ones.Moreover,
even among the visible vertex splits, the view-independentmetric
cannot reflect the real contribution to the visual quality ofclients
with different viewpoints. A vertex split that significantly changes
a mesh may change the rendered image only slightly.

A better metric for visual contribution of a vertex split, which
considers the receiver’s viewpoint, is an image-based metric sim-
ilar to that proposed by Lindstrom and Turk [12], using the mean
square error between the rendered images of the original mesh and
reconstructed mesh. Based on this metric,view-dependent stream-
ing, in which vertex splits are sent in the descending order of their
contributions to the quality of rendered image, is introduced.

In previous implementations of view dependent streaming [16,
15, 18, 10, 20], the server decides which vertex splits to send. In
these implementations, the client sends its viewing parameters to

Sender Receiver

Request

Base Mesh+ Information

Sender Receiver Sender Receiver

receiver−driven

View parameters

common part

view point
changed

Vertex splits

View parameters

Vertex splits ...

(a)
sender−driven

(b) (c)

 Requests

Figure 2: Sender-driven protocol and receiver-driven protocol

the server, and the server sends the chosen vertex splits after de-
termining the visibility and the appropriate resolution ofdifferent
regions of the mesh (See Figure 2b).

This sender-driven protocol, however, has two significant weak-
nesses. Firstly, it is not scalable to many receivers. Determining
visibility of vertices and sorting the visible vertex splits based on
their visual contributions are expensive operations. Moreover, the
sender needs to maintain the rendering state of each receiver to
avoid sending duplicate data when receivers changes viewpoint.

Secondly, due to the stateful design and huge computationalre-
quirements, the sender-driven approach cannot be extendedeasily
to support caching proxy and peer-to-peer architecture, two com-
mon solutions to scalability. It is not realistic to requireeach proxy
or peer to provide much CPU time and memory. Furthermore, a
proxy or peer might not store the complete mesh.

To address the above weaknesses, we propose a receiver-driven
protocol, in which the receiver decides the sending order and ex-
plicitly requests the vertex splits. The sender simply sends the data
requested (See Figure2c), so no expensive computation is needed.
Furthermore, the server is stateless, so existing cache proxy and
peer-to-peer techniques can be applied.

The receiver-driven protocol also reduces the size of data sent
by the sender. In sender-driven protocols, for each vertex split, the
sender has to send identifications to indicate which vertex to be split
(Vs in Figure 1), requiring at leastlog2n bits if n vertices exist [7].
In the receiver-driven protocol, however, the sender needsnot send
these identifications since the vertex splits can be sent according
to the requesting order from the receiver. The identifications, sent
by the receiver, consumes the down-link bandwidth of the sender,
which is often less likely to be the bottleneck than the up-link.

Implementing the receiver-driven protocol is non-trivial. First,
we need to assign each vertex a unique identification number so
that the receiver can explicitly request vertex splits. Second, the
receiver has to efficiently decide the importance of a vertexsplit
based on partially received mesh. Although it is difficult for the
receiver to accurately measure the visual importance of a vertex
split, we find that estimation suffices in our scheme.

The main contributions of our work are as follows. We propose
a receiver-driven protocol of view-dependent streaming, which sig-
nificantly reduces the CPU time of the sender and makes the sender
stateless. Our protocol exploits the receiver’s computingresources
to approximate the optimal list of vertex splits to receive to im-
prove the rendered mesh quality. We also introduce an algorithm to
efficiently encode the receiver’s requests.

The rest of the paper is organized as follows. In Section 2, we
introduce the related work. We briefly review the traditional view-
dependent approaches in Section 3. Then, we present the receiver-
driven protocol in Section 4. We evaluate our protocol in Section 5
and conclude in Section 6.

2. RELATED WORK
The view-dependent approach first appeared as a dynamic sim-

plification method used for adaptive rendering of a complex 3D
mesh [7, 13]. Only vertex splits that contribute to the rendered
image will be rendered, allowing real-time rendering of a com-
plex mesh even with limited rendering capability. Besides progres-
sive mesh, other multi-resolution representations, such as vertex-
clustering and subdivision scheme, are used in view-dependent re-
finement systems [17, 2, 3].

Later, the view-dependent approach is used in progressive stream-
ing of 3D meshes. In the scheme proposed by Southern et al. [15],
the client is stateless and maintains only the visible data.To et al.
[16] and Kim et al. [10] proposed that received data are stored in
the receiver even after they become invisible, so they need not be
resent when they are visible again. In these papers, view-dependent
approaches mainly aim at addressing limited rendering capability.

Yang et al. [18] and Zheng et al. [20], on the other hand, use
view-dependent streaming to address limited network bandwidth.
Yang et al. proposed a scheme where the server chooses the ap-
propriate resolution according to the available network bandwidth.
Zheng et al. [20] use prediction to reduce the effect of network
latency and compensate the round-trip delay with the rendering
time. These systems use sender-driven approach and do not ad-
dress server scalability issues.

The main challenge of these view-dependent schemes is finding
an appropriate subset of vertex splits to generate a satisfactory ren-
dered image on the client side. The flexibility of choosing a subset
of vertices, hence, is crucial in view-dependent streaming. But this
flexibility is restricted by the dependency among the vertexsplits.
For a manifold mesh, a vertex split operation depends on the ex-
istence of (a) the vertex to be split (Vs in Figure 1), (b) two cut
neighbors (Vl, Vr in Figure 1). More dependencies exist if artificial
folds are strictly forbidden [7, 13], but in this paper we ignore these
dependencies since we can tolerate temporary folds in our scheme.

To et al. [16] further remove the second dependency. In their
method, if a cut neighbor does not exist during a vertex split, its
ancestor will be used as the cut neighbor instead. Kim and Lee[9]
improve this method so that the final mesh can keep the original
connectivity. Kim et al. [8] propose a better scheme that enables an
ordinary progressive mesh to be split in random order. This method
is applied in our protocol to reduce the cut neighbor dependency
and will be described in further details in Section 4.

The flexibility in choosing split order, however, increasesthe dif-
ficulty in developing an effective encoding scheme. Most com-
pression algorithms for progressive mesh choose a specific order
of vertex splits to reduce redundancy by exploring the correlation
between consecutive vertex splits. Moreover, compressed data can
only be sequentially decoded so we cannot change the sendingor-
der. One solution proposed by Yang et al. [18] is to divide the
whole mesh into several segments and encode them separatelyto
trade off between flexibility and compression efficiency. The weak-
ness is that the size of the base mesh is relatively large since the
original vertices in the border of segments are kept in the base
mesh. Furthermore, the quality of the base mesh is uneven.

Some related work [8, 19] have proposed compression algorithms
that allow random splitting of a mesh without sacrificing compres-
sion efficiency. These algorithms are not designed for network
transmission, but our scheme extended several ideas from Kim et
al. [8] and applied them in view-dependent streaming.

The discussion above focuses on view dependent streaming of
3D meshes. View dependent streaming have also been used for
other 3D data, such as terrain [4] and 3D scenes [14].

Vertex Front

Mesh
Base00 01 10

000 001 010 011 100

10111010100110000111010101000011001000010000

00100 00101 10000 10001 10110 10111

101

0110

Original Mesh

Figure 3: Vertex hierarchy and vertex front. A rectangle repre-
sents a vertex and the number inside is its identification num-
ber, including tree ID and node ID.

3. CURRENT VIEW-DEPENDENT
APPROACHES

In this section, we briefly review the current view-dependent ap-
proaches since they are the basis of our scheme.

View-dependent systems often organize the vertices hierarchi-
cally. For example, Hoppe [7] represents parent-child relation among
the vertices in a progressive mesh as a forest of binary trees, named
vertex hierarchy, in which the root nodes are vertices in the base
mesh, and the leaf nodes are vertices in the original mesh (see Fig-
ure 3). A vertex split replaces one vertex (Vs in Figure 1) by its two
children (Vu andVt in Figure 1). Thus, after applying some vertex
splits, the result is a mesh lying between the original mesh and the
base mesh. The set of vertices in current mesh is calledvertex front
[7] (see Figure 3).

Due to dependencies among the vertices, visibility determina-
tion of a vertex cannot be based on the vertex alone. An invisible
vertex still needs to be split if any of its descendants is visible. To
avoid determining the visibility recursively for all the descendants,
a common method is to use a bounding sphere to represent a ver-
tex and all its descendants. Then, we can safely ignore a vertex
split if its bounding sphere falls outside the view frustum.Simi-
larly, a bounding cone of normal is used in back face culling [7].
These bounding object-based methods are not appropriate inour
receiver-driven protocol. First, it can only determine thevisibility,
but cannot sort the vertex splits by their visual contributions. More
importantly, the sender has to send these bounding parameters with
the vertex splits, almost doubling the data size. We explainour
solution to this issue in Section 4.

After deciding the visibility, the sender sends the chosen vertex
splits to the receiver. Six parameters are needed in a vertexsplit
of a manifold mesh: the identification number (we call ID from
now on) of the vertex to be split (Vs in Figure 1)Ids, the IDs for
two cut neighbors (Vl andVr in Figure 1),Idl andIdr, and the
coordinatesx, y, andz of the right child (Vt in Figure 1). Here, half
collapse is used soVu remains at the same position ofVs. Many
implementations use the sequence number of a vertex generated as
its ID, but this method enforces the sender to be stateful since the
sender has to remember the sending order of each receiver.

Kim and Lee [9] proposed a new method, in which every vertex
has an ID that is independent of the sending order. The ID of a
vertex is a bit string with two parts: tree ID and node ID. TreeID is
the sequence number of the root of this tree in the base mesh, and
the node ID represents the path from the root to this vertex inthe
binary tree. For example, if the tree ID is ‘01’, which is alsothe ID
of the root vertex of this tree, the bit string ‘010’ and ‘011’are the
IDs of the left child and right child of the root vertex respectively.
A vertex hierarchy with the assigned IDs is shown in Figure 3.

Besides being independent of the sending order, another benefit
of this scheme is that the IDs embed the hierarchy. Thus, we can

...

ID j

...

ID n

ID i

... ...

...

...

E_VS

 E_VS

i

 E_VSj

n

Data

 E_VS
i E_VS

ID i ID j
E_(

)...

ID i ID j ...

Searching

Decoding

 E_VS E_VS

j

i
j ...

...

Sender Receiver

Figure 4: The process of the sender in receiver-driven protocol.
E represents encoded data, and VS means vertex split.

deduce the IDs of the ancestors and the descendants of each vertex.
For example, given ‘1001’ as the ID of a vertex, we can deduce that
‘100’ is the ID of its parent, ‘10010’ is the ID of its left child and
‘10011’ is the ID of its right child. This property frees the sender
from sending the IDs of the two newly generated vertices (Vu and
Vt in Figure 1), as they can be deduced by the receiver.

The above property is also essential in splitting a progressive
mesh in random order, in which the set of neighbors of a vertex
during the decodingN ′ may not beN , the set during the encoding.
If a cut neighbor with an ID ofId is not inN ′, then either one of
its ancestors or at least one of its descendants must belong to N

′

[8]. In the former case, the ancestor is found and used as the cut
neighbor since its ID is the prefix ofId. In the latter case, the
descendants of the original cut neighbor inN

′ are found since they
all haveId as their prefix. Kim et al. [8] propose a method to find
out the proper one as the cut neighbor and they show that despite
using replacement in the vertex splitting, the original mesh can be
accurately reconstructed when all the vertex splits are applied.

Kim et al. [8] also propose an algorithm to encode the IDs of two
cut neighbors at about 12 bpv (bit per vertex) and the coordinates
x, y, andz at about 21 bpv (with 12 bit quantization). Although
their paper focuses on random access of local meshes, we find that
this method is useful in progressive streaming as well.

4. RECEIVER-DRIVEN PROTOCOL
We now present our proposed receiver-driven protocol for view-

dependent progressive mesh streaming. We first introduce the pro-
cess of transmitting a progressive mesh. Then, we explain how the
receiver decides the requesting order. Finally, we explainhow we
efficiently encode the request from the receiver.

4.1 Mesh Transmission
A streaming session is initiated when the receiver requestsfor

a specific mesh. The sender returns the complete base mesh and
other necessary information (See Figure 2a) to the receiver.

Then, the receiver determines the requesting order of the vertex
splits based on the received base mesh, encodes their IDs, and sends
them to the sender. On the sender side, the vertex splits are stored
in an associative array, which maps the ID to the vertex splits. After
receiving the encoded IDs from the receiver, the sender decodes the
IDs and searches for the vertex splits in the associative array with
IDs as the key values. The matched vertex splits are sent backto the
receiver (See Figure 4). The sender does only two things – decode
IDs and retrieve the vertex splits, and is therefore stateless.

4.2 Determining Visual Importance
We now introduce how the receiver decides the requesting order.

We cannot directly use the mean square error between rendered im-
ages of reconstructed mesh and original mesh to determine the or-
der, since we need to know the importance of a vertex split before it

v1

v2

Figure 5: Rendered image on the receiver’s screen. The shaded
are the screen area of vertexV1 and vertexV2.

is received. To overcome this problem, we estimate the importance
of the vertex splits to request for based on the received mesh, using
the screen-space area of all the neighbor faces of a vertex asthe
metric of its visual importance (see Figure 5). The rationale is that
if the screen area of a vertex (V1 in Figure 5) is larger, it is likely the
quality can be improved more by splitting this vertex. Moreover,
the screen-space area can be efficiently computed with the help of
the GPU, by simply counting the number of pixels inside the faces
in the frame buffer.

Once the screen-space areas are computed, the receiver sends
the requests following the descending order of the screen-space
area. If the viewpoint changes, the visual importance will be re-
computed and a new list of vertex splits will be requested. Since the
received splits refine the mesh, the receiver recomputes thevisual
importance periodically to update the order even without viewpoint
change. The refresh period, one second in our experiments, can be
decided by the receiver based on mesh size and network bandwidth.

The client can stop requesting once it finds that the rendering
quality is sufficient. The receiver has the flexibility of continuing
to request for the remaining vertex splits for future use. Itcan also
pre-fetch some invisible vertices based on the prediction of future
viewpoints.

If the receiver stops requesting when the visual quality is satis-
factory, it may miss some visible vertices since the visibility deter-
mination is just an estimate. Some invisible vertices may have po-
tentially visible descendants, but they will not be received if their
parent has no screen-space area. Fortunately, in most cases, this
kind of error is small and tolerable (See the experiment results in
Section 5). If strict accuracy is needed, the receiver can choose to
continue requesting for the remaining vertex splits.

4.3 Encoding of Vertex Splits and IDs
In this section, we explain how we encode the vertex splits and

the IDs of the requested vertex splits. Note that, in our work, we
consider only manifold meshes and use half collapse in the simpli-
fication.

To encode a vertex split, we need to encode the IDs of the two cut
neighbors and itsx, y, andz coordinates. We use Kim’s algorithm
[8] to code the IDs of the cut neighbors. To encode the coordinates,
instead of encodingx, y, andz directly, we encodedx, dy, anddz

with Huffman coding algorithm. Heredx = x− x0, dy = y − y0,
anddz = z − z0, andx0, y0, andz0 are the coordinates ofVs,
the vertex to be split. The rationale to code the differencesis that
they have less entropy, especially for the later part of vertex splits,
which only change the coordinates slightly. It is worth noting that
all the encoding process are done off-line and the encoded vertex
splits are stored in the associative array, so the encoding will not
increase overhead to the sender.

According to the results of our experiments with the Stanford
Happy Buddha model, we can quantizedx, dy, anddz to 14 bits.
We need 11 bpv for bothIdl andIdr and 20 bpv for all three of

1 0 01

left subtree

1

0 1 01 0 0

0
right subtree

100100

left right

1 0 1 000

1

1

0

0 0 00

0

11

Figure 6: The code of ID of the bottom two vertices is
1011001000.

dx, dy, anddz on average. It is worth noting that more bits are
needed fordx, dy, anddz for the earlier vertex splits (about 30 to
35 bpv) since their values are larger. The number of bits needed
decreases significantly for later part of the vertex splits as dx, dy,
anddz decrease. We think that compressingx, y, andz based on
better prediction techniques may further increase the efficiency and
it will be an interesting topic of future work.

We now introduce how we encode the vertex split IDs, which
need 32 bpv without compression. The two parts of an ID, tree ID
and node ID, are encoded separately. We use a bit stringcode to
store the encoded result. First, we sort the IDs in a packet according
to the tree IDs, in increasing order. Then, we store the first tree ID
to code and store each of the following tree ID as the difference
from the previous tree ID. Since they are sorted, the differences are
positive and relatively small numbers.

Algorithm 1 Encoding Vertices in One Tree. Input: IDs of vertices
in a tree to be split; Output: a bit string as thecode.

if no vertex needs to be encode in the left subtreethen
append ‘0’ tocode;

else
append ‘1’ tocode;
encode the left subtree;

end if
if no vertex needs to be encode in the right subtreethen

append ‘0’ tocode;
else

append ‘1’ tocode;
encode the right subtree;

end if

Next, we encode the node IDs in a tree into a bit string with a
recursive algorithm (See Algorithm 1). In brief, we use two bits to
represent whether one or more descendants need to be split (‘1’ for
yes and ‘0’ for no) in the left subtree and right subtree respectively.
In the example shown in Figure 6, for the root vertex, since atleast
one vertex in the left subtree needs to be split, we append ‘1’to
the code and encode the left subtree. At the root of the left subtree,
since no vertex needs to split in its left subtree, we append ‘0’ and
check its right subtree. Vertices to be split exist in the right sub-
tree, so we append ‘1’ and encode its right subtree recursively as
‘100100’. Finally, we return back to the root and append ‘0’ since
no nodes in the right subtree needs to be split. Therefore, the result
is ‘1011001000’.

During decoding, the sender traverses the tree according tothe
bits of the code. The bit ‘1’ means to decode the subtree and the
bit ‘0’ means to stop and return. If a vertex has no descendants
that needs to be decoded, then this vertex is split. Decodingis done
when the procedure returns to the roots.

The advantage of this method is that the code length is variable
and the length can be determined without extra flags. The coding

efficiency depends on how many vertices need to be split inside a
tree. Two bits are assigned to each vertex traversed during the en-
coding (including the vertices to be split and their ancestors in their
path to the roots). Thus, the code efficiency is higher when more
vertices in one tree are encoded since the overhead is amortized
across the vertices.

We can further reduce the data size for some receivers whose
up-link (receiver to sender link) bandwidth is much less than the
down-link (sender to receiver link) bandwidth. These receivers can
request the sender to send not only the vertex split for the requested
vertex but also the vertex splits for its descendant. For example, if
the receiver sends an ID ‘10010’, the sender can send vertex splits
for ‘10010’, ‘100100’, ‘100101’. The receiver can explicitly indi-
cate in the packet how many descendants to send. This method also
allows the server to better utilize its outgoing bandwidth by filling
the pipeline when RTT between the server and the client is high.

5. EVALUATION
In this section, we introduce the experiments results to evaluate

our protocol. We choose two computers on a LAN as the sender
and the receiver. We use several meshes from Stanford University
in our experiments, but we only present the result of Happy Buddha
in this paper due to the space limit.

5.1 CPU Usage of the Sender
We compare the CPU usage of the sender in sender-driven proto-

col and receiver-driven protocol after all vertex splits are received
(see Table 1). The implementation of the sender-driven protocol is
modified from our receiver-driven protocol using the visibility de-
termination algorithm from Kim et al. [10]. In both experiments,
the client changes its viewpoints exactly the same way. A computer
with an Intel Core 2 Duo 2.4 GHz CPU and 4 GB memory is used
as the sender. We profile the code five times with Google CPU pro-
filer and take the average value. We can see that the receiver-driven
protocol reduces the CPU usage of the sender by 24% since we re-
move the processes for determining the visibility and updating the
vertex front on the sender.

5.2 Transmitted Data Size
During transmissions of the Happy Buddha model (542652 ver-

tex splits) using the receiver-driven protocol, 1.83 MBytes are sent
from the receiver to the sender as vertex split IDs, and 2.21 MBytes
are sent from the sender to the receiver as vertex splits. Thus, on
average, IDs cost 27 bpv and vertex splits cost 32 bpv. If sender-
driven protocol is used, both IDs and vertex splits are sent from the
sender to the receiver, so the total data sent by the sender are 4.04
MBytes. Thus, by moving IDs from the down-link to up-link, we
reduce the outgoing bandwidth consumption of the sender by more
than 40%.

Reducing the outgoing data size also shortens the downloading
time. In the receiver-driven protocol, although the total transmitted

Sender-driven Receiver-driven
send base mesh 1.40s 1.13s

decode IDs - 1.55s
search vertex split 1.85s 1.85s

determine visibility 0.41s -
update vertex front 1.41s -

encode IDs 0.94s -
others 0.16s 0.16s

Table 1: Comparison of CPU usage of the sender.

Figure 7: The upper row shows the rendered images, and the
lower row shows the reconstructed meshes when the quality of
rendered images is acceptable. The rectangles over the images
represent the viewable areas of the user.

View Point 1 View Point 2 View Point 3
error pixels 305 226 115
proportion 0.12% 0.09% 0.05%

PSNR 37.8 38.3 40.6

Table 2: Errors of rendered mesh when only visible vertices are
split. There are 250,000 (500×500) pixels in total.

size remains the same, about 40% of the data are now transmitted
in the up-link of the client. On duplex links where up-link trans-
mission can occur concurrently with down-link transmission, the
total transmission time reduces by about 40% as well.

5.3 Quality
We follow Lindstrom and Turk [12] and use an image-based met-

ric to evaluate the quality of a reconstructed mesh. It is reasonable
since the representation of a 3D mesh on the receiver side is the 2D
rendered image. In this paper, we use the PSNR value of the ren-
dered image as the metric, with the rendered image of the original
mesh as the reference.

Figure 8 shows how PSNR changes with the amount of data re-
ceived. Assuming constant transmission rate, this figure also shows
how PSNR value changes with time. We do the experiments with
three different viewpoints (see Figure 7). In receiver-driven proto-
col, the quality grows much faster than sender-driven protocol be-
cause data transmitted are reduced. View-independent streaming,
although having the highest compression ratio (20 bpv [1]),wastes
majority of bandwidth in sending invisible vertex splits, so it in-
creases the quality at a slower rate, especially when only a small
part of the mesh is visible (e.g. View Point 3).

As we explained in Section 4, if the receiver stop requestingver-
tex splits after all the visible splits received, some potentially vis-
ible vertices may not be generated. We use two methods to com-
pare the rendered images between the original mesh and the recon-
structed mesh when all visible vertices are split. One is to find how
many pixels are different and the other is to compute the PSNR
value. Table 2 shows that the error is negligible.

 10

 15

 20

 25

 30

 35

 0 300 600 900 1200 1500

P
S

N
R

Received Bytes (KB)

Relation between PSNR and received bytes

Receiver-Driven
SenDer-Driven

View-independent
 10

 15

 20

 25

 30

 35

 0 200 400 600 800 1000 1200

P
S

N
R

Received Bytes (KB)

Relation between PSNR and received bytes

Receiver-Driven
Sender-Driven

View-independent
 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800

P
S

N
R

Received Bytes (KB)

Relation between PSNR and received bytes

Receiver-Driven
Sender-Driven

View-independent

View Point 1 View Point 2 View Point 3

Figure 8: How PSNR changes with amount of received data. We cut off the curve when PSNR = 35 as its value approaches infinity
when enough data are received.

6. CONCLUSION
In this paper, we propose the receiver-driven approach for view-

dependent streaming of 3D meshes. Our preliminary study shows
that the approach is promising in reducing the sender’s resource
requirements, both in CPU and outgoing bandwidth. The stateless
nature of the sender in our approach makes it a natural choicein
peer-to-peer mesh streaming and caching proxy. We plan to study
how our protocol can be applied in these two areas. Our protocol
can also be easily extended to support streaming of a scene with
multiple mesh objects.

Acknowledgment
This work is supported by National University of Singapore Aca-
demic Research Fund R-252-000-306-112.

7. REFERENCES

[1] P. Alliez and M. Desbrun. Progressive compression for
lossless transmission of triangle meshes. InProceedings of
SIGGRAPH ’01, pages 195–202, Los Angeles, USA, August
2001.

[2] P. Alliez, N. Laurent, H. Sanson, and F. Schmitt. Efficient
view-dependent refinement of 3D meshes using
sqrt(3)-subdivision.The Visual Computer, 19(4):205–221,
July 2003.

[3] D. I. Azuma, D. N. Wood, B. Curless, T. Duchamp, D. H.
Salesin, and W. Stuetzle. View-dependent refinement of
multiresolution meshes with subdivision connectivity. In
Proceeding of AFRIGRAPH ’03, pages 69–78, Cape Town,
South Africa, May 2003.

[4] F. Chang and W. chi Feng. Streaming terrains. InProceeding
of NOSSDAV’08, Urbana-Champaign, USA, June 2008.

[5] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measuring
error on simplified surfaces.Computer Graphics Forum,
17(2):167–174, 1998.

[6] H. Hoppe. Progressive meshes. InProceeding of SIGGRAPH
’96, pages 99–108, New Orleans, USA, August 1996.

[7] H. Hoppe. View-dependent refinement of progressive
meshes. InProceeding of SIGGRAPH ’97, pages 189–198,
Los Angeles, USA, August 1997.

[8] J. Kim, S. Choe, and S. Lee. Multiresolution random
accessible mesh compression.Computer Graphics Forum,
25(3):323–331, September 2006.

[9] J. Kim and S. Lee. Truly selective refinement of progressive
meshes. InProceedings of Graphics Interface 2001, pages
101–110, June 2001.

[10] J. Kim, S. Lee, and L. Kobbelt. View-dependent mesh
streaming with minimal latency.International Journal of
Shape Modeling, 11(1):63–90, June 2005.

[11] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg,
J. Shade, and D. Fulk. The digital Michelangelo project: 3D
scanning of large statues. InProceedings of SIGGRAPH ’00,
pages 131–144, New Orleans, USA, July 2000.

[12] P. Lindstrom and G. Turk. Image-driven simplification.ACM
Trans. Graph., 19(3):204–241, July 2000.

[13] D. Luebke and C. Erikson. View-dependent simplification of
arbitrary polygonal environments. InProceeding of
SIGGRAPH ’97, pages 199–208, Los Angeles, USA, August
1997.

[14] D. E. Ott and K. Mayer-Patel. Coordinated multistreaming
for 3d teleimmersion. InProceeding of ACM MM’04, pages
596–603, New York, USA, October 2004.

[15] R. Southern, S. Perkins, B. Steyn, A. Muller, P. Marais,and
E. Blake. A stateless client for progressive view-dependent
transmission. InProceedings of Web3D ’01, pages 43–50,
Paderborn, Germany, February 2001.

[16] D. S. P. To, R. W. H. Lau, and M. Green. A method for
progressive and selective transmission of multi-resolution
models. InProceedings of VRST ’99, pages 88–95, London,
UK, December 1999.

[17] J. C. Xia and A. Varshney. Dynamic view-dependent
simplification for polygonal models. Inproceedings of VIS
’96, pages 327–334, 498, San Francisco, USA, October
1996.

[18] S. Yang, C.-S. Kim, and C.-C. Kuo. A progressive
view-dependent technique for interactive 3-D mesh
transmission.IEEE Transactions on Circuits and Systems for
Video Technology, 14(11):1249–1264, November 2004.

[19] S.-E. Yoon and P. Lindstrom. Random-accessible
compressed triangle meshes.IEEE Transactions on
Visualization and Computer Graphics, 13(6):1536–1543,
November-December 2007.

[20] Z. Zheng, P. Edmond, and T. Chan. Interactive
view-dependent rendering over networks.IEEE Transactions
on Visualization and Computer Graphics, preprints, 2007.

